|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
from seacrowd.utils import schemas |
|
import jsonlines |
|
from nltk.tokenize.treebank import TreebankWordDetokenizer |
|
|
|
try: |
|
import gdown |
|
except: |
|
print("Please install `gdown` to proceed.") |
|
|
|
|
|
_CITATION = """\ |
|
@article{aji2022paracotta, |
|
title={ParaCotta: Synthetic Multilingual Paraphrase Corpora from the Most Diverse Translation Sample Pair}, |
|
author={Aji, Alham Fikri and Fatyanosa, Tirana Noor and Prasojo, Radityo Eko and Arthur, Philip and Fitriany, Suci and Qonitah, Salma and Zulfa, Nadhifa and Santoso, Tomi and Data, Mahendra}, |
|
journal={arXiv preprint arXiv:2205.04651}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "paracotta_id" |
|
|
|
_DESCRIPTION = """\ |
|
ParaCotta is a synthetic parallel paraphrase corpus across 17 languages: Arabic, Catalan, Czech, German, English, Spanish, Estonian, French, Hindi, Indonesian, Italian, Dutch, Ro- manian, Russian, Swedish, Vietnamese, and Chinese. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/afaji/paracotta-paraphrase" |
|
|
|
_LICENSE = "Unknown" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://drive.google.com/uc?id=1QPyD4lOKxbXGUypA5ke6Y9_i9utq-QSQ", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.PARAPHRASING] |
|
|
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ParaCotta(datasets.GeneratorBasedBuilder): |
|
"""ParaCotta is a synthetic parallel paraphrase corpus across 17 languages: Arabic, Catalan, Czech, German, English, Spanish, Estonian, French, Hindi, Indonesian, Italian, Dutch, Ro- manian, Russian, Swedish, Vietnamese, and Chinese. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="paracotta_id_source", |
|
version=SOURCE_VERSION, |
|
description="paracotta_id source schema", |
|
schema="source", |
|
subset_id="paracotta_id", |
|
), |
|
SEACrowdConfig( |
|
name="paracotta_id_seacrowd_t2t", |
|
version=SEACROWD_VERSION, |
|
description="paracotta_id Nusantara schema", |
|
schema="seacrowd_t2t", |
|
subset_id="paracotta_id", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "paracotta_id_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"src": datasets.Value("string"), |
|
"tgt": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
|
|
output_dir = Path.cwd() / "data" / _DATASETNAME |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
output_file = output_dir / f"{_DATASETNAME}.tsv" |
|
if not output_file.exists(): |
|
gdown.download(urls, str(output_file), fuzzy=True) |
|
else: |
|
print(f"File already downloaded: {str(output_file)}") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": output_file, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
if self.config.schema == "source": |
|
with open(filepath, 'r') as f: |
|
data = f.readlines() |
|
id = 0 |
|
for each_data in data: |
|
each_data = each_data.strip('\n') |
|
ex = { |
|
"id": id, |
|
"src": each_data.split('\t')[1], |
|
"tgt": each_data.split('\t')[2], |
|
} |
|
id += 1 |
|
yield id, ex |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
with open(filepath, 'r') as f: |
|
data = f.readlines() |
|
id = 0 |
|
for each_data in data: |
|
each_data = each_data.strip('\n') |
|
ex = { |
|
"id": id, |
|
"text_1": each_data.split('\t')[1], |
|
"text_2": each_data.split('\t')[2], |
|
"text_1_name": "src", |
|
"text_2_name": "tgt" |
|
} |
|
id += 1 |
|
yield id, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |