# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset for filtered Kvasir-instrument and Hyper-Kvasir with bounding boxes.""" import os import json from PIL import Image import datasets import os import json import pandas as pd import hashlib cal_mid = lambda bx: [[[float(box['xmin'] + box['xmax']) / 2, float(box['ymin'] + box['ymax']) / 2] for box in bx]] def cal_sha256(file_path): return hashlib.sha256( open(file_path, 'rb').read()).hexdigest() hyper_label_img_path = '/global/D1/projects/HOST/Datasets/hyper-kvasir/labeled-images/image-labels.csv' hyper_df = pd.read_csv(hyper_label_img_path) hyper_seg_img_path = '/global/D1/projects/HOST/Datasets/hyper-kvasir/segmented-images/bounding-boxes.json' hyper_seg_img_base_path = "/global/D1/projects/HOST/Datasets/hyper-kvasir/segmented-images/images" instr_seg_img_path = '/global/D1/projects/HOST/Datasets/kvasir-instrument/bboxes.json' instr_seg_img_base_path = '/global/D1/projects/HOST/Datasets/kvasir-instrument/images/' hyper_seg_imgs = json.load(open(hyper_seg_img_path)) instr_seg_imgs = json.load(open(instr_seg_img_path)) _CITATION = """\ @article{kvasir, title={Kvasir-instrument and Hyper-Kvasir datasets for bounding box annotations}, author={Sushant Gautam and collaborators}, year={2024} } """ _DESCRIPTION = """ Filtered Kvasir-instrument and Hyper-Kvasir datasets with bounding boxes for medical imaging tasks. Each entry contains images, bounding box coordinates, and additional metadata. """ _HOMEPAGE = "https://example.com/kvasir-hyper-bbox" _LICENSE = "CC BY-NC 4.0" _URLS = { "filtered_data": "https://example.com/kvasir-hyper-bbox-dataset.zip" } class KvasirHyperBBox(datasets.GeneratorBasedBuilder): """Dataset for Kvasir-instrument and Hyper-Kvasir with bounding boxes.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="bbox_dataset", version=VERSION, description="Dataset with bounding box annotations." ) ] DEFAULT_CONFIG_NAME = "bbox_dataset" def _info(self): features = datasets.Features({ "image_data": datasets.Image(), "image_sha256": datasets.Value("string"), "points": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32")))), "count": datasets.Value("int64"), "label": datasets.Value("string"), "collection_method": datasets.Value("string"), "classification": datasets.Value("string"), "organ": datasets.Value("string") }) return datasets.DatasetInfo( description=_DESCRIPTION, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, features=features ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={}, ) ] def _generate_examples(self): for key, entry in hyper_seg_imgs.items(): img_path = os.path.join(hyper_seg_img_base_path, f"{key}.jpg") hyper_entry = hyper_df.loc[hyper_df['Video file'] == key].iloc[0] yield key, { "image_data": open(img_path, 'rb').read(), "image_sha256": cal_sha256(img_path), "points": cal_mid(entry['bbox']), "count": len(entry['bbox']), "label": hyper_entry.Finding, "collection_method": 'counting', "classification": hyper_entry.Classification, "organ": hyper_entry.Organ } for key, entry in instr_seg_imgs.items(): img_path = os.path.join(instr_seg_img_base_path, f"{key}.jpg") assert len(cal_mid(entry['bbox'])) > 0 yield key, { "image_data": open(img_path, 'rb').read(), "image_sha256": cal_sha256(img_path), "points": cal_mid(entry['bbox']), "count": len(entry['bbox']), "label": "instrument", "collection_method": "counting", "classification": "instrument", "organ": "instrument" } #datasets-cli test /global/D1/projects/HOST/Datasets/hyper-kvasir/sushant-experiments/kvasir-points_datasets_script.py --save_info --all_configs --trust_remote_code # huggingface-cli upload kvasir-points . . --repo-type dataset