|
|
|
|
|
import json
|
|
import os
|
|
|
|
import datasets
|
|
|
|
_CITATION = """\
|
|
@inproceedings{Kumar2022IndicNLGSM,
|
|
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
|
|
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
|
|
year={2022},
|
|
url = "https://arxiv.org/abs/2203.05437"
|
|
}
|
|
"""
|
|
|
|
_DESCRIPTION = """\
|
|
This is the sentence summarization dataset released as part of IndicNLG Suite. Each
|
|
input sentence is paired with an output summary. We create this dataset in eleven
|
|
languages including as, bn, gu, hi, kn, ml, mr, or, pa, ta and te. The total
|
|
size of the dataset is 431K.
|
|
"""
|
|
_HOMEPAGE = "https://indicnlp.ai4bharat.org/indicnlg-suite"
|
|
|
|
_LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License"
|
|
|
|
_URL = "https://huggingface.co/datasets/ai4bharat/IndicSentenceSummarization/resolve/main/data/{}_IndicSentenceSummarization_v{}.tar.bz2"
|
|
|
|
|
|
_LANGUAGES = [
|
|
"as",
|
|
"bn",
|
|
"gu",
|
|
"hi",
|
|
"kn",
|
|
"ml",
|
|
"mr",
|
|
"or",
|
|
"pa",
|
|
"ta",
|
|
"te"
|
|
]
|
|
|
|
|
|
class IndicSentenceSummarization(datasets.GeneratorBasedBuilder):
|
|
VERSION = datasets.Version("1.0.0")
|
|
|
|
BUILDER_CONFIGS = [
|
|
datasets.BuilderConfig(
|
|
name="{}".format(lang),
|
|
version=datasets.Version("1.0.0")
|
|
)
|
|
for lang in _LANGUAGES
|
|
]
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=datasets.Features(
|
|
{
|
|
"id":datasets.Value("string"),
|
|
"input": datasets.Value("string"),
|
|
"target": datasets.Value("string"),
|
|
"url":datasets.Value("string")
|
|
}
|
|
),
|
|
supervised_keys=None,
|
|
homepage=_HOMEPAGE,
|
|
citation=_CITATION,
|
|
license=_LICENSE,
|
|
version=self.VERSION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""Returns SplitGenerators."""
|
|
lang = str(self.config.name)
|
|
url = _URL.format(lang, self.VERSION.version_str[:-2])
|
|
|
|
data_dir = dl_manager.download_and_extract(url)
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"filepath": os.path.join(data_dir, lang + "_train.jsonl"),
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={
|
|
"filepath": os.path.join(data_dir, lang + "_test.jsonl"),
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={
|
|
"filepath": os.path.join(data_dir, lang + "_dev.jsonl"),
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, filepath):
|
|
"""Yields examples as (key, example) tuples."""
|
|
with open(filepath, encoding="utf-8") as f:
|
|
for idx_, row in enumerate(f):
|
|
data = json.loads(row)
|
|
yield idx_, {
|
|
"id":data["id"],
|
|
"input": data["Sentence"],
|
|
"target": data["Summary"],
|
|
"url":data["URL"]
|
|
|
|
} |