|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MsMarco Passage dataset.""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """ |
|
@misc{bajaj2018ms, |
|
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, |
|
author={Payal Bajaj and Daniel Campos and Nick Craswell and Li Deng and Jianfeng Gao and Xiaodong Liu |
|
and Rangan Majumder and Andrew McNamara and Bhaskar Mitra and Tri Nguyen and Mir Rosenberg and Xia Song |
|
and Alina Stoica and Saurabh Tiwary and Tong Wang}, |
|
year={2018}, |
|
eprint={1611.09268}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = "dataset load script for MSMARCO Passage" |
|
|
|
_DATASET_URLS = { |
|
'train': "https://huggingface.co/datasets/Tevatron/msmarco-passage-aug/resolve/main/train.jsonl.gz", |
|
|
|
'dev': "https://huggingface.co/datasets/Tevatron/msmarco-passage-aug/resolve/main/dev.jsonl.gz", |
|
'dl19': "https://huggingface.co/datasets/Tevatron/msmarco-passage-aug/resolve/main/dl19.jsonl.gz", |
|
'dl20': "https://huggingface.co/datasets/Tevatron/msmarco-passage-aug/resolve/main/dl20.jsonl.gz", |
|
} |
|
|
|
|
|
class MsMarcoPassageAug(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(version=VERSION, |
|
description="MS MARCO passage train/dev datasets"), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
'query_id': datasets.Value('string'), |
|
'query': datasets.Value('string'), |
|
'positive_passages': [ |
|
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} |
|
], |
|
'negative_passages': [ |
|
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} |
|
], |
|
}) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage="", |
|
|
|
license="", |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.data_files: |
|
downloaded_files = self.config.data_files |
|
else: |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], |
|
}, |
|
) for split in downloaded_files |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, files): |
|
"""Yields examples.""" |
|
for filepath in files: |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
data = json.loads(line) |
|
if data.get('negative_passages') is None: |
|
data['negative_passages'] = [] |
|
if data.get('positive_passages') is None: |
|
data['positive_passages'] = [] |
|
yield data['query_id'], data |
|
|