Datasets:
File size: 4,035 Bytes
e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 0dc86b9 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 e81363c 796edf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
annotations_creators: []
language: en
license: cc-by-4.0
size_categories:
- 1K<n<10K
task_categories:
- image-classification
- image-segmentation
task_ids: []
pretty_name: MVTec AD
tags:
- fiftyone
- image
- image-classification
- image-segmentation
- anomaly-detection
dataset_summary: >
![image/png](dataset_preview.jpg)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 5354
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/mvtec-ad")
# Launch the App
session = fo.launch_app(dataset)
```
---
# Dataset Card for MVTec AD
<!-- Provide a quick summary of the dataset. -->
![image/png](dataset_preview.jpg)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 5354 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/mvtec-ad")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
MVTec AD is a dataset for benchmarking anomaly detection methods with a focus on industrial inspection. It contains over 5000 high-resolution images divided into fifteen different object and texture categories. Each category comprises a set of defect-free training images and a test set of images with various kinds of defects as well as images without defects.
Pixel-precise annotations of all anomalies are also provided.
The data is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).
In particular, it is not allowed to use the dataset for commercial purposes. If you are unsure whether or not your application violates the non-commercial use clause of the license, please contact the dataset's authors.
If you have any questions or comments about the dataset, feel free to contact the dataset's authors via email at [email protected]
- **Language(s) (NLP):** en
- **License:** cc-by-4.0
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Dataset Homepage** https://www.mvtec.com/company/research/datasets/mvtec-ad
- **Demo:** https://try.fiftyone.ai/datasets/mvtec-ad/samples
- **Paper:** [The MVTec Anomaly Detection Dataset: A Comprehensive Real-World
Dataset for Unsupervised Anomaly Detection](https://link.springer.com/content/pdf/10.1007/s11263-020-01400-4.pdf)
## Dataset Creation
### Source Data
Data downloaded and converted from [MVTec website](https://www.mvtec.com/company/research/datasets/mvtec-ad)
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```bibtex
@article{Bergmann2021MVTecAnomalyDetection,
title={The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection},
author={Bergmann, Paul and Batzner, Kilian and Fauser, Michael and Sattlegger, David and Steger, Carsten},
journal={International Journal of Computer Vision},
volume={129},
number={4},
pages={1038--1059},
year={2021},
doi={10.1007/s11263-020-01400-4}
}
@inproceedings{Bergmann2019MVTecAD,
title={MVTec AD — A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection},
author={Bergmann, Paul and Fauser, Michael and Sattlegger, David and Steger, Carsten},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
pages={9584--9592},
year={2019},
doi={10.1109/CVPR.2019.00982}
}
```
## Dataset Card Authors
[Jacob Marks](https://huggingface.co/jamarks) |