# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import csv import json import os import datasets import pickle from pathlib import Path # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """ @inproceedings{ dahal2022scotch, title={Scotch: A Semantic Code Search Engine for {IDE}s}, author={Samip Dahal and Adyasha Maharana and Mohit Bansal}, booktitle={Deep Learning for Code Workshop}, year={2022}, url={https://openreview.net/forum?id=rSxfCiOZk-c} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ Scotch is a dataset of about 19 million functions collected from open-source repositiories from GitHub with permissive licenses. Each function has its corresponding code context and about 4 million functions have corresponding docstrings. The dataset includes functions written in programming languages Python, Java, Javascript, and Go.""" # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "https://github.com/sdpmas/Scotch" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "The MIT License" # TODO: Add link to the official dataset URLs here # The HuggingFace dataset library don't host the datasets but only point to the original files # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) languages=['python','javascript','java','go'] language_map={'python':'py','javascript':'js','go':'go','java':'java'} _URLs = {lang:f'https://scotchdata.s3.amazonaws.com/{language_map[lang]}.tar.gz' for lang in languages} _URLs['all']=_URLs.copy() # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case class ScotchDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="all", version=VERSION, description="All available data with docstrings"), datasets.BuilderConfig(name="python", version=VERSION, description="Python data"), datasets.BuilderConfig(name="javascript", version=VERSION, description="Javascript data"), datasets.BuilderConfig(name="java", version=VERSION, description="Java data"), datasets.BuilderConfig(name="go", version=VERSION, description="Go data"), ] DEFAULT_CONFIG_NAME = "all" def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset features = datasets.Features( { "repository_name": datasets.Value("string"), "function_path": datasets.Value("string"), "function_identifier": datasets.Value("string"), "language": datasets.Value("string"), "function": datasets.Value("string"), "docstring": datasets.Value("string"), "function_url": datasets.Value("string"), "context":datasets.Value("string"), "license":datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" my_urls = _URLs[self.config.name] if isinstance(my_urls, str): my_urls = {self.config.name:my_urls} data_dir = [os.path.join(lang_dir,lang) for lang,lang_dir in dl_manager.download_and_extract(my_urls).items()] # splitpaths={split:[os.path.join(lang_dir,f'{split}.bin') for lang_dir in data_dir] for split in ['train','valid','test']} splitpaths={} for split in ['train','valid','test']: for lang_dir in data_dir: # Path glob .bin files lang_split_files=sorted(Path(os.path.join(lang_dir,split)).glob('*.bin')) if not split in splitpaths: splitpaths[split]=lang_split_files else: splitpaths.extend(lang_split_files) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": splitpaths['train'], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": splitpaths['test'], "split": "test" }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": splitpaths['valid'], "split": "valid", }, ), ] def _generate_examples( self, filepath,split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` ): """ Yields examples as (key, example) tuples. """ count=-1 for i,filepath in enumerate(filepath): loaded_f=pickle.load(open(filepath,'rb')) for j, func in enumerate(loaded_f): count+=1 yield count,{ "repository_name": str(func['nwo']), "function_path":str(func['path']), "function_identifier": str(func['identifier']), "language": str(func['language']), "function": str(func['function']), "docstring": str(func['docstring']), "function_url": str(func['url']), "context":str(func['context']), "license":str(func['license']), }