|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses |
|
|
|
_CITATION = """\ |
|
@inproceedings{maxwelll-smith-foley-2023-automated, |
|
title = "Automated speech recognition of {I}ndonesian-{E}nglish language lessons on {Y}ou{T}ube using transfer learning", |
|
author = "Maxwell-Smith, Zara and Foley, Ben", |
|
editor = "Serikov, Oleg |
|
and Voloshina, Ekaterina |
|
and Postnikova, Anna |
|
and Klyachko, Elena |
|
and Vylomova, Ekaterina |
|
and Shavrina, Tatiana |
|
and Le Ferrand, Eric |
|
and Malykh, Valentin |
|
and Tyers, Francis |
|
and Arkhangelskiy, Timofey |
|
and Mikhailov, Vladislav", |
|
booktitle = "Proceedings of the Second Workshop on NLP Applications to Field Linguistics", |
|
month = may, |
|
year = "2023", |
|
address = "Dubrovnik, Croatia", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2023.fieldmatters-1.1", |
|
doi = "10.18653/v1/2023.fieldmatters-1.1", |
|
pages = "1--16", |
|
abstract = "Experiments to fine-tune large multilingual models with limited data from a specific domain or setting has potential |
|
to improve automatic speech recognition (ASR) outcomes. This paper reports on the use of the Elpis ASR pipeline to fine-tune two |
|
pre-trained base models, Wav2Vec2-XLSR-53 and Wav2Vec2-Large-XLSR-Indonesian, with various mixes of data from 3 YouTube channels |
|
teaching Indonesian with English as the language of instruction. We discuss our results inferring new lesson audio (22-46% |
|
word error rate) in the context of speeding data collection in diverse and specialised settings. This study is an example of how |
|
ASR can be used to accelerate natural language research, expanding ethically sourced data in low-resource settings.", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "oil" |
|
|
|
_DESCRIPTION = """\ |
|
The Online Indonesian Learning (OIL) dataset or corpus currently contains lessons from three Indonesian teachers who have posted content on YouTube. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/ZMaxwell-Smith/OIL" |
|
|
|
_LANGUAGES = ["eng", "ind"] |
|
|
|
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: {"train": "https://huggingface.co/api/datasets/ZMaxwell-Smith/OIL/parquet/default/train/0.parquet"}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [] |
|
_SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class OIL(datasets.GeneratorBasedBuilder): |
|
"""The Online Indonesian Learning (OIL) dataset or corpus currently contains lessons from three Indonesian teachers who have posted content on YouTube.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"audio": datasets.Audio(decode=False), |
|
"label": datasets.ClassLabel(num_classes=98), |
|
} |
|
) |
|
|
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
train_path = dl_manager.download_and_extract(urls["train"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_path, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
|
|
df = pd.read_parquet(filepath) |
|
|
|
for index, row in df.iterrows(): |
|
yield index, row.to_dict() |
|
|
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|