Sin2pi commited on
Commit
f00a982
·
verified ·
1 Parent(s): 657e19a

Upload newcollators.ipynb

Browse files
Files changed (1) hide show
  1. newcollators.ipynb +472 -0
newcollators.ipynb ADDED
@@ -0,0 +1,472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "from dataclasses import dataclass\n",
10
+ "from typing import Any, Dict, List, Union\n",
11
+ "import torch\n",
12
+ "import torchaudio\n",
13
+ "import random\n",
14
+ "\n",
15
+ "@dataclass\n",
16
+ "class DataCollatorSpeechSeq2SeqWithPadding:\n",
17
+ " processor: Any\n",
18
+ " decoder_start_token_id: int\n",
19
+ " apply_augmentation: bool = False\n",
20
+ " n_fft_choices: List[int] = (400, 800, 1024)\n",
21
+ " hop_length_choices: List[int] = (160, 320, 512)\n",
22
+ " apply_noise_injection: bool = False # Toggle for noise injection\n",
23
+ " noise_profiles: List[str] = ('white', 'pink', 'environmental') # Example noise profiles\n",
24
+ "\n",
25
+ " def add_adaptive_noise(self, audio, noise_type='white', base_intensity=0.005):\n",
26
+ " amplitude = audio.abs().mean()\n",
27
+ " noise_intensity = base_intensity * amplitude # Scale noise intensity based on amplitude\n",
28
+ "\n",
29
+ " noise = torch.randn_like(audio) * noise_intensity\n",
30
+ " if noise_type == 'pink':\n",
31
+ " noise = torchaudio.functional.highpass_biquad(noise, sample_rate=16000, cutoff_freq=200)\n",
32
+ " elif noise_type == 'environmental':\n",
33
+ " # Load an example environmental noise file\n",
34
+ " noise, _ = torchaudio.load('environmental_noise.wav')\n",
35
+ " noise = torch.nn.functional.interpolate(noise.unsqueeze(0), size=audio.size()).squeeze() * noise_intensity\n",
36
+ " return audio + noise\n",
37
+ "\n",
38
+ " def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
39
+ " input_features = []\n",
40
+ " labels_list = []\n",
41
+ " dec_input_features = []\n",
42
+ " \n",
43
+ " for feature in features:\n",
44
+ " audio = feature[\"input_features\"]\n",
45
+ " if self.apply_augmentation:\n",
46
+ " # Randomly select n_fft and hop_length for augmentation\n",
47
+ " n_fft = random.choice(self.n_fft_choices)\n",
48
+ " hop_length = random.choice(self.hop_length_choices)\n",
49
+ " if self.apply_noise_injection:\n",
50
+ " noise_type = random.choice(self.noise_profiles)\n",
51
+ " audio = self.add_adaptive_noise(audio, noise_type=noise_type)\n",
52
+ " else:\n",
53
+ " # Use default values if augmentation is not applied\n",
54
+ " n_fft = 1024\n",
55
+ " hop_length = 512\n",
56
+ "\n",
57
+ " # Apply MelSpectrogram transformation with the selected parameters\n",
58
+ " mel_spectrogram = torchaudio.transforms.MelSpectrogram(\n",
59
+ " sample_rate=16000, # Sample rate is assumed; update if necessary\n",
60
+ " n_fft=n_fft,\n",
61
+ " hop_length=hop_length,\n",
62
+ " n_mels=80\n",
63
+ " )(torch.tensor(audio))\n",
64
+ "\n",
65
+ " log_mel_spectrogram = torch.log(mel_spectrogram + 1e-9)\n",
66
+ " input_features.append({\"input_features\": log_mel_spectrogram})\n",
67
+ " \n",
68
+ " label = feature[\"labels\"]\n",
69
+ " label_tokens = [self.processor.tokenizer.bos_token_id] + self.processor.tokenizer.encode(label) + [self.processor.tokenizer.eos_token_id]\n",
70
+ " dec_input_feature = label_tokens[:-1]\n",
71
+ " label = label_tokens[1:]\n",
72
+ " \n",
73
+ " labels_list.append({\"input_ids\": label})\n",
74
+ " dec_input_features.append({\"input_ids\": dec_input_feature})\n",
75
+ " \n",
76
+ " batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
77
+ " labels_batch = self.processor.tokenizer.pad(labels_list, return_tensors=\"pt\")\n",
78
+ " dec_input_batch = self.processor.tokenizer.pad(dec_input_features, return_tensors=\"pt\")\n",
79
+ "\n",
80
+ " labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
81
+ " if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():\n",
82
+ " labels = labels[:, 1:]\n",
83
+ " batch[\"labels\"] = labels\n",
84
+ "\n",
85
+ " dec_input_features = dec_input_batch[\"input_ids\"]\n",
86
+ " if (dec_input_features[:, 0] == self.decoder_start_token_id).all().cpu().item():\n",
87
+ " dec_input_features = dec_input_features[:, 1:]\n",
88
+ " batch[\"dec_input_features\"] = dec_input_features\n",
89
+ "\n",
90
+ " return batch\n",
91
+ "\n",
92
+ "# Example usage\n",
93
+ "data_collator = DataCollatorSpeechSeq2SeqWithPadding(\n",
94
+ " processor=processor,\n",
95
+ " decoder_start_token_id=model.config.decoder_start_token_id,\n",
96
+ " apply_augmentation=True, # Enable augmentation\n",
97
+ " apply_noise_injection=True # Enable adaptive noise injection\n",
98
+ ")\n"
99
+ ]
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "execution_count": null,
104
+ "metadata": {},
105
+ "outputs": [],
106
+ "source": [
107
+ "from dataclasses import dataclass\n",
108
+ "from typing import Any, Dict, List, Union\n",
109
+ "import torch\n",
110
+ "import torchaudio\n",
111
+ "import random\n",
112
+ "\n",
113
+ "\n",
114
+ "def add_adaptive_noise(audio, noise_type='white', base_intensity=0.005):\n",
115
+ " amplitude = audio.abs().mean()\n",
116
+ " noise_intensity = base_intensity * amplitude # Scale noise intensity based on amplitude\n",
117
+ " \n",
118
+ " noise = torch.randn_like(audio) * noise_intensity\n",
119
+ " if noise_type == 'pink':\n",
120
+ " noise = torchaudio.functional.highpass_biquad(noise, sample_rate=16000, cutoff_freq=200)\n",
121
+ " elif noise_type == 'environmental':\n",
122
+ " # Load an example environmental noise file\n",
123
+ " noise, _ = torchaudio.load('environmental_noise.wav')\n",
124
+ " noise = torch.nn.functional.interpolate(noise.unsqueeze(0), size=audio.size()).squeeze() * noise_intensity\n",
125
+ " return audio + noise\n",
126
+ "\n",
127
+ "def collate_fn(batch, apply_augmentation_flag=True, apply_noise_injection_flag=False):\n",
128
+ " n_fft_choices = [400, 800, 1024]\n",
129
+ " hop_length_choices = [160, 320, 512]\n",
130
+ " noise_profiles = ['white', 'pink', 'environmental']\n",
131
+ "\n",
132
+ " input_features, labels, dec_input_features = [], [], []\n",
133
+ " \n",
134
+ " for f in batch:\n",
135
+ " audio = whisper.pad_or_trim(f[\"audio\"].flatten())\n",
136
+ " \n",
137
+ " if apply_augmentation_flag:\n",
138
+ " n_fft = random.choice(n_fft_choices)\n",
139
+ " hop_length = random.choice(hop_length_choices)\n",
140
+ " if apply_noise_injection_flag:\n",
141
+ " noise_type = random.choice(noise_profiles)\n",
142
+ " audio = add_adaptive_noise(audio, noise_type=noise_type)\n",
143
+ " else:\n",
144
+ " n_fft = 1024\n",
145
+ " hop_length = 512\n",
146
+ "\n",
147
+ " mel_spectrogram = torchaudio.transforms.MelSpectrogram(\n",
148
+ " sample_rate=16000, # Assuming a sample rate of 16000\n",
149
+ " n_fft=n_fft,\n",
150
+ " hop_length=hop_length,\n",
151
+ " n_mels=80\n",
152
+ " )(audio)\n",
153
+ "\n",
154
+ " input_feature = torch.log(mel_spectrogram + 1e-9)\n",
155
+ "\n",
156
+ " label = f[\"label\"]\n",
157
+ " label_tokens = [tokenizer.bos_token_id] + tokenizer.encode(label) + [tokenizer.eos_token_id]\n",
158
+ " dec_input_feature = label_tokens[:-1]\n",
159
+ " label = label_tokens[1:]\n",
160
+ "\n",
161
+ " input_features.append(input_feature)\n",
162
+ " labels.append(label)\n",
163
+ " dec_input_features.append(dec_input_feature)\n",
164
+ "\n",
165
+ " input_features = torch.stack(input_features)\n",
166
+ "\n",
167
+ " max_label_len = max(len(l) for l in labels)\n",
168
+ " max_dec_input_len = max(len(d) for d in dec_input_features)\n",
169
+ " max_len = max(max_label_len, max_dec_input_len)\n",
170
+ "\n",
171
+ " labels = [np.pad(l, (0, max_len - len(l)), 'constant', constant_values=-100) for l in labels]\n",
172
+ " dec_input_features = [np.pad(d, (0, max_len - len(d)), 'constant', constant_values=tokenizer.pad_token_id) for d in dec_input_features]\n",
173
+ "\n",
174
+ " labels = np.array(labels)\n",
175
+ " dec_input_features = np.array(dec_input_features)\n",
176
+ "\n",
177
+ " labels = torch.tensor(labels, dtype=torch.long)\n",
178
+ " dec_input_features = torch.tensor(dec_input_features, dtype=torch.long)\n",
179
+ "\n",
180
+ " batch = {\n",
181
+ " \"input_features\": input_features,\n",
182
+ " \"labels\": labels,\n",
183
+ " \"dec_input_features\": dec_input_features\n",
184
+ " }\n",
185
+ " return batch\n",
186
+ "\n"
187
+ ]
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "execution_count": null,
192
+ "metadata": {},
193
+ "outputs": [],
194
+ "source": [
195
+ "from dataclasses import dataclass\n",
196
+ "from typing import Any, Dict, List, Union\n",
197
+ "import torch\n",
198
+ "import torchaudio\n",
199
+ "import random\n",
200
+ "\n",
201
+ "@dataclass\n",
202
+ "class DataCollatorSpeechSeq2SeqWithPadding:\n",
203
+ " processor: Any\n",
204
+ " decoder_start_token_id: int\n",
205
+ " apply_augmentation: bool = False\n",
206
+ " n_fft_choices: List[int] = (400, 800, 1024)\n",
207
+ " hop_length_choices: List[int] = (160, 320, 512)\n",
208
+ "\n",
209
+ " def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
210
+ " input_features = []\n",
211
+ " labels_list = []\n",
212
+ " dec_input_features = []\n",
213
+ " \n",
214
+ " for feature in features:\n",
215
+ " audio = feature[\"input_features\"]\n",
216
+ " if self.apply_augmentation:\n",
217
+ " # Randomly select n_fft and hop_length for augmentation\n",
218
+ " n_fft = random.choice(self.n_fft_choices)\n",
219
+ " hop_length = random.choice(self.hop_length_choices)\n",
220
+ " else:\n",
221
+ " # Use default values if augmentation is not applied\n",
222
+ " n_fft = 1024\n",
223
+ " hop_length = 512\n",
224
+ "\n",
225
+ " # Apply MelSpectrogram transformation with the selected parameters\n",
226
+ " mel_spectrogram = torchaudio.transforms.MelSpectrogram(\n",
227
+ " sample_rate=16000, # Sample rate is assumed; update if necessary\n",
228
+ " n_fft=n_fft,\n",
229
+ " hop_length=hop_length,\n",
230
+ " n_mels=80\n",
231
+ " )(torch.tensor(audio))\n",
232
+ "\n",
233
+ " log_mel_spectrogram = torch.log(mel_spectrogram + 1e-9)\n",
234
+ " input_features.append({\"input_features\": log_mel_spectrogram})\n",
235
+ " \n",
236
+ " label = feature[\"labels\"]\n",
237
+ " label_tokens = [self.processor.tokenizer.bos_token_id] + self.processor.tokenizer.encode(label) + [self.processor.tokenizer.eos_token_id]\n",
238
+ " dec_input_feature = label_tokens[:-1]\n",
239
+ " label = label_tokens[1:]\n",
240
+ " \n",
241
+ " labels_list.append({\"input_ids\": label})\n",
242
+ " dec_input_features.append({\"input_ids\": dec_input_feature})\n",
243
+ " \n",
244
+ " batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
245
+ " labels_batch = self.processor.tokenizer.pad(labels_list, return_tensors=\"pt\")\n",
246
+ " dec_input_batch = self.processor.tokenizer.pad(dec_input_features, return_tensors=\"pt\")\n",
247
+ "\n",
248
+ " labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
249
+ " if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():\n",
250
+ " labels = labels[:, 1:]\n",
251
+ " batch[\"labels\"] = labels\n",
252
+ "\n",
253
+ " dec_input_features = dec_input_batch[\"input_ids\"]\n",
254
+ " if (dec_input_features[:, 0] == self.decoder_start_token_id).all().cpu().item():\n",
255
+ " dec_input_features = dec_input_features[:, 1:]\n",
256
+ " batch[\"dec_input_features\"] = dec_input_features\n",
257
+ "\n",
258
+ " return batch\n",
259
+ "\n",
260
+ "# Example usage\n",
261
+ "data_collator = DataCollatorSpeechSeq2SeqWithPadding(\n",
262
+ " processor=processor,\n",
263
+ " decoder_start_token_id=model.config.decoder_start_token_id,\n",
264
+ " apply_augmentation=True # Set to False to disable augmentation\n",
265
+ ")\n"
266
+ ]
267
+ },
268
+ {
269
+ "cell_type": "code",
270
+ "execution_count": null,
271
+ "metadata": {},
272
+ "outputs": [],
273
+ "source": [
274
+ "@dataclass\n",
275
+ "class DataCollatorSpeechSeq2SeqWithPadding:\n",
276
+ " processor: Any\n",
277
+ " decoder_start_token_id: int\n",
278
+ " apply_augmentation: bool = False\n",
279
+ " n_fft_choices: List[int] = (400, 800, 1024)\n",
280
+ " hop_length_choices: List[int] = (160, 320, 512)\n",
281
+ " apply_noise_injection: bool = False # Toggle for noise injection\n",
282
+ " noise_profiles: List[str] = ('white', 'pink', 'environmental') # Example noise profiles\n",
283
+ "\n",
284
+ " def add_noise(self, audio, noise_type='white', intensity=0.005):\n",
285
+ " noise = torch.randn_like(audio) * intensity\n",
286
+ " if noise_type == 'pink':\n",
287
+ " noise = torchaudio.functional.highpass_biquad(noise, sample_rate=16000, cutoff_freq=200)\n",
288
+ " elif noise_type == 'environmental':\n",
289
+ " # Load an example environmental noise file\n",
290
+ " noise, _ = torchaudio.load('environmental_noise.wav')\n",
291
+ " noise = torch.nn.functional.interpolate(noise.unsqueeze(0), size=audio.size()).squeeze() * intensity\n",
292
+ " return audio + noise\n",
293
+ "\n",
294
+ " def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
295
+ " input_features = []\n",
296
+ " labels_list = []\n",
297
+ " dec_input_features = []\n",
298
+ " \n",
299
+ " for feature in features:\n",
300
+ " audio = feature[\"input_features\"]\n",
301
+ " if self.apply_augmentation:\n",
302
+ " n_fft = random.choice(self.n_fft_choices)\n",
303
+ " hop_length = random.choice(self.hop_length_choices)\n",
304
+ " if self.apply_noise_injection:\n",
305
+ " noise_type = random.choice(self.noise_profiles)\n",
306
+ " audio = self.add_noise(audio, noise_type=noise_type)\n",
307
+ " else:\n",
308
+ " n_fft = 1024\n",
309
+ " hop_length = 512\n",
310
+ "\n",
311
+ " mel_spectrogram = torchaudio.transforms.MelSpectrogram(\n",
312
+ " sample_rate=16000, # Sample rate is assumed; update if necessary\n",
313
+ " n_fft=n_fft,\n",
314
+ " hop_length=hop_length,\n",
315
+ " n_mels=80\n",
316
+ " )(torch.tensor(audio))\n",
317
+ "\n",
318
+ " log_mel_spectrogram = torch.log(mel_spectrogram + 1e-9)\n",
319
+ " input_features.append({\"input_features\": log_mel_spectrogram})\n",
320
+ " \n",
321
+ " label = feature[\"labels\"]\n",
322
+ " label_tokens = [self.processor.tokenizer.bos_token_id] + self.processor.tokenizer.encode(label) + [self.processor.tokenizer.eos_token_id]\n",
323
+ " dec_input_feature = label_tokens[:-1]\n",
324
+ " label = label_tokens[1:]\n",
325
+ " \n",
326
+ " labels_list.append({\"input_ids\": label})\n",
327
+ " dec_input_features.append({\"input_ids\": dec_input_feature})\n",
328
+ " \n",
329
+ " batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
330
+ " labels_batch = self.processor.tokenizer.pad(labels_list, return_tensors=\"pt\")\n",
331
+ " dec_input_batch = self.processor.tokenizer.pad(dec_input_features, return_tensors=\"pt\")\n",
332
+ "\n",
333
+ " labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
334
+ " if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():\n",
335
+ " labels = labels[:, 1:]\n",
336
+ " batch[\"labels\"] = labels\n",
337
+ "\n",
338
+ " dec_input_features = dec_input_batch[\"input_ids\"]\n",
339
+ " if (dec_input_features[:, 0] == self.decoder_start_token_id).all().cpu().item():\n",
340
+ " dec_input_features = dec_input_features[:, 1:]\n",
341
+ " batch[\"dec_input_features\"] = dec_input_features\n",
342
+ "\n",
343
+ " return batch\n",
344
+ "\n",
345
+ "data_collator = DataCollatorSpeechSeq2SeqWithPadding(\n",
346
+ " processor=processor,\n",
347
+ " decoder_start_token_id=model.config.decoder_start_token_id,\n",
348
+ " apply_augmentation=True, # Set to True to enable augmentation\n",
349
+ " apply_noise_injection=True # Set to True to enable noise injection\n",
350
+ ")\n",
351
+ "\n",
352
+ "dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, collate_fn=data_collator)\n",
353
+ "\n",
354
+ "for batch in dataloader:\n",
355
+ " # Pass the batch to your model\n",
356
+ " outputs = model(batch)\n"
357
+ ]
358
+ },
359
+ {
360
+ "cell_type": "code",
361
+ "execution_count": null,
362
+ "metadata": {},
363
+ "outputs": [],
364
+ "source": [
365
+ "import torch\n",
366
+ "import torchaudio\n",
367
+ "import random\n",
368
+ "import numpy as np\n",
369
+ "\n",
370
+ "def add_noise(audio, noise_type='white', intensity=0.005):\n",
371
+ " noise = torch.randn_like(audio) * intensity\n",
372
+ " if noise_type == 'pink':\n",
373
+ " noise = torchaudio.functional.highpass_biquad(noise, sample_rate=16000, cutoff_freq=200)\n",
374
+ " elif noise_type == 'environmental':\n",
375
+ " # Load an example environmental noise file\n",
376
+ " noise, _ = torchaudio.load('environmental_noise.wav')\n",
377
+ " noise = torch.nn.functional.interpolate(noise.unsqueeze(0), size=audio.size()).squeeze() * intensity\n",
378
+ " return audio + noise\n",
379
+ "\n",
380
+ "def collate_fn(batch, apply_augmentation_flag=True, apply_noise_injection_flag=False):\n",
381
+ " n_fft_choices = [400, 800, 1024]\n",
382
+ " hop_length_choices = [160, 320, 512]\n",
383
+ " noise_profiles = ['white', 'pink', 'environmental']\n",
384
+ "\n",
385
+ " input_features, labels, dec_input_features = [], [], []\n",
386
+ " \n",
387
+ " for f in batch:\n",
388
+ " # Convert audio to features here\n",
389
+ " audio = whisper.pad_or_trim(f[\"audio\"].flatten())\n",
390
+ " \n",
391
+ " if apply_augmentation_flag:\n",
392
+ " n_fft = random.choice(n_fft_choices)\n",
393
+ " hop_length = random.choice(hop_length_choices)\n",
394
+ " if apply_noise_injection_flag:\n",
395
+ " noise_type = random.choice(noise_profiles)\n",
396
+ " audio = add_noise(audio, noise_type=noise_type)\n",
397
+ " else:\n",
398
+ " n_fft = 1024\n",
399
+ " hop_length = 512\n",
400
+ "\n",
401
+ " # Apply MelSpectrogram transformation with the selected parameters\n",
402
+ " mel_spectrogram = torchaudio.transforms.MelSpectrogram(\n",
403
+ " sample_rate=16000, # Assuming a sample rate of 16000\n",
404
+ " n_fft=n_fft,\n",
405
+ " hop_length=hop_length,\n",
406
+ " n_mels=80\n",
407
+ " )(audio)\n",
408
+ "\n",
409
+ " # Apply logarithm for log-Mel spectrogram\n",
410
+ " input_feature = torch.log(mel_spectrogram + 1e-9)\n",
411
+ "\n",
412
+ " label = f[\"label\"]\n",
413
+ " label_tokens = [tokenizer.bos_token_id] + tokenizer.encode(label) + [tokenizer.eos_token_id]\n",
414
+ " dec_input_feature = label_tokens[:-1]\n",
415
+ " label = label_tokens[1:]\n",
416
+ "\n",
417
+ " input_features.append(input_feature)\n",
418
+ " labels.append(label)\n",
419
+ " dec_input_features.append(dec_input_feature)\n",
420
+ "\n",
421
+ " input_features = torch.stack(input_features)\n",
422
+ "\n",
423
+ " max_label_len = max(len(l) for l in labels)\n",
424
+ " max_dec_input_len = max(len(d) for d in dec_input_features)\n",
425
+ " max_len = max(max_label_len, max_dec_input_len)\n",
426
+ "\n",
427
+ " labels = [np.pad(l, (0, max_len - len(l)), 'constant', constant_values=-100) for l in labels]\n",
428
+ " dec_input_features = [np.pad(d, (0, max_len - len(d)), 'constant', constant_values=tokenizer.pad_token_id) for d in dec_input_features]\n",
429
+ "\n",
430
+ " # Convert the lists of numpy arrays to numpy arrays before creating tensors\n",
431
+ " labels = np.array(labels)\n",
432
+ " dec_input_features = np.array(dec_input_features)\n",
433
+ "\n",
434
+ " labels = torch.tensor(labels, dtype=torch.long)\n",
435
+ " dec_input_features = torch.tensor(dec_input_features, dtype=torch.long)\n",
436
+ "\n",
437
+ " batch = {\n",
438
+ " \"input_features\": input_features,\n",
439
+ " \"labels\": labels,\n",
440
+ " \"dec_input_features\": dec_input_features\n",
441
+ " }\n",
442
+ " return batch\n"
443
+ ]
444
+ },
445
+ {
446
+ "cell_type": "code",
447
+ "execution_count": null,
448
+ "metadata": {},
449
+ "outputs": [],
450
+ "source": [
451
+ "# Flag to apply augmentation\n",
452
+ "apply_augmentation_flag = True\n",
453
+ "apply_noise_injection_flag = True\n",
454
+ "\n",
455
+ "# Create dataset and dataloader with augmentation and noise injection based on the flags\n",
456
+ "collate_fn_with_flags = partial(collate_fn, apply_augmentation_flag=apply_augmentation_flag, apply_noise_injection_flag=apply_noise_injection_flag)\n",
457
+ "dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, collate_fn=collate_fn_with_flags)\n",
458
+ "\n",
459
+ "for batch in dataloader:\n",
460
+ " # Pass the batch to your model\n",
461
+ " outputs = model(batch)\n"
462
+ ]
463
+ }
464
+ ],
465
+ "metadata": {
466
+ "language_info": {
467
+ "name": "python"
468
+ }
469
+ },
470
+ "nbformat": 4,
471
+ "nbformat_minor": 2
472
+ }