Update README.md
Browse files
README.md
CHANGED
@@ -8,14 +8,14 @@ license: cc-by-nd-4.0
|
|
8 |
|
9 |
|
10 |
| 日期 | 分享人 | 论文标题 | 论文链接 | 论文摘要 |
|
11 |
-
| --------- |
|
12 |
| 2024/4/9 | 于志刚 | GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks | https://arxiv.org/pdf/2402.07197 | 图模型(GM)往往仅限于预定义格式(如节点分类)内的任务,无法完成开放式任务。LLM则可以完成开放式任务。尽管已经有几种将LLM应用于图的方法,但是它们不能同时处理预定义和开放式任务。本文试图将图模型与大语言模型对齐,从而使得模型能够同时处理预定义和开放式任务。 |
|
13 |
| 2024/4/16 | 杨珂懿 | DYffusion: A Dynamics-informed Diffusion Modelfor Spatiotemporal Forecasting | https://arxiv.org/pdf/2306.01984 | 提出了一种方法,用于有效地训练扩散模型进行概率时空预测,在这方面,生成稳定和准确的预测仍然是一个挑战。我们的方法,DYffusion,利用数据中的时间动态,将其与模型中的扩散步骤直接耦合。我们训练了一个随机的、时间条件的插值器和预测网络,分别模仿标准扩散模型的正向和反向过程。DYffusion自然地促进了多步骤和长范围的预测,允许高度灵活的、连续时间的采样轨迹,并能在推断时用加速采样来权衡性能。与传统基于高斯噪声的扩散模型相比,显著提高了计算效率。 |
|
14 |
| 2024/4/23 | 曹敏君 | Mamba: Linear-Time Sequence Modeling with Selective State Spaces | https://arxiv.org/pdf/2312.00752 | 本文介绍了一种新的序列模型架构,名为Mamba,它通过选择性状态空间模型(Selective State Space Models, SSMs)来改进传统的状态空间模型。Mamba通过输入依赖的方式调整SSM参数,允许模型根据当前的数据选择性地传递或遗忘信息,从而解决了以前模型在处理离散和信息密集型数据(如文本)时的不足。此外,尽管这种改变使得模型不能使用高效的卷积计算,研究者设计了一种硬件感知的并行算法,以递归模式运行,使得Mamba在推理速度上比传统的Transformer快5倍,并且在序列长度上实现线性缩放。 |
|
15 |
| 2024/4/30 | 程铭 | Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment | https://arxiv.org/pdf/2309.13378 | 时空神经图网络在时空预测过程中存在时间OOD问题和动态空间因果关系问题。 本文提出了一个新的框架CaST,通过使用一种新的解纠缠块的后门调整,将时间环境从输入数据中分离出来。此外,利用前门调整和边缘级卷积来模拟因果关系的连锁效应。 |
|
16 |
| 2024/4/30 | 王颖 | FUXI-DA: A GENERALIZED DEEP LEARNING DATA ASSIMILATION FRAMEWORK FOR ASSIMILATING SATELLITE OBSERVATIONS | https://arxiv.org/pdf/2404.08522 | 深度学习模型在匹配甚至超过全球领先的NWP模型的预测精度方面显示出了希望。这一成功激发了为天气预报模型量身定制的基于dl的数据分析框架的探索。本文介绍了一种基于dl的广义数据分析框架FuXi-DA,用于同化卫星观测数据。通过吸收风云四号b上先进地球同步辐射成像仪(AGRI)的数据,“FuXi-DA”不断减少分析误差,显著提高预报性能。 |
|
17 |
| 2024/5/7 | 颜浩 | Provable Training for Graph Contrastive Learning | https://arxiv.org/pdf/2309.13944 | GCL的学习过程主要包括:图数据增强;增强视图经过GNN获取节点表征,最后根据InfoNCE准则来进行优化。但考虑到图结构的复杂性,在GCL过程中,是否所有节点都能很好的遵循InfoNCE准则呢?本文对主流GCL方法进行了分析,发现了GCL训练过程中出现的不平衡现象,并提出了"Node Compactness"概念来度量不同的节点在GCL过程中对准则的遵循程度,所提方法POT能即插即用到其他GCL方法中。 |
|
18 |
-
| 2024/5/14 | 王梓辰 | BCDiff: Bidirectional Consistent Diffusion for Instantaneous Trajectory Prediction |
|
19 |
| 2024/5/21 | 徐榕桧 | Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes | https://arxiv.org/pdf/2305.02301 | 部署大型语言模型(llm)具有挑战性,因为它们在实际应用中内存效率低下且计算密集型。通常,研究人员通过使用标签数据进行微调或使用llm生成的标签进行蒸馏来训练更小的特定任务模型。然而,微调和蒸馏需要大量的训练数据才能达到与llm相当的性能。本文提出了一种新的机制Distilling Step-by-Step,作者通过提取LLM原理,作为在多任务框架内训练小模型的额外监督。实现(a)训练比llm更小的模型,(b)与微调或蒸馏相比,需要更少的训练数据。 |
|
20 |
| 2024/5/28 | 刘若尘 | Direct Preference Optimization: Your Language Model is Secretly a Reward Model | https://arxiv.org/pdf/2305.18290 | 如何将大语言模型与人类行为对齐一直以来是NLP领域研究的重点,其中使用人类反馈的强化学习(reinforcement learning from human feedback,RLHF)是其中的代表性工作。然而RLHF的训练过程复杂且不稳定,需要先训练一个奖励函数再通过强化学习过程对大语言模型进行微调,第一篇论文利用了一种奖励函数与最优生成策略(我们需要的LLM)之间的映射关系,将绕过了强化学习过程,实现了端到端的训练。 |
|
21 |
| 2024/5/28 | 张舜洋 | KAN:Kolmogorov–Arnold Networks | https://arxiv.org/pdf/2404.19756 | 本篇论文自官宣以来,便受到了学术圈广泛关注。它号称是能在部分任务上以更少的参数量,实现MLPs的实验结果。那么本周组会我将介绍KAN的设计思路,并简单分析它的计算量从哪儿来 |
|
|
|
8 |
|
9 |
|
10 |
| 日期 | 分享人 | 论文标题 | 论文链接 | 论文摘要 |
|
11 |
+
| --------- | ---- | ----------- | ---------- | ------- |
|
12 |
| 2024/4/9 | 于志刚 | GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks | https://arxiv.org/pdf/2402.07197 | 图模型(GM)往往仅限于预定义格式(如节点分类)内的任务,无法完成开放式任务。LLM则可以完成开放式任务。尽管已经有几种将LLM应用于图的方法,但是它们不能同时处理预定义和开放式任务。本文试图将图模型与大语言模型对齐,从而使得模型能够同时处理预定义和开放式任务。 |
|
13 |
| 2024/4/16 | 杨珂懿 | DYffusion: A Dynamics-informed Diffusion Modelfor Spatiotemporal Forecasting | https://arxiv.org/pdf/2306.01984 | 提出了一种方法,用于有效地训练扩散模型进行概率时空预测,在这方面,生成稳定和准确的预测仍然是一个挑战。我们的方法,DYffusion,利用数据中的时间动态,将其与模型中的扩散步骤直接耦合。我们训练了一个随机的、时间条件的插值器和预测网络,分别模仿标准扩散模型的正向和反向过程。DYffusion自然地促进了多步骤和长范围的预测,允许高度灵活的、连续时间的采样轨迹,并能在推断时用加速采样来权衡性能。与传统基于高斯噪声的扩散模型相比,显著提高了计算效率。 |
|
14 |
| 2024/4/23 | 曹敏君 | Mamba: Linear-Time Sequence Modeling with Selective State Spaces | https://arxiv.org/pdf/2312.00752 | 本文介绍了一种新的序列模型架构,名为Mamba,它通过选择性状态空间模型(Selective State Space Models, SSMs)来改进传统的状态空间模型。Mamba通过输入依赖的方式调整SSM参数,允许模型根据当前的数据选择性地传递或遗忘信息,从而解决了以前模型在处理离散和信息密集型数据(如文本)时的不足。此外,尽管这种改变使得模型不能使用高效的卷积计算,研究者设计了一种硬件感知的并行算法,以递归模式运行,使得Mamba在推理速度上比传统的Transformer快5倍,并且在序列长度上实现线性缩放。 |
|
15 |
| 2024/4/30 | 程铭 | Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment | https://arxiv.org/pdf/2309.13378 | 时空神经图网络在时空预测过程中存在时间OOD问题和动态空间因果关系问题。 本文提出了一个新的框架CaST,通过使用一种新的解纠缠块的后门调整,将时间环境从输入数据中分离出来。此外,利用前门调整和边缘级卷积来模拟因果关系的连锁效应。 |
|
16 |
| 2024/4/30 | 王颖 | FUXI-DA: A GENERALIZED DEEP LEARNING DATA ASSIMILATION FRAMEWORK FOR ASSIMILATING SATELLITE OBSERVATIONS | https://arxiv.org/pdf/2404.08522 | 深度学习模型在匹配甚至超过全球领先的NWP模型的预测精度方面显示出了希望。这一成功激发了为天气预报模型量身定制的基于dl的数据分析框架的探索。本文介绍了一种基于dl的广义数据分析框架FuXi-DA,用于同化卫星观测数据。通过吸收风云四号b上先进地球同步辐射成像仪(AGRI)的数据,“FuXi-DA”不断减少分析误差,显著提高预报性能。 |
|
17 |
| 2024/5/7 | 颜浩 | Provable Training for Graph Contrastive Learning | https://arxiv.org/pdf/2309.13944 | GCL的学习过程主要包括:图数据增强;增强视图经过GNN获取节点表征,最后根据InfoNCE准则来进行优化。但考虑到图结构的复杂性,在GCL过程中,是否所有节点都能很好的遵循InfoNCE准则呢?本文对主流GCL方法进行了分析,发现了GCL训练过程中出现的不平衡现象,并提出了"Node Compactness"概念来度量不同的节点在GCL过程中对准则的遵循程度,所提方法POT能即插即用到其他GCL方法中。 |
|
18 |
+
| 2024/5/14 | 王梓辰 | BCDiff: Bidirectional Consistent Diffusion for Instantaneous Trajectory Prediction | https://openreview.net/pdf?id=FOFJmR1oxt | 本文提出用于瞬时轨迹预测的双向一致扩散模型:BCDiff,通过设计一个相互指导机制来开发两个耦合扩散模型,该机制可以双向一致地逐步生成未观察到的历史轨迹和未来轨迹,以利用它们的互补信息相互指导进行预测。其次,由于去噪步骤初始阶段的轨迹存在较高噪声,模型引入一种门控机制学习轨迹预测和有限观察轨迹之间的权重,以平衡它们的贡献。BCDiff是一个无编码器的框架,可以和现有轨迹模型兼容。 |
|
19 |
| 2024/5/21 | 徐榕桧 | Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes | https://arxiv.org/pdf/2305.02301 | 部署大型语言模型(llm)具有挑战性,因为它们在实际应用中内存效率低下且计算密集型。通常,研究人员通过使用标签数据进行微调或使用llm生成的标签进行蒸馏来训练更小的特定任务模型。然而,微调和蒸馏需要大量的训练数据才能达到与llm相当的性能。本文提出了一种新的机制Distilling Step-by-Step,作者通过提取LLM原理,作为在多任务框架内训练小模型的额外监督。实现(a)训练比llm更小的模型,(b)与微调或蒸馏相比,需要更少的训练数据。 |
|
20 |
| 2024/5/28 | 刘若尘 | Direct Preference Optimization: Your Language Model is Secretly a Reward Model | https://arxiv.org/pdf/2305.18290 | 如何将大语言模型与人类行为对齐一直以来是NLP领域研究的重点,其中使用人类反馈的强化学习(reinforcement learning from human feedback,RLHF)是其中的代表性工作。然而RLHF的训练过程复杂且不稳定,需要先训练一个奖励函数再通过强化学习过程对大语言模型进行微调,第一篇论文利用了一种奖励函数与最优生成策略(我们需要的LLM)之间的映射关系,将绕过了强化学习过程,实现了端到端的训练。 |
|
21 |
| 2024/5/28 | 张舜洋 | KAN:Kolmogorov–Arnold Networks | https://arxiv.org/pdf/2404.19756 | 本篇论文自官宣以来,便受到了学术圈广泛关注。它号称是能在部分任务上以更少的参数量,实现MLPs的实验结果。那么本周组会我将介绍KAN的设计思路,并简单分析它的计算量从哪儿来 |
|