|
import json
|
|
import os
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import random
|
|
import requests
|
|
import matplotlib
|
|
import matplotlib.font_manager as font_manager
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
font_path = os.path.join(os.path.dirname(__file__), 'GoNotoKurrent-Regular.ttf')
|
|
assert os.path.exists(font_path)
|
|
font_manager.fontManager.addfont(font_path)
|
|
prop = font_manager.FontProperties(fname=font_path)
|
|
|
|
matplotlib.rc('font', family='sans-serif')
|
|
matplotlib.rcParams.update({
|
|
'font.size': 26,
|
|
'font.sans-serif': prop.get_name(),
|
|
})
|
|
|
|
def load_wordlist(lang):
|
|
|
|
os.makedirs("lists", exist_ok=True)
|
|
if os.path.exists(f"lists/{lang}.json"):
|
|
lines = json.load(open(f"lists/{lang}.json", "r"))
|
|
else:
|
|
data = requests.get(f"https://raw.githubusercontent.com/frekwencja/most-common-words-multilingual/main/data/wordfrequency.info/{lang}.txt").text
|
|
lines = data.split("\n")
|
|
lines = lines[int(len(lines) / 2):]
|
|
json.dump(lines, open(f"lists/{lang}.json", "w"))
|
|
return lines
|
|
|
|
|
|
def generate_bar_plot_configurations(n):
|
|
configurations = []
|
|
for _ in range(n):
|
|
num_bars = random.randint(4, 8)
|
|
config = {
|
|
'num_bars': num_bars,
|
|
'orientation': random.choice(['vertical', 'horizontal']),
|
|
'values': [random.randint(30, 100) for _ in range(num_bars)],
|
|
'colors': random.sample(
|
|
['blue', 'green', 'red', 'yellow', 'black', 'orange', 'purple', 'brown'],
|
|
num_bars),
|
|
'figsize': (random.uniform(5, 10), random.uniform(3, 8))
|
|
}
|
|
configurations.append(config)
|
|
return configurations
|
|
|
|
def generate_pie_plot_configurations(n):
|
|
configurations = []
|
|
for _ in range(n):
|
|
num_slices = random.randint(4, 8)
|
|
config = {
|
|
'num_slices': num_slices,
|
|
'values': [random.randint(10, 200) for _ in range(num_slices)],
|
|
'labels': [f'Label {i + 1}' for i in range(num_slices)],
|
|
'colors': random.sample(
|
|
['blue', 'green', 'red', 'yellow', 'cyan', 'orange', 'purple', 'brown'],
|
|
num_slices),
|
|
'explode': [0.1 if random.random() > 0.8 else 0 for _ in range(num_slices)],
|
|
'figsize': (random.uniform(5, 10), random.uniform(5, 10))
|
|
}
|
|
configurations.append(config)
|
|
return configurations
|
|
|
|
|
|
def create_and_save_pie_plots(configurations, language, output_dir='pie_plots'):
|
|
word_list = load_wordlist(language)
|
|
|
|
annotations = []
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
|
|
for i, config in tqdm(enumerate(configurations)):
|
|
config["labels"] = random.sample(word_list, config["num_slices"])
|
|
plt.figure(figsize=config['figsize'])
|
|
|
|
plt.pie(config['values'], labels=config['labels'], colors=config['colors'], explode=config['explode'],
|
|
autopct='%1.1f%%', startangle=140)
|
|
|
|
plt.tight_layout()
|
|
plt.savefig(os.path.join(output_dir, f'pie_plot_{i}.png'))
|
|
plt.close()
|
|
|
|
|
|
half = int(config['num_slices']//2)
|
|
|
|
questions_name = [
|
|
f"What is the label of the biggest slice?",
|
|
f"What is the label of the smallest slice?",
|
|
f"What is the label of the {config['colors'][0]} slice?",
|
|
f"What is the label of the {config['colors'][-1]} slice?",
|
|
f"What is the label of the {config['colors'][half]} slice?",
|
|
]
|
|
answer_name = [
|
|
config["labels"][np.argmax(config['values'])],
|
|
config["labels"][np.argmin(config['values'])],
|
|
config["labels"][0],
|
|
config["labels"][-1],
|
|
config["labels"][half],
|
|
]
|
|
|
|
question_ground = [
|
|
f"Is the slice with label '{config['labels'][np.argmax(config['values'])]}' the biggest?",
|
|
f"Is the slice with label '{config['labels'][(np.argmax(config['values'])+half)%config['num_slices']]}' the biggest?",
|
|
f"Is the slice with label '{config['labels'][np.argmin(config['values'])]}' the smallest?",
|
|
f"Is the slice with label '{config['labels'][(np.argmin(config['values'])+half)%config['num_slices']]}' the smallest?",
|
|
f"Is the slice with label '{config['labels'][0]}' colored in {config['colors'][0]}?",
|
|
f"Is the slice with label '{config['labels'][0]}' colored in {config['colors'][0+half]}?",
|
|
f"Is the slice with label '{config['labels'][half]}' colored in {config['colors'][half]}?",
|
|
f"Is the slice with label '{config['labels'][half]}' colored in {config['colors'][-1]}?",
|
|
]
|
|
answer_ground = [
|
|
"yes", "no",
|
|
"yes", "no",
|
|
"yes", "no",
|
|
"yes", "no",
|
|
]
|
|
|
|
|
|
annotation = {
|
|
"image": f'pie_plot_{i}.png',
|
|
"question_ground": question_ground,
|
|
"answer_ground": answer_ground,
|
|
"questions_name": questions_name,
|
|
"answer_name": answer_name,
|
|
}
|
|
|
|
annotations.append(annotation)
|
|
json.dump(annotations, open(os.path.join(output_dir, f'pie_annotations_{language}.json'), 'w', encoding='utf-8'), indent=4)
|
|
|
|
|
|
|
|
|
|
def create_and_save_bar_plots(configurations, language, output_dir='bar_plots'):
|
|
word_list = load_wordlist(language)
|
|
|
|
annotations = []
|
|
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
|
|
for i, config in tqdm(enumerate(configurations)):
|
|
config["labels"] = random.sample(word_list, config["num_bars"])
|
|
|
|
plt.figure(figsize=config['figsize'])
|
|
|
|
if config['orientation'] == 'vertical':
|
|
plt.bar(config['labels'], config['values'], color=config['colors'])
|
|
plt.gcf().autofmt_xdate()
|
|
else:
|
|
plt.barh(config['labels'], config['values'], color=config['colors'])
|
|
plt.tight_layout()
|
|
plt.savefig(os.path.join(output_dir, f'bar_plot_{i}.png'))
|
|
plt.close()
|
|
|
|
|
|
half = int(config['num_bars']//2)
|
|
|
|
questions_name = [
|
|
f"What is the label of the biggest bar?",
|
|
f"What is the label of the smallest bar?",
|
|
f"What is the label of the {config['colors'][0]} bar?",
|
|
f"What is the label of the {config['colors'][-1]} bar?",
|
|
f"What is the label of the {config['colors'][half]} bar?",
|
|
]
|
|
answer_name = [
|
|
config["labels"][np.argmax(config['values'])],
|
|
config["labels"][np.argmin(config['values'])],
|
|
config["labels"][0],
|
|
config["labels"][-1],
|
|
config["labels"][half],
|
|
]
|
|
|
|
question_ground = [
|
|
f"Is the bar with label '{config['labels'][np.argmax(config['values'])]}' the biggest?",
|
|
f"Is the bar with label '{config['labels'][(np.argmax(config['values'])+half)%config['num_bars']]}' the biggest?",
|
|
f"Is the bar with label '{config['labels'][np.argmin(config['values'])]}' the smallest?",
|
|
f"Is the bar with label '{config['labels'][(np.argmin(config['values'])+half)%config['num_bars']]}' the smallest?",
|
|
f"Is the bar with label '{config['labels'][0]}' colored in {config['colors'][0]}?",
|
|
f"Is the bar with label '{config['labels'][0]}' colored in {config['colors'][0+half]}?",
|
|
f"Is the bar with label '{config['labels'][half]}' colored in {config['colors'][half]}?",
|
|
f"Is the bar with label '{config['labels'][half]}' colored in {config['colors'][-1]}?",
|
|
]
|
|
answer_ground = [
|
|
"yes", "no",
|
|
"yes", "no",
|
|
"yes", "no",
|
|
"yes", "no",
|
|
]
|
|
|
|
|
|
annotation = {
|
|
"image": f'bar_plot_{i}.png',
|
|
"question_ground": question_ground,
|
|
"answer_ground": answer_ground,
|
|
"questions_name": questions_name,
|
|
"answer_name": answer_name,
|
|
}
|
|
|
|
annotations.append(annotation)
|
|
json.dump(annotations, open(os.path.join(output_dir, f'bar_annotations_{language}.json'), 'w', encoding='utf-8'), indent=4)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
languages = ["en", "zu", "id", "it", "de", "th", "ar", "ko", "zh-CN", "ru", "hi"]
|
|
|
|
if not os.path.exists("bar_configs.json"):
|
|
bar_configs = generate_bar_plot_configurations(50)
|
|
json.dump(bar_configs, open("bar_configs.json", "w"))
|
|
else:
|
|
bar_configs = json.load(open("bar_configs.json"))
|
|
|
|
if not os.path.exists("pie_configs.json"):
|
|
pie_configs = generate_pie_plot_configurations(50)
|
|
json.dump(pie_configs, open("pie_configs.json", "w"))
|
|
else:
|
|
pie_configs = json.load(open("pie_configs.json"))
|
|
|
|
for language in languages:
|
|
print(language)
|
|
os.makedirs(f"/media/gregor/DATA/datasets/smpqa/{language}", exist_ok=True)
|
|
create_and_save_bar_plots(bar_configs, language, output_dir=f"/media/gregor/DATA/datasets/smpqa/{language}")
|
|
create_and_save_pie_plots(pie_configs, language, output_dir=f"/media/gregor/DATA/datasets/smpqa/{language}")
|
|
|