Datasets:
ArXiv:
License:
holylovenia
commited on
Upload phost.py with huggingface_hub
Browse files
phost.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
from zipfile import ZipFile
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
import yaml
|
8 |
+
|
9 |
+
from seacrowd.utils import schemas
|
10 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
11 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
12 |
+
|
13 |
+
_CITATION = """\
|
14 |
+
@inproceedings{PhoST,
|
15 |
+
title = {{A High-Quality and Large-Scale Dataset for English-Vietnamese Speech Translation}},
|
16 |
+
author = {Linh The Nguyen and Nguyen Luong Tran and Long Doan and Manh Luong and Dat Quoc Nguyen},
|
17 |
+
booktitle = {Proceedings of the 23rd Annual Conference of the International Speech Communication Association (INTERSPEECH)},
|
18 |
+
year = {2022}
|
19 |
+
}
|
20 |
+
"""
|
21 |
+
|
22 |
+
_DATASETNAME = "phost"
|
23 |
+
|
24 |
+
_DESCRIPTION = """\
|
25 |
+
PhoST is a high-quality and large-scale benchmark dataset for English-Vietnamese speech translation
|
26 |
+
with 508 audio hours, consisting of 331K triplets of (sentence-lengthed audio, English source
|
27 |
+
transcript sentence, Vietnamese target subtitle sentence).
|
28 |
+
"""
|
29 |
+
|
30 |
+
_HOMEPAGE = "https://github.com/VinAIResearch/PhoST"
|
31 |
+
|
32 |
+
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value
|
33 |
+
|
34 |
+
_LOCAL = True
|
35 |
+
|
36 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.SPEECH_TO_TEXT_TRANSLATION, Tasks.MACHINE_TRANSLATION]
|
37 |
+
|
38 |
+
_SOURCE_VERSION = "1.0.0"
|
39 |
+
|
40 |
+
_SEACROWD_VERSION = "2024.06.20"
|
41 |
+
|
42 |
+
_LANGUAGES = ["eng", "vie"]
|
43 |
+
|
44 |
+
|
45 |
+
def seacrowd_config_constructor(src_lang, tgt_lang, schema, version):
|
46 |
+
if src_lang == "" or tgt_lang == "":
|
47 |
+
raise ValueError(f"Invalid src_lang {src_lang} or tgt_lang {tgt_lang}")
|
48 |
+
|
49 |
+
if schema not in ["source", "seacrowd_sptext", "seacrowd_t2t"]:
|
50 |
+
raise ValueError(f"Invalid schema: {schema}")
|
51 |
+
|
52 |
+
return SEACrowdConfig(
|
53 |
+
name="phost_{src}_{tgt}_{schema}".format(src=src_lang, tgt=tgt_lang, schema=schema),
|
54 |
+
version=datasets.Version(version),
|
55 |
+
description="phost schema for {schema} from {src} to {tgt}".format(schema=schema, src=src_lang, tgt=tgt_lang),
|
56 |
+
schema=schema,
|
57 |
+
subset_id="phost_{src}_{tgt}".format(src=src_lang, tgt=tgt_lang),
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
class Phost(datasets.GeneratorBasedBuilder):
|
62 |
+
"""
|
63 |
+
PhoST is a high-quality and large-scale benchmark dataset for English-Vietnamese speech translation
|
64 |
+
with 508 audio hours, consisting of 331K triplets of (sentence-lengthed audio, English source
|
65 |
+
transcript sentence, Vietnamese target subtitle sentence).
|
66 |
+
"""
|
67 |
+
|
68 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
69 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
70 |
+
|
71 |
+
BUILDER_CONFIGS = [
|
72 |
+
seacrowd_config_constructor("en", "vi", "source", _SOURCE_VERSION),
|
73 |
+
seacrowd_config_constructor("en", "vi", "seacrowd_sptext", _SEACROWD_VERSION),
|
74 |
+
seacrowd_config_constructor("en", "vi", "seacrowd_t2t", _SEACROWD_VERSION),
|
75 |
+
]
|
76 |
+
|
77 |
+
DEFAULT_CONFIG_NAME = "phost_en_vi_source"
|
78 |
+
|
79 |
+
def _info(self) -> datasets.DatasetInfo:
|
80 |
+
if self.config.schema == "source":
|
81 |
+
features = datasets.Features(
|
82 |
+
{
|
83 |
+
"file": datasets.Value("string"),
|
84 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
85 |
+
"en_text": datasets.Value("string"),
|
86 |
+
"vi_text": datasets.Value("string"),
|
87 |
+
"timing": datasets.Sequence(datasets.Value("string")),
|
88 |
+
}
|
89 |
+
)
|
90 |
+
elif self.config.schema == "seacrowd_sptext":
|
91 |
+
features = schemas.speech_text_features
|
92 |
+
elif self.config.schema == "seacrowd_t2t":
|
93 |
+
features = schemas.text2text_features
|
94 |
+
|
95 |
+
return datasets.DatasetInfo(
|
96 |
+
description=_DESCRIPTION,
|
97 |
+
features=features,
|
98 |
+
homepage=_HOMEPAGE,
|
99 |
+
license=_LICENSE,
|
100 |
+
citation=_CITATION,
|
101 |
+
)
|
102 |
+
|
103 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
104 |
+
"""Returns SplitGenerators."""
|
105 |
+
if self.config.data_dir is None:
|
106 |
+
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
|
107 |
+
else:
|
108 |
+
data_dir = self.config.data_dir
|
109 |
+
|
110 |
+
aud_path = os.path.join(data_dir, "audio_data")
|
111 |
+
if not os.path.exists(aud_path):
|
112 |
+
os.makedirs(aud_path)
|
113 |
+
|
114 |
+
# loading the temp.zip and creating a zip object
|
115 |
+
with ZipFile(os.path.join(data_dir, "train_audio.zip"), "r") as zObject:
|
116 |
+
for member in zObject.namelist():
|
117 |
+
if not os.path.exists(os.path.join(aud_path, "train", member)) or not os.path.isfile(os.path.join(aud_path, "train", member)):
|
118 |
+
zObject.extract(member, os.path.join(aud_path, "train"))
|
119 |
+
|
120 |
+
# dev audio files
|
121 |
+
with ZipFile(os.path.join(data_dir, "dev_audio.zip"), "r") as zObject:
|
122 |
+
for member in zObject.namelist():
|
123 |
+
if not os.path.exists(os.path.join(aud_path, "dev", member)) or not os.path.isfile(os.path.join(aud_path, "dev", member)):
|
124 |
+
zObject.extract(member, aud_path)
|
125 |
+
# test audio files
|
126 |
+
with ZipFile(os.path.join(data_dir, "test_audio.zip"), "r") as zObject:
|
127 |
+
for member in zObject.namelist():
|
128 |
+
if not os.path.exists(os.path.join(aud_path, "test", member)) or not os.path.isfile(os.path.join(aud_path, "test", member)):
|
129 |
+
zObject.extract(member, aud_path)
|
130 |
+
# text data
|
131 |
+
with ZipFile(os.path.join(data_dir, "text_data.zip"), "r") as zObject:
|
132 |
+
for member in zObject.namelist():
|
133 |
+
if not os.path.exists(os.path.join(data_dir, member)) or not os.path.isfile(os.path.join(data_dir, member)):
|
134 |
+
zObject.extract(member, data_dir)
|
135 |
+
|
136 |
+
return [
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.TRAIN,
|
139 |
+
gen_kwargs={
|
140 |
+
"filepath": {"audio": os.path.join(aud_path, "train", "wav"), "text": os.path.join(data_dir, "text_data", "train")},
|
141 |
+
"split": "train",
|
142 |
+
},
|
143 |
+
),
|
144 |
+
datasets.SplitGenerator(
|
145 |
+
name=datasets.Split.TEST,
|
146 |
+
gen_kwargs={
|
147 |
+
"filepath": {"audio": os.path.join(aud_path, "test", "wav"), "text": os.path.join(data_dir, "text_data", "test")},
|
148 |
+
"split": "test",
|
149 |
+
},
|
150 |
+
),
|
151 |
+
datasets.SplitGenerator(
|
152 |
+
name=datasets.Split.VALIDATION,
|
153 |
+
gen_kwargs={
|
154 |
+
"filepath": {"audio": os.path.join(aud_path, "dev", "wav"), "text": os.path.join(data_dir, "text_data", "dev")},
|
155 |
+
"split": "dev",
|
156 |
+
},
|
157 |
+
),
|
158 |
+
]
|
159 |
+
|
160 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
161 |
+
"""Yields examples as (key, example) tuples."""
|
162 |
+
config_names_split = self.config.name.split("_")
|
163 |
+
src_lang = config_names_split[1]
|
164 |
+
tgt_lang = config_names_split[2]
|
165 |
+
track_ids = os.listdir(filepath["text"])
|
166 |
+
timing = []
|
167 |
+
en_sub = []
|
168 |
+
vi_sub = []
|
169 |
+
counter = 0
|
170 |
+
for key, track_id in enumerate(track_ids):
|
171 |
+
with open(os.path.join(filepath["text"], track_id, track_id + ".yaml")) as timing_file:
|
172 |
+
timing = yaml.safe_load(timing_file)
|
173 |
+
with open(os.path.join(filepath["text"], track_id, track_id + ".en")) as en_text:
|
174 |
+
en_sub = [line.strip() for line in en_text]
|
175 |
+
with open(
|
176 |
+
os.path.join(filepath["text"], track_id, track_id + ".vi"),
|
177 |
+
) as vi_text:
|
178 |
+
vi_sub = [line.strip() for line in vi_text]
|
179 |
+
|
180 |
+
if self.config.schema == "source":
|
181 |
+
yield key, {"file": os.path.join(filepath["audio"], track_id + ".wav"), "audio": os.path.join(filepath["audio"], track_id + ".wav"), "en_text": " ".join(en_sub), "vi_text": " ".join(vi_sub), "timing": timing}
|
182 |
+
|
183 |
+
elif self.config.schema == "seacrowd_sptext":
|
184 |
+
if tgt_lang not in ["en", "vi"]:
|
185 |
+
raise NotImplementedError(f"Target language '{tgt_lang}' is not defined.")
|
186 |
+
|
187 |
+
yield key, {
|
188 |
+
"id": track_id,
|
189 |
+
"path": os.path.join(filepath["audio"], track_id + ".wav"),
|
190 |
+
"audio": os.path.join(filepath["audio"], track_id + ".wav"),
|
191 |
+
"text": " ".join(en_sub) if tgt_lang == "en" else " ".join(vi_sub),
|
192 |
+
"speaker_id": None,
|
193 |
+
"metadata": {
|
194 |
+
"speaker_age": None,
|
195 |
+
"speaker_gender": None,
|
196 |
+
},
|
197 |
+
}
|
198 |
+
|
199 |
+
elif self.config.schema == "seacrowd_t2t":
|
200 |
+
if src_lang not in ["en", "vi"]:
|
201 |
+
raise NotImplementedError(f"Source language '{src_lang}' is not defined.")
|
202 |
+
if tgt_lang not in ["en", "vi"]:
|
203 |
+
raise NotImplementedError(f"Target language '{tgt_lang}' is not defined.")
|
204 |
+
for en_line, vi_line in zip(en_sub, vi_sub):
|
205 |
+
yield counter, {
|
206 |
+
"id": f"{track_id}_{str(counter)}",
|
207 |
+
"text_1": en_line if src_lang == "en" else vi_line,
|
208 |
+
"text_2": en_line if tgt_lang == "en" else vi_line,
|
209 |
+
"text_1_name": src_lang,
|
210 |
+
"text_2_name": tgt_lang,
|
211 |
+
}
|
212 |
+
counter += 1
|
213 |
+
else:
|
214 |
+
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
|