Update IndicSentenceSummarization.py
Browse files- IndicSentenceSummarization.py +111 -111
IndicSentenceSummarization.py
CHANGED
@@ -1,112 +1,112 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
|
8 |
-
_CITATION = """\
|
9 |
-
@inproceedings{Kumar2022IndicNLGSM,
|
10 |
-
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
|
11 |
-
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
|
12 |
-
year={2022},
|
13 |
-
url = "https://arxiv.org/abs/2203.05437"
|
14 |
-
}
|
15 |
-
"""
|
16 |
-
|
17 |
-
_DESCRIPTION = """\
|
18 |
-
This is the sentence summarization dataset released as part of IndicNLG Suite. Each
|
19 |
-
input sentence is paired with an output summary. We create this dataset in eleven
|
20 |
-
languages including as, bn, gu, hi, kn, ml, mr, or, pa, ta and te. The total
|
21 |
-
size of the dataset is 431K.
|
22 |
-
"""
|
23 |
-
_HOMEPAGE = "https://indicnlp.ai4bharat.org/indicnlg-suite"
|
24 |
-
|
25 |
-
_LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License"
|
26 |
-
|
27 |
-
_URL = "https://huggingface.co/datasets/ai4bharat/IndicSentenceSummarization/resolve/main/data/{}_IndicSentenceSummarization_v{}.
|
28 |
-
|
29 |
-
|
30 |
-
_LANGUAGES = [
|
31 |
-
"as",
|
32 |
-
"bn",
|
33 |
-
"gu",
|
34 |
-
"hi",
|
35 |
-
"kn",
|
36 |
-
"ml",
|
37 |
-
"mr",
|
38 |
-
"or",
|
39 |
-
"pa",
|
40 |
-
"ta",
|
41 |
-
"te"
|
42 |
-
]
|
43 |
-
|
44 |
-
|
45 |
-
class IndicSentenceSummarization(datasets.GeneratorBasedBuilder):
|
46 |
-
VERSION = datasets.Version("1.0.0")
|
47 |
-
|
48 |
-
BUILDER_CONFIGS = [
|
49 |
-
datasets.BuilderConfig(
|
50 |
-
name="{}".format(lang),
|
51 |
-
version=datasets.Version("1.0.0")
|
52 |
-
)
|
53 |
-
for lang in _LANGUAGES
|
54 |
-
]
|
55 |
-
|
56 |
-
def _info(self):
|
57 |
-
return datasets.DatasetInfo(
|
58 |
-
description=_DESCRIPTION,
|
59 |
-
features=datasets.Features(
|
60 |
-
{
|
61 |
-
"id":datasets.Value("string"),
|
62 |
-
"input": datasets.Value("string"),
|
63 |
-
"target": datasets.Value("string"),
|
64 |
-
"url":datasets.Value("string")
|
65 |
-
}
|
66 |
-
),
|
67 |
-
supervised_keys=None,
|
68 |
-
homepage=_HOMEPAGE,
|
69 |
-
citation=_CITATION,
|
70 |
-
license=_LICENSE,
|
71 |
-
version=self.VERSION,
|
72 |
-
)
|
73 |
-
|
74 |
-
def _split_generators(self, dl_manager):
|
75 |
-
"""Returns SplitGenerators."""
|
76 |
-
lang = str(self.config.name)
|
77 |
-
url = _URL.format(lang, self.VERSION.version_str[:-2])
|
78 |
-
|
79 |
-
data_dir = dl_manager.download_and_extract(url)
|
80 |
-
return [
|
81 |
-
datasets.SplitGenerator(
|
82 |
-
name=datasets.Split.TRAIN,
|
83 |
-
gen_kwargs={
|
84 |
-
"filepath": os.path.join(data_dir, lang + "_train.jsonl"),
|
85 |
-
},
|
86 |
-
),
|
87 |
-
datasets.SplitGenerator(
|
88 |
-
name=datasets.Split.TEST,
|
89 |
-
gen_kwargs={
|
90 |
-
"filepath": os.path.join(data_dir, lang + "_test.jsonl"),
|
91 |
-
},
|
92 |
-
),
|
93 |
-
datasets.SplitGenerator(
|
94 |
-
name=datasets.Split.VALIDATION,
|
95 |
-
gen_kwargs={
|
96 |
-
"filepath": os.path.join(data_dir, lang + "_dev.jsonl"),
|
97 |
-
},
|
98 |
-
),
|
99 |
-
]
|
100 |
-
|
101 |
-
def _generate_examples(self, filepath):
|
102 |
-
"""Yields examples as (key, example) tuples."""
|
103 |
-
with open(filepath, encoding="utf-8") as f:
|
104 |
-
for idx_, row in enumerate(f):
|
105 |
-
data = json.loads(row)
|
106 |
-
yield idx_, {
|
107 |
-
"id":data["id"],
|
108 |
-
"input": data["Sentence"],
|
109 |
-
"target": data["Summary"],
|
110 |
-
"url":data["URL"]
|
111 |
-
|
112 |
}
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
_CITATION = """\
|
9 |
+
@inproceedings{Kumar2022IndicNLGSM,
|
10 |
+
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
|
11 |
+
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
|
12 |
+
year={2022},
|
13 |
+
url = "https://arxiv.org/abs/2203.05437"
|
14 |
+
}
|
15 |
+
"""
|
16 |
+
|
17 |
+
_DESCRIPTION = """\
|
18 |
+
This is the sentence summarization dataset released as part of IndicNLG Suite. Each
|
19 |
+
input sentence is paired with an output summary. We create this dataset in eleven
|
20 |
+
languages including as, bn, gu, hi, kn, ml, mr, or, pa, ta and te. The total
|
21 |
+
size of the dataset is 431K.
|
22 |
+
"""
|
23 |
+
_HOMEPAGE = "https://indicnlp.ai4bharat.org/indicnlg-suite"
|
24 |
+
|
25 |
+
_LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License"
|
26 |
+
|
27 |
+
_URL = "https://huggingface.co/datasets/ai4bharat/IndicSentenceSummarization/resolve/main/data/{}_IndicSentenceSummarization_v{}.zip"
|
28 |
+
|
29 |
+
|
30 |
+
_LANGUAGES = [
|
31 |
+
"as",
|
32 |
+
"bn",
|
33 |
+
"gu",
|
34 |
+
"hi",
|
35 |
+
"kn",
|
36 |
+
"ml",
|
37 |
+
"mr",
|
38 |
+
"or",
|
39 |
+
"pa",
|
40 |
+
"ta",
|
41 |
+
"te"
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
class IndicSentenceSummarization(datasets.GeneratorBasedBuilder):
|
46 |
+
VERSION = datasets.Version("1.0.0")
|
47 |
+
|
48 |
+
BUILDER_CONFIGS = [
|
49 |
+
datasets.BuilderConfig(
|
50 |
+
name="{}".format(lang),
|
51 |
+
version=datasets.Version("1.0.0")
|
52 |
+
)
|
53 |
+
for lang in _LANGUAGES
|
54 |
+
]
|
55 |
+
|
56 |
+
def _info(self):
|
57 |
+
return datasets.DatasetInfo(
|
58 |
+
description=_DESCRIPTION,
|
59 |
+
features=datasets.Features(
|
60 |
+
{
|
61 |
+
"id":datasets.Value("string"),
|
62 |
+
"input": datasets.Value("string"),
|
63 |
+
"target": datasets.Value("string"),
|
64 |
+
"url":datasets.Value("string")
|
65 |
+
}
|
66 |
+
),
|
67 |
+
supervised_keys=None,
|
68 |
+
homepage=_HOMEPAGE,
|
69 |
+
citation=_CITATION,
|
70 |
+
license=_LICENSE,
|
71 |
+
version=self.VERSION,
|
72 |
+
)
|
73 |
+
|
74 |
+
def _split_generators(self, dl_manager):
|
75 |
+
"""Returns SplitGenerators."""
|
76 |
+
lang = str(self.config.name)
|
77 |
+
url = _URL.format(lang, self.VERSION.version_str[:-2])
|
78 |
+
|
79 |
+
data_dir = dl_manager.download_and_extract(url)
|
80 |
+
return [
|
81 |
+
datasets.SplitGenerator(
|
82 |
+
name=datasets.Split.TRAIN,
|
83 |
+
gen_kwargs={
|
84 |
+
"filepath": os.path.join(data_dir, lang + "_train.jsonl"),
|
85 |
+
},
|
86 |
+
),
|
87 |
+
datasets.SplitGenerator(
|
88 |
+
name=datasets.Split.TEST,
|
89 |
+
gen_kwargs={
|
90 |
+
"filepath": os.path.join(data_dir, lang + "_test.jsonl"),
|
91 |
+
},
|
92 |
+
),
|
93 |
+
datasets.SplitGenerator(
|
94 |
+
name=datasets.Split.VALIDATION,
|
95 |
+
gen_kwargs={
|
96 |
+
"filepath": os.path.join(data_dir, lang + "_dev.jsonl"),
|
97 |
+
},
|
98 |
+
),
|
99 |
+
]
|
100 |
+
|
101 |
+
def _generate_examples(self, filepath):
|
102 |
+
"""Yields examples as (key, example) tuples."""
|
103 |
+
with open(filepath, encoding="utf-8") as f:
|
104 |
+
for idx_, row in enumerate(f):
|
105 |
+
data = json.loads(row)
|
106 |
+
yield idx_, {
|
107 |
+
"id":data["id"],
|
108 |
+
"input": data["Sentence"],
|
109 |
+
"target": data["Summary"],
|
110 |
+
"url":data["URL"]
|
111 |
+
|
112 |
}
|