The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 23 new columns ({'concrete wall', 'stop sign', 'store', 'adult', 'field', 'SUV', 'motorcycle rider', 'trees', 'sedan', 'child', 'road sign', 'office', 'mountain', 'church', 'grass', 'intersection light', 'stop light', 'light pole', 'asphalt', 'bushes', 'house', 'bicycle rider', 'street'}) This happened while the json dataset builder was generating data using hf://datasets/ahn1376/bdd100K_test/prompt_dict.json (at revision d8caa8d086e6570111c83470dfe37eb8e8b93915) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast road: struct<id: int64> child 0, id: int64 asphalt: struct<id: int64> child 0, id: int64 street: struct<id: int64> child 0, id: int64 sidewalk: struct<id: int64> child 0, id: int64 building: struct<id: int64> child 0, id: int64 house: struct<id: int64> child 0, id: int64 church: struct<id: int64> child 0, id: int64 store: struct<id: int64> child 0, id: int64 office: struct<id: int64> child 0, id: int64 wall: struct<id: int64> child 0, id: int64 concrete wall: struct<id: int64> child 0, id: int64 fence: struct<id: int64> child 0, id: int64 pole: struct<id: int64> child 0, id: int64 light pole: struct<id: int64> child 0, id: int64 traffic light: struct<id: int64> child 0, id: int64 stop light: struct<id: int64> child 0, id: int64 intersection light: struct<id: int64> child 0, id: int64 traffic sign: struct<id: int64> child 0, id: int64 stop sign: struct<id: int64> child 0, id: int64 road sign: struct<id: int64> child 0, id: int64 vegetation: struct<id: int64> child 0, id: int64 trees: struct<id: int64> child 0, id: int64 bushes: struct<id: int64> child 0, id: int64 terrain: struct<id: int64> child 0, id: int64 grass: struct<id: int64> child 0, id: int64 field: struct<id: int64> child 0, id: int64 mountain: struct<id: int64> child 0, id: int64 sky: struct<id: int64> child 0, id: int64 person: struct<id: int64> child 0, id: int64 child: struct<id: int64> child 0, id: int64 adult: struct<id: int64> child 0, id: int64 rider: struct<id: int64> child 0, id: int64 bicycle rider: struct<id: int64> child 0, id: int64 motorcycle rider: struct<id: int64> child 0, id: int64 car: struct<id: int64> child 0, id: int64 sedan: struct<id: int64> child 0, id: int64 SUV: struct<id: int64> child 0, id: int64 truck: struct<id: int64> child 0, id: int64 bus: struct<id: int64> child 0, id: int64 train: struct<id: int64> child 0, id: int64 motorcycle: struct<id: int64> child 0, id: int64 bicycle: struct<id: int64> child 0, id: int64 to {'road': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'sidewalk': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'building': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'wall': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'fence': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'pole': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'traffic light': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'traffic sign': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'vegetation': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'terrain': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'sky': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'person': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'rider': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'car': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'truck': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'bus': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'train': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'motorcycle': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}, 'bicycle': {'id': Value(dtype='int64', id=None), 'has_instance': Value(dtype='bool', id=None)}} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1412, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 988, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 23 new columns ({'concrete wall', 'stop sign', 'store', 'adult', 'field', 'SUV', 'motorcycle rider', 'trees', 'sedan', 'child', 'road sign', 'office', 'mountain', 'church', 'grass', 'intersection light', 'stop light', 'light pole', 'asphalt', 'bushes', 'house', 'bicycle rider', 'street'}) This happened while the json dataset builder was generating data using hf://datasets/ahn1376/bdd100K_test/prompt_dict.json (at revision d8caa8d086e6570111c83470dfe37eb8e8b93915) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
road
dict | sidewalk
dict | building
dict | wall
dict | fence
dict | pole
dict | traffic light
dict | traffic sign
dict | vegetation
dict | terrain
dict | sky
dict | person
dict | rider
dict | car
dict | truck
dict | bus
dict | train
dict | motorcycle
dict | bicycle
dict | asphalt
dict | street
dict | house
dict | church
dict | store
dict | office
dict | concrete wall
dict | light pole
dict | stop light
dict | intersection light
dict | stop sign
dict | road sign
dict | trees
dict | bushes
dict | grass
dict | field
dict | mountain
dict | child
dict | adult
dict | bicycle rider
dict | motorcycle rider
dict | sedan
dict | SUV
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{
"id": 1,
"has_instance": false
} | {
"id": 2,
"has_instance": false
} | {
"id": 3,
"has_instance": false
} | {
"id": 4,
"has_instance": false
} | {
"id": 5,
"has_instance": false
} | {
"id": 6,
"has_instance": false
} | {
"id": 7,
"has_instance": false
} | {
"id": 8,
"has_instance": false
} | {
"id": 9,
"has_instance": false
} | {
"id": 10,
"has_instance": false
} | {
"id": 11,
"has_instance": false
} | {
"id": 12,
"has_instance": true
} | {
"id": 13,
"has_instance": true
} | {
"id": 14,
"has_instance": true
} | {
"id": 15,
"has_instance": true
} | {
"id": 16,
"has_instance": true
} | {
"id": 17,
"has_instance": true
} | {
"id": 18,
"has_instance": true
} | {
"id": 19,
"has_instance": true
} | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
{
"id": 1
} | {
"id": 2
} | {
"id": 3
} | {
"id": 4
} | {
"id": 5
} | {
"id": 6
} | {
"id": 7
} | {
"id": 8
} | {
"id": 9
} | {
"id": 10
} | {
"id": 11
} | {
"id": 12
} | {
"id": 13
} | {
"id": 14
} | {
"id": 15
} | {
"id": 16
} | {
"id": 17
} | {
"id": 18
} | {
"id": 19
} | {
"id": 1
} | {
"id": 1
} | {
"id": 3
} | {
"id": 3
} | {
"id": 3
} | {
"id": 3
} | {
"id": 4
} | {
"id": 6
} | {
"id": 7
} | {
"id": 7
} | {
"id": 8
} | {
"id": 8
} | {
"id": 9
} | {
"id": 9
} | {
"id": 10
} | {
"id": 10
} | {
"id": 10
} | {
"id": 12
} | {
"id": 12
} | {
"id": 13
} | {
"id": 13
} | {
"id": 14
} | {
"id": 14
} |