|
from pathlib import Path |
|
|
|
import datasets |
|
import numpy as np |
|
import pandas as pd |
|
import PIL.Image |
|
import PIL.ImageOps |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {printed-2d-masks-with-holes-for-eyes-attacks}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset consists of selfies of people and videos of them wearing a printed |
|
2d mask with their face. The dataset solves tasks in the field of anti-spoofing |
|
and it is useful for buisness and safety systems. |
|
The dataset includes: **attacks** - videos of people wearing printed portraits |
|
of themselves with cut-out eyes. |
|
""" |
|
_NAME = 'printed-2d-masks-with-holes-for-eyes-attacks' |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "cc-by-nc-nd-4.0" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
|
|
def exif_transpose(img): |
|
if not img: |
|
return img |
|
|
|
exif_orientation_tag = 274 |
|
|
|
|
|
if hasattr(img, "_getexif") and isinstance( |
|
img._getexif(), dict) and exif_orientation_tag in img._getexif(): |
|
exif_data = img._getexif() |
|
orientation = exif_data[exif_orientation_tag] |
|
|
|
|
|
if orientation == 1: |
|
|
|
pass |
|
elif orientation == 2: |
|
|
|
img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT) |
|
elif orientation == 3: |
|
|
|
img = img.rotate(180) |
|
elif orientation == 4: |
|
|
|
img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT) |
|
elif orientation == 5: |
|
|
|
img = img.rotate(-90, |
|
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) |
|
elif orientation == 6: |
|
|
|
img = img.rotate(-90, expand=True) |
|
elif orientation == 7: |
|
|
|
img = img.rotate(90, |
|
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) |
|
elif orientation == 8: |
|
|
|
img = img.rotate(90, expand=True) |
|
|
|
return img |
|
|
|
|
|
def load_image_file(file, mode='RGB'): |
|
|
|
img = PIL.Image.open(file) |
|
|
|
if hasattr(PIL.ImageOps, 'exif_transpose'): |
|
|
|
img = PIL.ImageOps.exif_transpose(img) |
|
else: |
|
|
|
img = exif_transpose(img) |
|
|
|
img = img.convert(mode) |
|
|
|
return np.array(img) |
|
|
|
|
|
class Printed2dMasksWithHolesForEyesAttacks(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo(description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
'photo': datasets.Image(), |
|
'attack': datasets.Value('string'), |
|
'phone': datasets.Value('string'), |
|
'gender': datasets.Value('string'), |
|
'age': datasets.Value('int8'), |
|
'country': datasets.Value('string') |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE) |
|
|
|
def _split_generators(self, dl_manager): |
|
images = dl_manager.download_and_extract(f"{_DATA}photo.zip") |
|
attacks = dl_manager.download(f"{_DATA}attack.tar.gz") |
|
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") |
|
images = dl_manager.iter_files(images) |
|
attacks = dl_manager.iter_archive(attacks) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": images, |
|
'attacks': attacks, |
|
'annotations': annotations |
|
}), |
|
] |
|
|
|
def _generate_examples(self, images, attacks, annotations): |
|
annotations_df = pd.read_csv(annotations, sep=';') |
|
|
|
for idx, (image_path, (attack_path, attack)) in enumerate( |
|
zip(sorted(images), sorted(attacks, key=lambda x: x[0]))): |
|
image_name = Path(image_path).name |
|
yield idx, { |
|
"photo": |
|
load_image_file(image_path), |
|
"attack": |
|
attack_path, |
|
|
|
|
|
'phone': |
|
annotations_df.loc[annotations_df['photo'].str.lower() == |
|
image_name.lower()]['phone'].values[0], |
|
'gender': |
|
annotations_df.loc[annotations_df['photo'].str.lower() == |
|
image_name.lower()]['gender'].values[0], |
|
'age': |
|
annotations_df.loc[annotations_df['photo'].str.lower() == |
|
image_name.lower()]['age'].values[0], |
|
'country': |
|
annotations_df.loc[annotations_df['photo'].str.lower() == |
|
image_name.lower()] |
|
['country'].values[0], |
|
} |
|
|