|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Union
|
|
import torch
|
|
import torchaudio
|
|
import random
|
|
|
|
@dataclass
|
|
class DataCollatorSpeechSeq2SeqWithPadding:
|
|
processor: Any
|
|
decoder_start_token_id: int
|
|
apply_augmentation: bool = False
|
|
n_fft_choices: List[int] = (400, 800, 1024)
|
|
hop_length_choices: List[int] = (160, 320, 512)
|
|
apply_noise_injection: bool = False
|
|
noise_profiles: List[str] = ('white', 'pink', 'environmental')
|
|
|
|
def add_adaptive_noise(self, audio, noise_type='white', base_intensity=0.005):
|
|
amplitude = audio.abs().mean()
|
|
noise_intensity = base_intensity * amplitude
|
|
|
|
noise = torch.randn_like(audio) * noise_intensity
|
|
if noise_type == 'pink':
|
|
noise = torchaudio.functional.highpass_biquad(noise, sample_rate=16000, cutoff_freq=200)
|
|
elif noise_type == 'environmental':
|
|
|
|
noise, _ = torchaudio.load('environmental_noise.wav')
|
|
noise = torch.nn.functional.interpolate(noise.unsqueeze(0), size=audio.size()).squeeze() * noise_intensity
|
|
return audio + noise
|
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
|
input_features = []
|
|
labels_list = []
|
|
dec_input_features = []
|
|
|
|
for feature in features:
|
|
audio = feature["input_features"]
|
|
if self.apply_augmentation:
|
|
|
|
n_fft = random.choice(self.n_fft_choices)
|
|
hop_length = random.choice(self.hop_length_choices)
|
|
if self.apply_noise_injection:
|
|
noise_type = random.choice(self.noise_profiles)
|
|
audio = self.add_adaptive_noise(audio, noise_type=noise_type)
|
|
else:
|
|
|
|
n_fft = 1024
|
|
hop_length = 512
|
|
|
|
|
|
mel_spectrogram = torchaudio.transforms.MelSpectrogram(
|
|
sample_rate=16000,
|
|
n_fft=n_fft,
|
|
hop_length=hop_length,
|
|
n_mels=80
|
|
)(torch.tensor(audio))
|
|
|
|
log_mel_spectrogram = torch.log(mel_spectrogram + 1e-9)
|
|
input_features.append({"input_features": log_mel_spectrogram})
|
|
|
|
label = feature["labels"]
|
|
label_tokens = [self.processor.tokenizer.bos_token_id] + self.processor.tokenizer.encode(label) + [self.processor.tokenizer.eos_token_id]
|
|
dec_input_feature = label_tokens[:-1]
|
|
label = label_tokens[1:]
|
|
|
|
labels_list.append({"input_ids": label})
|
|
dec_input_features.append({"input_ids": dec_input_feature})
|
|
|
|
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
|
|
labels_batch = self.processor.tokenizer.pad(labels_list, return_tensors="pt")
|
|
dec_input_batch = self.processor.tokenizer.pad(dec_input_features, return_tensors="pt")
|
|
|
|
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
|
if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
|
|
labels = labels[:, 1:]
|
|
batch["labels"] = labels
|
|
|
|
dec_input_features = dec_input_batch["input_ids"]
|
|
if (dec_input_features[:, 0] == self.decoder_start_token_id).all().cpu().item():
|
|
dec_input_features = dec_input_features[:, 1:]
|
|
batch["dec_input_features"] = dec_input_features
|
|
|
|
return batch
|
|
|
|
|
|
|
|
|
|
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
|
|
processor=processor,
|
|
decoder_start_token_id=model.config.decoder_start_token_id,
|
|
apply_augmentation=True,
|
|
apply_noise_injection=True
|
|
)
|
|
|
|
dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, collate_fn=data_collator)
|
|
|
|
for batch in dataloader:
|
|
|
|
outputs = model(batch)
|
|
|