Datasets:
File size: 7,625 Bytes
fa81d4f 022ea4e fa81d4f b5f94ea 022ea4e 81eeeec 0f2e4e0 84e8e18 b49d708 81eeeec 16e552d 022ea4e b5f94ea cbc1619 16e552d b49d708 b5f94ea cbc1619 4e0a285 9b1d771 11618eb 9b1d771 11618eb 9b1d771 637c6d0 bc14f60 15aedb0 9b1d771 3d8fbf3 737bcb7 15aedb0 737bcb7 637c6d0 737bcb7 9b1d771 637c6d0 15aedb0 637c6d0 15aedb0 637c6d0 9b1d771 a268a43 9b1d771 a268a43 9b1d771 643bb12 9b1d771 643bb12 9b1d771 643bb12 9b1d771 643bb12 9b1d771 643bb12 9b1d771 643bb12 9b1d771 e47c2a2 9b1d771 e47c2a2 73709f8 9b1d771 637c6d0 9b1d771 637c6d0 9b1d771 a268a43 9b1d771 a268a43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
---
language:
- bn
license: cc-by-4.0
size_categories:
- 10K<n<100K
task_categories:
- automatic-speech-recognition
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
- name: file_path
dtype: string
splits:
- name: test
num_bytes: 2345138893.961
num_examples: 6533
- name: validation
num_bytes: 2374606148.554
num_examples: 6594
- name: train
num_bytes: 23111288170.312
num_examples: 64491
download_size: 31898660522
dataset_size: 27831033212.827
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
- split: validation
path: data/validation-*
- split: train
path: data/train-*
tags:
- speech-recognition
- Bangladeshi Bangla
- Bengali
- speech-corpus
---
# Dataset Card for SUBAK.KO
## Table of Contents
- [Dataset Card for SUBAK.KO](#dataset-card-for-SUBAK.KO)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Developed By** Dept. of CSE, SUST, Bangladesh
- **Paper:** [Bangladeshi Bangla speech corpus for automatic speech recognition research](https://www.sciencedirect.com/science/article/abs/pii/S0167639321001370)
- **Point of Contact:** [Prof. Dr. M. Shahidur Rahman, Dept. of CSE, SUST](mailto:[email protected])
### Dataset Summary
SUBAK.KO (সুবাক্য), a publicly available annotated Bangladeshi standard Bangla speech corpus, is compiled for automatic speech recognition research.
This corpus contains 241 hours of high-quality speech data, including 229 hours of read speech data and 12 hours of broadcast speech data.
The read speech segment is recorded in a noise-proof studio environment from 33 male and 28 female native Bangladeshi Bangla speakers
representing 8 divisions/34 districts of Bangladesh. Furthermore, the read speech segment comprises a total of 1 hour and 30 minutes
of recorded speech provided by two second language (L2) speakers. The broadcast speech segment is collected from YouTube. SUBAK.KO has
been manually annotated under human supervision to ensure gold-standard labels. The [corresponding paper](https://www.sciencedirect.com/science/article/abs/pii/S0167639321001370) reports detailed information about
the development and baseline performance of SUBAK.KO and cross-dataset evaluation in comparison to [LB-ASRTD](https://openslr.org/53/) corpus.
SUBAK.KO is developed by the researchers from the **Department of Computer Science and Engineering (CSE)** at **Shahjalal University of Science and Technology (SUST),
Bangladesh** with financial support from the Higher Education Quality Enhancement Project (AIF Window 4, CP 3888) for “The Development of
Multi-Platform Speech and Language Processing Software for Bangla” of the University Grants Commission (UGC), Bangladesh.
### Example Usage
To load the full SUBAK.KO corpus, use the following code:
```python
from datasets import load_dataset
dataset = load_dataset("ahnafsamin/SUBAK.KO")
```
To load a specific split of the SUBAK.KO, define the split and set the streaming mode as True in the following way:
```python
from datasets import load_dataset
dataset = load_dataset("ahnafsamin/SUBAK.KO", split="test", streaming=True)
```
More documentation on streaming can be found [from this link.](https://huggingface.co/docs/datasets/stream#split-dataset)
Alternatively, you can manually download the zipped SUBAK.KO folder from [this HuggingFace directory.](https://huggingface.co/datasets/ahnafsamin/SUBAK.KO/tree/main/Data)
The csv files corresponding to the train, validation and test splits can be found in the same directory.
### Supported Tasks and Leaderboards
This dataset is designed for the automatic speech recognition task. The associated paper provides the baseline results on SUBAK.KO corpus.
### Languages
Bangladeshi standard Bangla
## Dataset Structure
### Data Instances
A typical data point comprises the path to the audio file and its transcription.
```
{
'audio': {'path': '/home/username/subakko/part5/wav5/e4/TNM22_MESBA_page_257-258_5_5_Labeled_by_Tomal-20.wav',
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
'sampling_rate': 16000},
'transcript': 'তারপর চার মাস তিনি ছিলেন কেন্দ্রীয় গোয়েন্দা সংস্থার তত্বাবধানে এক নিরাপদ জায়গায়',
'path': '/subakko/part5/wav5/e4/TNM22_MESBA_page_257-258_5_5_Labeled_by_Tomal-20.wav'
}
```
### Data Fields
- audio: A dictionary containing the path to the original audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
- transcription: The orthographic transcription
- file_path: The relative path to the audio file
### Data Splits
SUBAK.KO has been subdivided into three splits for train, validation and test. It is strongly advised to use identical data splits
for research purposes to facilitate benchmarking across various models.
| | Train | Validation | Test |
| ---------------- | ---------|------------|----------|
| Utterances | 64491 | 6594 | 6533 |
| Duration | 200.3 hrs| 20.5 hrs | 20.3 hrs |
## Additional Information
### Licensing Information
[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/deed.en)
### Citation Information
Please cite the following paper if you use the corpus.
```
@article{kibria2022bangladeshi,
title={Bangladeshi Bangla speech corpus for automatic speech recognition research},
author={Kibria, Shafkat and Samin, Ahnaf Mozib and Kobir, M Humayon and Rahman, M Shahidur and Selim, M Reza and Iqbal, M Zafar},
journal={Speech Communication},
volume={136},
pages={84--97},
year={2022},
publisher={Elsevier}
}
``` |