Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
File size: 9,111 Bytes
98aff4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fea611
98aff4c
 
 
 
 
 
 
 
 
3fea611
98aff4c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import json

import datasets

_CITATION = """\
@article{pratapa-etal-2022-multilingual,
title = {Multilingual Event Linking to Wikidata},
author = {Pratapa, Adithya and Gupta, Rishubh and Mitamura, Teruko},
publisher = {arXiv},
year = {2022},
url = {https://arxiv.org/abs/2204.06535},
}
"""

_DESCRIPTION = """\
XLEL-WD is a multilingual event linking dataset. \
This dataset contains mention references from multilingual Wikipedia/Wikinews articles to event items in Wikidata. \
The text descriptions for Wikidata events are compiled from Wikipedia articles.
"""

_HOMEPAGE = "https://github.com/adithya7/xlel-wd"

_LICENSE = "CC-BY-4.0"

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "wikipedia-zero-shot": {
        "train": "wikipedia.train.jsonl",
        "dev": "wikipedia-zero-shot.dev.jsonl",
        "test": "wikipedia-zero-shot.test.jsonl",
    },
    "wikinews-zero-shot": {"test": "wikinews-zero-shot.test.jsonl"},
    "wikinews-cross-domain": {"test": "wikinews-cross-domain.test.jsonl"},
}

_WIKIPEDIA_ZERO_SHOT_LANGS = [
    "af",
    "ar",
    "be",
    "bg",
    "bn",
    "ca",
    "cs",
    "da",
    "de",
    "el",
    "en",
    "es",
    "fa",
    "fi",
    "fr",
    "he",
    "hi",
    "hu",
    "id",
    "it",
    "ja",
    "ko",
    "ml",
    "mr",
    "ms",
    "nl",
    "no",
    "pl",
    "pt",
    "ro",
    "ru",
    "si",
    "sk",
    "sl",
    "sr",
    "sv",
    "sw",
    "ta",
    "te",
    "th",
    "tr",
    "uk",
    "vi",
    "zh",
]

_WIKINEWS_CROSS_DOMAIN_LANGS = [
    "ar",
    "bg",
    "ca",
    "cs",
    "de",
    "el",
    "en",
    "es",
    "fi",
    "fr",
    "he",
    "hu",
    "it",
    "ja",
    "ko",
    "nl",
    "no",
    "pl",
    "pt",
    "ro",
    "ru",
    "sr",
    "sv",
    "ta",
    "tr",
    "uk",
    "zh",
]

_WIKINEWS_ZERO_SHOT_LANGS = [
    "ar",
    "cs",
    "de",
    "en",
    "es",
    "fi",
    "fr",
    "it",
    "ja",
    "ko",
    "nl",
    "no",
    "pl",
    "pt",
    "ru",
    "sr",
    "sv",
    "ta",
    "tr",
    "uk",
    "zh",
]

_TASK_NAMES = []
_TASK_DESCRIPTIONS = []

# wikipedia based tasks
_TASK_NAMES += ["wikipedia-zero-shot"]
_TASK_DESCRIPTIONS += [
    "This task requires linking mentions from multilingual wiki to Wikidata events (zero-shot evaluation)"
]

for lang in _WIKIPEDIA_ZERO_SHOT_LANGS:
    _TASK_NAMES += [f"wikipedia-zero-shot.{lang}"]
    _TASK_DESCRIPTIONS += [
        f"This task requires linking mentions from {lang}wiki to Wikidata events (zero-shot evaluation)."
    ]

# wikinews based tasks (zero-shot)
_TASK_NAMES += ["wikinews-zero-shot"]
_TASK_DESCRIPTIONS += [
    "This task requires linking mentions from multilingual wikinews to Wikidata events (zero-shot evaluation)."
]
for lang in _WIKINEWS_ZERO_SHOT_LANGS:
    _TASK_NAMES += [f"wikinews-zero-shot.{lang}"]
    _TASK_DESCRIPTIONS += [
        f"This task requires linking mentions from {lang}wikinews to Wikidata events (zero-shot evaluation)."
    ]

# wikinews based tasks (cross-domain)
_TASK_NAMES += ["wikinews-cross-domain"]
_TASK_DESCRIPTIONS += [
    "This task requires linking mentions from multilingual wikinews to Wikidata events (cross-domain evaluation)."
]
for lang in _WIKINEWS_CROSS_DOMAIN_LANGS:
    _TASK_NAMES += [f"wikinews-cross-domain.{lang}"]
    _TASK_DESCRIPTIONS += [
        f"This task requires linking mentions from {lang}wikinews to Wikidata events (cross-domain evaluation)."
    ]


class XlelWdConfig(datasets.BuilderConfig):
    """BuilderConfig for XLEL-WD"""

    def __init__(self, features, citation, url, **kwargs) -> None:
        super(XlelWdConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.features = features
        self.citation = citation
        self.url = url


class XlelWd(datasets.GeneratorBasedBuilder):
    """A dataset for multilingual linking of event mentions to Wikidata."""

    VERSION = datasets.Version("1.0.0")
    # the features different slightly for Wikipedia and Wikinews
    # Wikinews dataset also contains the article title and publication date
    BUILDER_CONFIGS = [
        XlelWdConfig(
            name=name,
            description=desc,
            features=["mention", "context_left", "context_right", "context_lang"],
            citation=_CITATION,
            url=_URLS[name.split(".")[0]],
        )
        if name.startswith("wikipedia")
        else XlelWdConfig(
            name=name,
            description=desc,
            features=[
                "mention",
                "context_left",
                "context_right",
                "context_lang",
                "context_title",
                "context_date",
            ],
            citation=_CITATION,
            url=_URLS[name.split(".")[0]],
        )
        for name, desc in zip(_TASK_NAMES, _TASK_DESCRIPTIONS)
    ]

    def _info(self):

        features = {
            feature: datasets.Value("string") for feature in self.config.features
        }
        features["label_id"] = datasets.Value("string")
        return datasets.DatasetInfo(
            description=_DESCRIPTION + self.config.description,
            features=datasets.Features(features),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=self.config.citation,
        )

    def _split_generators(self, dl_manager):

        urls = _URLS[self.config.name.split(".")[0]]
        downloaded_files = dl_manager.download_and_extract(urls)
        if self.config.name.startswith("wikipedia"):
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": downloaded_files["train"],
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": downloaded_files["dev"],
                        "split": "dev",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": downloaded_files["test"],
                        "split": "test",
                    },
                ),
            ]
        elif self.config.name.startswith("wikinews"):
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": downloaded_files["test"],
                        "split": "test",
                    },
                ),
            ]

    def _generate_examples(self, filepath, split):

        task_domain, *task_langs = self.config.name.split(".")
        with open(filepath, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)
                # generate mention references for the specified language
                # if no language is specific in the config, return all
                if len(task_langs) == 0 or task_langs[0] == data["context_lang"]:
                    if task_domain.startswith("wikipedia"):
                        yield key, {
                            "mention": data["mention"],
                            "context_left": data["context_left"],
                            "context_right": data["context_right"],
                            "context_lang": data["context_lang"],
                            "label_id": data["label_id"],
                        }
                    elif task_domain.startswith("wikinews"):
                        yield key, {
                            "mention": data["mention"],
                            "context_left": data["context_left"],
                            "context_right": data["context_right"],
                            "context_lang": data["context_lang"],
                            "context_title": data["context_title"],
                            "context_date": data["context_date"],
                            "label_id": data["label_id"],
                        }