File size: 10,099 Bytes
e700b36
 
 
 
 
25c5086
e700b36
25c5086
e700b36
 
 
 
e38a410
 
 
e700b36
 
 
e38a410
 
e700b36
e38a410
 
329d897
1bb72c0
 
 
 
305f690
 
 
 
 
 
 
 
 
7790853
 
305f690
 
1bb72c0
305f690
0e9e744
1bb72c0
305f690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb72c0
305f690
0e2cdb2
1bb72c0
305f690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb72c0
305f690
 
1bb72c0
0e9e744
 
 
 
 
0e2cdb2
 
 
 
7790853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e700b36
 
a9ae5c1
e700b36
 
d6f31cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e700b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7c05b
e700b36
 
 
 
 
 
 
 
7a7c05b
e700b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7c05b
e700b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7c05b
e700b36
 
 
 
7a7c05b
e700b36
 
 
 
 
 
 
 
 
7a7c05b
e700b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ae5c1
 
 
305f690
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
- 1K<n<10K
- n<1K
source_datasets:
- original
task_categories:
- text-classification
- token-classification
task_ids:
- coreference-resolution
- fact-checking
pretty_name: Adverse Drug Reaction Data v2
config_names:
- Ade_corpus_v2_classification
- Ade_corpus_v2_drug_ade_relation
- Ade_corpus_v2_drug_dosage_relation
dataset_info:
- config_name: Ade_corpus_v2_classification
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': Not-Related
          '1': Related
  splits:
  - name: train
    num_bytes: 3403699
    num_examples: 23516
  download_size: 1706476
  dataset_size: 3403699
- config_name: Ade_corpus_v2_drug_ade_relation
  features:
  - name: text
    dtype: string
  - name: drug
    dtype: string
  - name: effect
    dtype: string
  - name: indexes
    struct:
    - name: drug
      sequence:
      - name: start_char
        dtype: int32
      - name: end_char
        dtype: int32
    - name: effect
      sequence:
      - name: start_char
        dtype: int32
      - name: end_char
        dtype: int32
  splits:
  - name: train
    num_bytes: 1545993
    num_examples: 6821
  download_size: 491362
  dataset_size: 1545993
- config_name: Ade_corpus_v2_drug_dosage_relation
  features:
  - name: text
    dtype: string
  - name: drug
    dtype: string
  - name: dosage
    dtype: string
  - name: indexes
    struct:
    - name: drug
      sequence:
      - name: start_char
        dtype: int32
      - name: end_char
        dtype: int32
    - name: dosage
      sequence:
      - name: start_char
        dtype: int32
      - name: end_char
        dtype: int32
  splits:
  - name: train
    num_bytes: 64697
    num_examples: 279
  download_size: 3791162
  dataset_size: 64697
configs:
- config_name: Ade_corpus_v2_classification
  data_files:
  - split: train
    path: Ade_corpus_v2_classification/train-*
- config_name: Ade_corpus_v2_drug_ade_relation
  data_files:
  - split: train
    path: Ade_corpus_v2_drug_ade_relation/train-*
train-eval-index:
- config: Ade_corpus_v2_classification
  task: text-classification
  task_id: multi_class_classification
  splits:
    train_split: train
  col_mapping:
    text: text
    label: target
  metrics:
  - type: accuracy
    name: Accuracy
  - type: f1
    name: F1 macro
    args:
      average: macro
  - type: f1
    name: F1 micro
    args:
      average: micro
  - type: f1
    name: F1 weighted
    args:
      average: weighted
  - type: precision
    name: Precision macro
    args:
      average: macro
  - type: precision
    name: Precision micro
    args:
      average: micro
  - type: precision
    name: Precision weighted
    args:
      average: weighted
  - type: recall
    name: Recall macro
    args:
      average: macro
  - type: recall
    name: Recall micro
    args:
      average: micro
  - type: recall
    name: Recall weighted
    args:
      average: weighted
---

# Dataset Card for Adverse Drug Reaction Data v2

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://www.sciencedirect.com/science/article/pii/S1532046412000615
- **Repository:** [Needs More Information]
- **Paper:** https://www.sciencedirect.com/science/article/pii/S1532046412000615
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]

### Dataset Summary

ADE-Corpus-V2  Dataset: Adverse Drug Reaction Data.
 This is a dataset for Classification if a sentence is ADE-related (True) or not (False) and Relation Extraction between Adverse Drug Event and Drug.
 DRUG-AE.rel provides relations between drugs and adverse effects.
 DRUG-DOSE.rel provides relations between drugs and dosages.
 ADE-NEG.txt provides all sentences in the ADE corpus that DO NOT contain any drug-related adverse effects.

### Supported Tasks and Leaderboards

Sentiment classification, Relation Extraction

### Languages

English

## Dataset Structure

### Data Instances

#### Config - `Ade_corpus_v2_classification`
```
{
      'label': 1, 
      'text': 'Intravenous azithromycin-induced ototoxicity.'
}

```

#### Config - `Ade_corpus_v2_drug_ade_relation`

```
{ 
    'drug': 'azithromycin', 
    'effect': 'ototoxicity', 
    'indexes': {
                  'drug': {
                            'end_char': [24], 
                            'start_char': [12]
                          }, 
                  'effect': {
                            'end_char': [44], 
                            'start_char': [33]
                            }
                }, 
    'text': 'Intravenous azithromycin-induced ototoxicity.'
    
}

```

#### Config - `Ade_corpus_v2_drug_dosage_relation`

```
{
    'dosage': '4 times per day', 
    'drug': 'insulin', 
    'indexes': {
                'dosage': {
                            'end_char': [56], 
                            'start_char': [41]
                        }, 
                'drug': {
                          'end_char': [40], 
                          'start_char': [33]}
                        }, 
    'text': 'She continued to receive regular insulin 4 times per day over the following 3 years with only occasional hives.'
}

```


### Data Fields

#### Config - `Ade_corpus_v2_classification`

- `text` - Input text.
- `label` - Whether the adverse drug effect(ADE) related (1) or not (0).
- 
#### Config - `Ade_corpus_v2_drug_ade_relation`

- `text` - Input text.
- `drug` - Name of drug.
- `effect` - Effect caused by the drug.
- `indexes.drug.start_char` - Start index of `drug` string in text.
- `indexes.drug.end_char` - End index of `drug` string in text.
- `indexes.effect.start_char` - Start index of `effect` string in text.
- `indexes.effect.end_char` - End index of `effect` string in text.

#### Config - `Ade_corpus_v2_drug_dosage_relation`

- `text` - Input text.
- `drug` - Name of drug.
- `dosage` - Dosage of the drug.
- `indexes.drug.start_char` - Start index of `drug` string in text.
- `indexes.drug.end_char` - End index of `drug` string in text.
- `indexes.dosage.start_char` - Start index of `dosage` string in text.
- `indexes.dosage.end_char` - End index of `dosage` string in text.


### Data Splits

| Train  |
| ------ | 
| 23516  |

## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

[Needs More Information]

### Citation Information

```
@article{GURULINGAPPA2012885,
title = "Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports",
journal = "Journal of Biomedical Informatics",
volume = "45",
number = "5",
pages = "885 - 892",
year = "2012",
note = "Text Mining and Natural Language Processing in Pharmacogenomics",
issn = "1532-0464",
doi = "https://doi.org/10.1016/j.jbi.2012.04.008",
url = "http://www.sciencedirect.com/science/article/pii/S1532046412000615",
author = "Harsha Gurulingappa and Abdul Mateen Rajput and Angus Roberts and Juliane Fluck and Martin Hofmann-Apitius and Luca Toldo",
keywords = "Adverse drug effect, Benchmark corpus, Annotation, Harmonization, Sentence classification",
abstract = "A significant amount of information about drug-related safety issues such as adverse effects are published in medical case reports that can only be explored by human readers due to their unstructured nature. The work presented here aims at generating a systematically annotated corpus that can support the development and validation of methods for the automatic extraction of drug-related adverse effects from medical case reports. The documents are systematically double annotated in various rounds to ensure consistent annotations. The annotated documents are finally harmonized to generate representative consensus annotations. In order to demonstrate an example use case scenario, the corpus was employed to train and validate models for the classification of informative against the non-informative sentences. A Maximum Entropy classifier trained with simple features and evaluated by 10-fold cross-validation resulted in the F1 score of 0.70 indicating a potential useful application of the corpus."
}
```

### Contributions

Thanks to [@Nilanshrajput](https://github.com/Nilanshrajput), [@lhoestq](https://github.com/lhoestq) for adding this dataset.