printed-2d-masks-with-holes-for-eyes-attacks / printed-2d-masks-with-holes-for-eyes-attacks.py
vkashko's picture
fix: script
7aebbbb
from pathlib import Path
import datasets
import numpy as np
import pandas as pd
import PIL.Image
import PIL.ImageOps
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {printed-2d-masks-with-holes-for-eyes-attacks},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset consists of selfies of people and videos of them wearing a printed
2d mask with their face. The dataset solves tasks in the field of anti-spoofing
and it is useful for buisness and safety systems.
The dataset includes: **attacks** - videos of people wearing printed portraits
of themselves with cut-out eyes.
"""
_NAME = 'printed-2d-masks-with-holes-for-eyes-attacks'
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = "cc-by-nc-nd-4.0"
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
def exif_transpose(img):
if not img:
return img
exif_orientation_tag = 274
# Check for EXIF data (only present on some files)
if hasattr(img, "_getexif") and isinstance(
img._getexif(), dict) and exif_orientation_tag in img._getexif():
exif_data = img._getexif()
orientation = exif_data[exif_orientation_tag]
# Handle EXIF Orientation
if orientation == 1:
# Normal image - nothing to do!
pass
elif orientation == 2:
# Mirrored left to right
img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 3:
# Rotated 180 degrees
img = img.rotate(180)
elif orientation == 4:
# Mirrored top to bottom
img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 5:
# Mirrored along top-left diagonal
img = img.rotate(-90,
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 6:
# Rotated 90 degrees
img = img.rotate(-90, expand=True)
elif orientation == 7:
# Mirrored along top-right diagonal
img = img.rotate(90,
expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
elif orientation == 8:
# Rotated 270 degrees
img = img.rotate(90, expand=True)
return img
def load_image_file(file, mode='RGB'):
# Load the image with PIL
img = PIL.Image.open(file)
if hasattr(PIL.ImageOps, 'exif_transpose'):
# Very recent versions of PIL can do exit transpose internally
img = PIL.ImageOps.exif_transpose(img)
else:
# Otherwise, do the exif transpose ourselves
img = exif_transpose(img)
img = img.convert(mode)
return np.array(img)
class Printed2dMasksWithHolesForEyesAttacks(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(description=_DESCRIPTION,
features=datasets.Features({
'photo': datasets.Image(),
'attack': datasets.Value('string'),
'phone': datasets.Value('string'),
'gender': datasets.Value('string'),
'age': datasets.Value('int8'),
'country': datasets.Value('string')
}),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE)
def _split_generators(self, dl_manager):
images = dl_manager.download_and_extract(f"{_DATA}photo.zip")
attacks = dl_manager.download(f"{_DATA}attack.tar.gz")
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
images = dl_manager.iter_files(images)
attacks = dl_manager.iter_archive(attacks)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"images": images,
'attacks': attacks,
'annotations': annotations
}),
]
def _generate_examples(self, images, attacks, annotations):
annotations_df = pd.read_csv(annotations, sep=';')
for idx, (image_path, (attack_path, attack)) in enumerate(
zip(sorted(images), sorted(attacks, key=lambda x: x[0]))):
image_name = Path(image_path).name
yield idx, {
"photo":
load_image_file(image_path),
"attack":
attack_path,
# annotations_df.loc[annotations_df['photo'].str.lower() ==
# image_name.lower()]['attack'].values[0],
'phone':
annotations_df.loc[annotations_df['photo'].str.lower() ==
image_name.lower()]['phone'].values[0],
'gender':
annotations_df.loc[annotations_df['photo'].str.lower() ==
image_name.lower()]['gender'].values[0],
'age':
annotations_df.loc[annotations_df['photo'].str.lower() ==
image_name.lower()]['age'].values[0],
'country':
annotations_df.loc[annotations_df['photo'].str.lower() ==
image_name.lower()]
['country'].values[0],
}