File size: 8,741 Bytes
1ab1a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0530837
 
 
1ab1a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0530837
1ab1a62
 
 
 
 
 
 
 
 
0530837
1ab1a62
 
0530837
1ab1a62
 
 
 
 
 
0530837
1ab1a62
 
 
 
 
 
0530837
 
 
1ab1a62
0530837
1ab1a62
 
0530837
 
 
1ab1a62
0530837
1ab1a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0530837
1ab1a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0530837
1ab1a62
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_SEACROWD_VIEW_NAME

import pandas as pd

_CITATION = """\
@misc{
   research, 
   title={indonesian-nlp/librivox-indonesia · datasets at hugging face}, 
   url={https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia},
   author={Indonesian-nlp}
} 
"""

_DATASETNAME = "librivox_indonesia"
_DESCRIPTION = """\
The LibriVox Indonesia dataset consists of MP3 audio and a corresponding text file we generated from the public domain audiobooks LibriVox. 
We collected only languages in Indonesia for this dataset. 
The original LibriVox audiobooks or sound files' duration varies from a few minutes to a few hours. 
Each audio file in the speech dataset now lasts from a few seconds to a maximum of 20 seconds.
We converted the audiobooks to speech datasets using the forced alignment software we developed. 
It supports multilingual, including low-resource languages, such as Acehnese, Balinese, or Minangkabau. 
We can also use it for other languages without additional work to train the model.
The dataset currently consists of 8 hours in 7 languages from Indonesia. 
We will add more languages or audio files as we collect them. 
"""

_HOMEPAGE = "https://huggingface.co/indonesian-nlp/librivox-indonesia"

_LICENSE = "CC0"

_URLS = {
    _DATASETNAME: "https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia/resolve/main/data",
}
_LANGUAGES = {"ind", "sun", "jav", "min", "bug", "ban", "ace"}
_LANG_CODE = {
    "ind": ["ind", "indonesian"],
    "sun": ["sun", "sundanese"],
    "jav": ["jav", "javanese"],
    "min": ["min", "minangkabau"],
    "bug": ["bug", "bugisnese"],
    "ban": ["bal", "balinese"],
    "ace": ["ace", "acehnese"]
}
_LOCAL = False
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]  # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class LibrivoxIndonesia(datasets.GeneratorBasedBuilder):
    """
    Librivox-indonesia is a speech-to-text dataset in 7 languages available in Indonesia.
    The default dataloader contains all languages, while the other available dataloaders contain a designated language.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="librivox_indonesia_source",
            version=_SOURCE_VERSION,
            description="Librivox-Indonesia source schema for all languages",
            schema="source",
            subset_id="librivox_indonesia",
        )] + [
        SEACrowdConfig(
            name="librivox_indonesia_{lang}_source".format(lang=lang),
            version=_SOURCE_VERSION,
            description="Librivox-Indonesia source schema for {lang} languages".format(lang=_LANG_CODE[lang][1]),
            schema="source",
            subset_id="librivox_indonesia_{lang}".format(lang=lang),
        ) for lang in _LANGUAGES] + [
        SEACrowdConfig(
            name="librivox_indonesia_seacrowd_sptext",
            version=_SEACROWD_VERSION,
            description="Librivox-Indonesia Nusantara schema for all languages",
            schema="seacrowd_sptext",
            subset_id="librivox_indonesia",
        )] + [
        SEACrowdConfig(
            name="librivox_indonesia_{lang}_seacrowd_sptext".format(lang=lang),
            version=_SEACROWD_VERSION,
            description="Librivox-Indonesia Nusantara schema for {lang} languages".format(lang=_LANG_CODE[lang][1]),
            schema="seacrowd_sptext",
            subset_id="librivox_indonesia_{lang}".format(lang=lang),
        )for lang in _LANGUAGES]

    DEFAULT_CONFIG_NAME = "librivox_indonesia_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "path": datasets.Value("string"),
                    "language": datasets.Value("string"),
                    "reader": datasets.Value("string"),
                    "sentence": datasets.Value("string"),
                    "audio": datasets.features.Audio(sampling_rate=44100)
                }
            )
        elif self.config.schema == "seacrowd_sptext":
            features = schemas.speech_text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls = _URLS[_DATASETNAME]

        audio_path = {}
        local_extracted_archive = {}
        metadata_path = {}
        splits = ["train", "test"]
        for split in splits:
            audio_path[split] = dl_manager.download(os.path.join(urls, "audio_{split}.tgz".format(split=split)))
            local_extracted_archive[split] = dl_manager.extract(audio_path[split]) if not dl_manager.is_streaming else None
            metadata_path[split] = dl_manager.download_and_extract(
                os.path.join(urls, "metadata_{split}.csv.gz".format(split=split))
            )

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # Whatever you put in gen_kwargs will be passed to _generate_examples
                gen_kwargs={
                    "local_extracted_archive": local_extracted_archive["train"],
                    "audio_path": dl_manager.iter_archive(audio_path["train"]),
                    "metadata_path": metadata_path["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "local_extracted_archive": local_extracted_archive["test"],
                    "audio_path": dl_manager.iter_archive(audio_path["test"]),
                    "metadata_path": metadata_path["test"],
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, local_extracted_archive: Path, audio_path, metadata_path: Path, split: str) -> Tuple[int, Dict]:
        df = pd.read_csv(
            metadata_path,
            encoding="utf-8"
        )
        lang = self.config.subset_id.split("_")[-1]
        if lang != "indonesia":
            lang = _LANG_CODE[lang][0]
        path_to_audio = "librivox-indonesia"
        metadata = {}
        for id, row in df.iterrows():
            if lang == row["language"] or lang == "indonesia":
                path = os.path.join(path_to_audio, row["path"])
                metadata[path] = row
                metadata[path]["id"] = id

        for path, f in audio_path:
            if path in metadata:
                row = metadata[path]
                path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
                if self.config.schema == "source":
                    yield row["id"], {
                        "path": path,
                        "language": row["language"],
                        "reader": row["reader"],
                        "sentence": row["sentence"],
                        "audio": path,
                    }
                elif self.config.schema == "seacrowd_sptext":
                    yield row["id"], {
                        "id": row["id"],
                        "speaker_id": row["reader"],
                        "path": path,
                        "audio": path,
                        "text": row["sentence"],
                        "metadata": {
                            "speaker_age": None,
                            "speaker_gender": None,
                        }
                    }