File size: 6,341 Bytes
6842a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89a2ced
6842a6d
 
524af31
 
6842a6d
 
 
ab3fd26
6842a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fc61ee
6842a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import datasets


_CITATION = """\
@inproceedings{luong-vu-2016-non,
    title = "A non-expert {K}aldi recipe for {V}ietnamese Speech Recognition System",
    author = "Luong, Hieu-Thi  and
      Vu, Hai-Quan",
    booktitle = "Proceedings of the Third International Workshop on Worldwide Language Service Infrastructure and Second Workshop on Open Infrastructures and Analysis Frameworks for Human Language Technologies ({WLSI}/{OIAF}4{HLT}2016)",
    month = dec,
    year = "2016",
    address = "Osaka, Japan",
    publisher = "The COLING 2016 Organizing Committee",
    url = "https://aclanthology.org/W16-5207",
    pages = "51--55",
}
"""

_DESCRIPTION = """\
VIVOS is a free Vietnamese speech corpus consisting of 15 hours of recording speech prepared for
Vietnamese Automatic Speech Recognition task.
The corpus was prepared by AILAB, a computer science lab of VNUHCM - University of Science, with Prof. Vu Hai Quan is the head of.
We publish this corpus in hope to attract more scientists to solve Vietnamese speech recognition problems.
"""

_HOMEPAGE = "https://doi.org/10.5281/zenodo.7068130"

_LICENSE = "CC BY-NC-SA 4.0"

# Source data: "https://zenodo.org/record/7068130/files/vivos.tar.gz"
_DATA_URL = "https://huggingface.co/datasets/ahnafsamin/SUBAK.KO/resolve/main/Data/subakko.zip"

_PROMPTS_URLS = {
    "train": "https://huggingface.co/datasets/ahnafsamin/SUBAK.KO/resolve/main/Data/train.tar.xz",
    "test": "https://huggingface.co/datasets/ahnafsamin/SUBAK.KO/resolve/main/Data/test.tar.xz",
}


class Subakko(datasets.GeneratorBasedBuilder):
    """VIVOS is a free Vietnamese speech corpus consisting of 15 hours of recording speech prepared for
    Vietnamese Automatic Speech Recognition task."""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    def _info(self):
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "speaker_id": datasets.Value("string"),
                    "path": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "sentence": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        prompts_paths = dl_manager.download_and_extract(_PROMPTS_URLS)
        archive = dl_manager.download(_DATA_URL)
        train_dir = "/subakko"
        test_dir = "/subakko"
        print("I am samin")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "prompts_path": prompts_paths["train"],
                    "path_to_clips": train_dir,
                    "audio_files": dl_manager.iter_archive(archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "prompts_path": prompts_paths["test"],
                    "path_to_clips": test_dir,
                    "audio_files": dl_manager.iter_archive(archive),
                },
            ),
        ]

    def _generate_examples(self, prompts_path, path_to_clips, audio_files):
        """Yields examples as (key, example) tuples."""
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is here for legacy reason (tfds) and is not important in itself.
        examples = {}
        with open(prompts_path, encoding="utf-8") as f:
            for row in f:
                data = row.strip().split("\t", 1)
                #speaker_id = data[0].split("_")[0]
                audio_path = data[0]
                examples[audio_path] = {
                    "speaker_id": speaker_id,
                    "path": audio_path,
                    "sentence": data[1],
                }
        inside_clips_dir = False
        id_ = 0
        for path, f in audio_files:
            if path.startswith(path_to_clips):
                inside_clips_dir = True
                if path in examples:
                    audio = {"path": path, "bytes": f.read()}
                    yield id_, {**examples[path], "audio": audio}
                    id_ += 1
            elif inside_clips_dir:
                break