Datasets:

Languages:
English
ArXiv:
License:
File size: 15,671 Bytes
fad4353
 
 
 
 
 
 
 
 
 
 
 
 
84b69b4
8058b32
fad4353
 
 
 
 
 
 
 
 
 
 
 
84b69b4
 
 
 
 
 
 
fad4353
 
 
 
 
8058b32
 
 
 
fad4353
 
dd79feb
fad4353
 
3b39000
fad4353
 
 
dd79feb
fad4353
 
 
 
 
 
 
 
 
 
 
 
4f7bf05
fad4353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84b69b4
fad4353
 
 
 
 
 
 
 
 
 
 
 
84b69b4
fad4353
 
 
 
 
 
 
 
dd79feb
 
 
fad4353
7eb1362
fad4353
dd79feb
 
 
fad4353
 
 
 
dd79feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad4353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd79feb
fad4353
dd79feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""The Loading scripts for ImageRewardDB."""


import pandas as pd
import json
import os

import datasets
from huggingface_hub import hf_hub_url


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@misc{xu2023imagereward,
      title={ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation}, 
      author={Jiazheng Xu and Xiao Liu and Yuchen Wu and Yuxuan Tong and Qinkai Li and Ming Ding and Jie Tang and Yuxiao Dong},
      year={2023},
      eprint={2304.05977},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
"""

# You can copy an official description
_DESCRIPTION = """\
ImageRewardDB is a comprehensive text-to-image comparison dataset, focusing on text-to-image human preference. \
It consists of 137k pairs of expert comparisons, based on text prompts and corresponding model outputs from DiffusionDB. \
To build the ImageRewadDB, we design a pipeline tailored for it, establishing criteria for quantitative assessment and \
annotator training, optimizing labeling experience, and ensuring quality validation. \
"""

_HOMEPAGE = "https://huggingface.co/datasets/THUDM/ImageRewardDB"
_VERSION = datasets.Version("1.0.0")

_LICENSE = "Apache License 2.0"

# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_REPO_ID = "THUDM/ImageRewardDB"
_URLS = {}
_PART_IDS = {
    "train": 32,
    "validation": 2,
    "test": 2
}

for name in list(_PART_IDS.keys()):
    _URLS[name] = {}
    for i in range(1, _PART_IDS[name]+1):
        _URLS[name][i] = hf_hub_url(
            _REPO_ID,
            filename=f"images/{name}/{name}_{i}.zip",
            repo_type="dataset"
        )
    _URLS[name]["metadata"] = hf_hub_url(
        _REPO_ID,
        filename=f"metadata-{name}.parquet",
        repo_type="dataset"
    )

class ImageRewardDBConfig(datasets.BuilderConfig):
    '''BuilderConfig for ImageRewardDB'''
    
    def __init__(self, part_ids, **kwargs):
        '''BuilderConfig for ImageRewardDB
        Args:
            part_ids([int]): A list of part_ids.
            **kwargs: keyword arguments forwarded to super
        '''
        super(ImageRewardDBConfig, self).__init__(version=_VERSION, **kwargs)
        self.part_ids = part_ids

class ImageRewardDB(datasets.GeneratorBasedBuilder):
    """A dataset of 137k expert comparisons to date, demonstrating the text-to-image human preference."""

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    
    BUILDER_CONFIGS = []
    
    for num_k in [1,2,4,8]:
        part_ids = {
            "train": 4*num_k,
            "validation": 2,
            "test": 2
        }
        BUILDER_CONFIGS.append(
            ImageRewardDBConfig(name=f"{num_k}k_group", part_ids=part_ids, description=f"This is a {num_k}k-scale groups of ImageRewardDB")
        )
        BUILDER_CONFIGS.append(
            ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB")
        )
        BUILDER_CONFIGS.append(
            ImageRewardDBConfig(name=f"{num_k}k_pair", part_ids=part_ids, description=f"This is a {num_k}k-scale pairs of ImageRewardDB")
        )

    DEFAULT_CONFIG_NAME = "8k"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        if "group" in self.config.name:
            features = datasets.Features(
                {
                    "prompt_id": datasets.Value("string"),
                    "prompt": datasets.Value("string"),
                    "classification": datasets.Value("string"),
                    "image": datasets.Sequence(datasets.Image()),
                    "rank": datasets.Sequence(datasets.Value("int8")),
                    "overall_rating": datasets.Sequence(datasets.Value("int8")),
                    "image_text_alignment_rating": datasets.Sequence(datasets.Value("int8")),
                    "fidelity_rating": datasets.Sequence(datasets.Value("int8"))
                }
            )
        elif "pair" in self.config.name:
            features = datasets.Features(
                {
                    "prompt_id": datasets.Value("string"),
                    "prompt": datasets.Value("string"),
                    "classification": datasets.Value("string"),
                    "img_better": datasets.Image(),
                    "img_worse": datasets.Image()
                }
            )
        else:
            features = datasets.Features(
                {
                    "image": datasets.Image(),
                    "prompt_id": datasets.Value("string"),
                    "prompt": datasets.Value("string"),
                    "classification": datasets.Value("string"),
                    "image_amount_in_total": datasets.Value("int8"),
                    "rank": datasets.Value("int8"),
                    "overall_rating": datasets.Value("int8"),
                    "image_text_alignment_rating": datasets.Value("int8"),
                    "fidelity_rating": datasets.Value("int8")
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        data_dirs = {name: [] for name in list(_PART_IDS.keys())}
        json_paths = {name: [] for name in list(_PART_IDS.keys())}
        metadata_paths = {name: [] for name in list(_PART_IDS.keys())}
        for key in list(self.config.part_ids.keys()):
            for i in range(1, self.config.part_ids[key]+1):
                data_dir = dl_manager.download_and_extract(_URLS[key][i])
                data_dirs[key].append(data_dir)
                json_paths[key].append(os.path.join(data_dir, f"{key}_{i}.json"))
            metadata_paths[key] = dl_manager.download(_URLS[key]["metadata"])
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "split": "train",
                    "data_dirs": data_dirs["train"],
                    "json_paths": json_paths["train"],
                    "metadata_path": metadata_paths["train"]
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "split": "validation",
                    "data_dirs": data_dirs["validation"],
                    "json_paths": json_paths["validation"],
                    "metadata_path": metadata_paths["validation"]
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "split": "test",
                    "data_dirs": data_dirs["test"],
                    "json_paths": json_paths["test"],
                    "metadata_path": metadata_paths["test"]
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, split, data_dirs, json_paths, metadata_path):
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        
        num_data_dirs = len(data_dirs)
        assert num_data_dirs == len(json_paths)
        
        #Iterate throug all extracted zip folders for images
        # metadata_table = pd.read_parquet(metadata_path)
        for index, json_path in enumerate(json_paths):
            json_data = json.load(open(json_path, "r", encoding="utf-8"))
            if "group" in self.config.name or "pair" in self.config.name:
                group_num = 0
                image_path = []
                rank = []
                overall_rating, image_text_alignment_rating, fidelity_rating = [], [], []
                for sample in json_data:
                    if group_num == 0:
                        image_path.clear()
                        rank.clear()
                        overall_rating.clear()
                        image_text_alignment_rating.clear()
                        fidelity_rating.clear()
                        prompt_id = sample["prompt_id"]
                        prompt = sample["prompt"]
                        classification = sample["classification"]
                        image_amount_in_total = sample["image_amount_in_total"]
                    # image_path.append(sample["image_path"])
                    image_path.append(os.path.join(data_dirs[index], str(sample["image_path"]).split("/")[-1]))
                    rank.append(sample["rank"])
                    overall_rating.append(sample["overall_rating"])
                    image_text_alignment_rating.append(sample["image_text_alignment_rating"])
                    fidelity_rating.append(sample["fidelity_rating"])
                    group_num += 1
                    if group_num == image_amount_in_total:
                        group_num = 0
                        if "group" in self.config.name:
                            yield prompt_id, ({
                                "prompt_id": prompt_id,
                                "prompt": prompt,
                                "classification": classification,
                                "image": [{
                                    "path": image_path[idx],
                                    "bytes": open(image_path[idx], "rb").read()
                                } for idx in range(image_amount_in_total)],
                                "rank": rank,
                                "overall_rating": overall_rating,
                                "image_text_alignment_rating": image_text_alignment_rating,
                                "fidelity_rating": fidelity_rating,
                            })
                        else:
                            for idx in range(image_amount_in_total):
                                for idy in range(idx+1, image_amount_in_total):
                                    if rank[idx] < rank[idy]:
                                        yield prompt_id, ({
                                            "prompt_id": prompt_id,
                                            "prompt": prompt,
                                            "classification": classification,
                                            "img_better": {
                                                "path": image_path[idx],
                                                "bytes": open(image_path[idx], "rb").read()
                                            },
                                            "img_worse": {
                                                "path": image_path[idy],
                                                "bytes": open(image_path[idy], "rb").read()
                                            }
                                        })
                                    elif rank[idx] > rank[idy]:
                                        yield prompt_id, ({
                                            "prompt_id": prompt_id,
                                            "prompt": prompt,
                                            "classification": classification,
                                            "img_better": {
                                                "path": image_path[idy],
                                                "bytes": open(image_path[idy], "rb").read()
                                            },
                                            "img_worse": {
                                                "path": image_path[idx],
                                                "bytes": open(image_path[idx], "rb").read()
                                            }
                                        })
            else:
                for example in json_data:
                    image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1])
                    yield example["image_path"], {
                        "image": {
                            "path": image_path,
                            "bytes": open(image_path, "rb").read()
                        },
                        "prompt_id": example["prompt_id"],
                        "prompt": example["prompt"],
                        "classification": example["classification"],
                        "image_amount_in_total": example["image_amount_in_total"],
                        "rank": example["rank"],
                        "overall_rating": example["overall_rating"],
                        "image_text_alignment_rating": example["image_text_alignment_rating"],
                        "fidelity_rating": example["fidelity_rating"]
                    }