Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
from sklearn.metrics import matthews_corrcoef | |
import numpy as np | |
def compute_MCC_jsonl(references_jsonl, predictions_jsonl, ref_col='ner_tags', pred_col='pred_ner_tags'): | |
''' | |
Computes the Matthews correlation coeff between two datasets in jsonl format (list of dicts each with same keys). | |
Sorts the datasets by 'unique_id' and verifies that the tokens match. | |
''' | |
# reverse the dict | |
ref_dict = {k:[e[k] for e in references_jsonl] for k in references_jsonl[0].keys()} | |
pred_dict = {k:[e[k] for e in predictions_jsonl] for k in predictions_jsonl[0].keys()} | |
# sort by unique_id | |
ref_idx = np.argsort(ref_dict['unique_id']) | |
pred_idx = np.argsort(pred_dict['unique_id']) | |
ref_ner_tags = np.array(ref_dict[ref_col], dtype=object)[ref_idx] | |
pred_ner_tags = np.array(pred_dict[pred_col], dtype=object)[pred_idx] | |
ref_tokens = np.array(ref_dict['tokens'], dtype=object)[ref_idx] | |
pred_tokens = np.array(pred_dict['tokens'], dtype=object)[pred_idx] | |
# check that tokens match | |
for t1,t2 in zip(ref_tokens, pred_tokens): | |
assert(t1==t2) | |
# the lists have to be flattened | |
flat_ref_tags = np.concatenate(ref_ner_tags) | |
flat_pred_tags = np.concatenate(pred_ner_tags) | |
mcc_score = matthews_corrcoef(y_true=flat_ref_tags, | |
y_pred=flat_pred_tags) | |
return(mcc_score) |