|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from itertools import chain |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, |
|
DEFAULT_SOURCE_VIEW_NAME, Tasks) |
|
|
|
_CITATION = """\ |
|
@inproceedings{sakti-tcast-2008, |
|
title = "Development of {I}ndonesian Large Vocabulary Continuous Speech Recognition System within {A-STAR} Project", |
|
author = "Sakti, Sakriani and Kelana, Eka and Riza, Hammam and Sakai, Shinsuke and Markov, Konstantin and Nakamura, Satoshi", |
|
booktitle = "Proc. IJCNLP Workshop on Technologies and Corpora for Asia-Pacific Speech Translation (TCAST)", |
|
year = "2008", |
|
pages = "19--24" |
|
address = "Hyderabad, India" |
|
} |
|
|
|
@inproceedings{sakti-icslp-2004, |
|
title = "Indonesian Speech Recognition for Hearing and Speaking Impaired People", |
|
author = "Sakti, Sakriani and Hutagaol, Paulus and Arman, Arry Akhmad and Nakamura, Satoshi", |
|
booktitle = "Proc. International Conference on Spoken Language Processing (INTERSPEECH - ICSLP)", |
|
year = "2004", |
|
pages = "1037--1040" |
|
address = "Jeju Island, Korea" |
|
} |
|
|
|
@article{sakti-s2st-csl-2013, |
|
title = "{A-STAR}: Toward Translating Asian Spoken Languages", |
|
author = "Sakti, Sakriani and Paul, Michael and Finch, Andrew and Sakai, Shinsuke and Thang, Tat Vu, and Kimura, Noriyuki and Hori, Chiori and Sumita, Eiichiro and Nakamura, Satoshi and Park, Jun and Wutiwiwatchai, Chai and Xu, Bo and Riza, Hammam and Arora, Karunesh and Luong, Chi Mai and Li, Haizhou", |
|
journal = "Special issue on Speech-to-Speech Translation, Computer Speech and Language Journal", |
|
volume = "27", |
|
number ="2", |
|
pages = "509--527", |
|
year = "2013", |
|
publisher = "Elsevier" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "indspeech_news_lvcsr" |
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DESCRIPTION = """\ |
|
This is the first Indonesian speech dataset for large vocabulary continuous speech recognition (LVCSR) with more than 40 hours of speech and 400 speakers [Sakti et al., 2008]. R&D Division of PT Telekomunikasi Indonesia (TELKOMRisTI) developed the data in 2005-2006, in collaboration with Advanced Telecommunication Research Institute International (ATR) Japan, as the continuation of the Asia-Pacific Telecommunity (APT) project [Sakti et al., 2004]. It has also been successfully used for developing Indonesian LVCSR in the Asian speech translation advanced research (A-STAR) project [Sakti et al., 2013]. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/s-sakti/data_indsp_news_lvcsr" |
|
|
|
_LICENSE = "CC BY-NC-SA 4.0" |
|
|
|
URL_TEMPLATE = { |
|
"lst": "https://raw.githubusercontent.com/s-sakti/data_indsp_news_lvcsr/main/lst/", |
|
"speech": "https://github.com/s-sakti/data_indsp_news_lvcsr/raw/main/speech/", |
|
"text": "https://github.com/s-sakti/data_indsp_news_lvcsr/raw/main/text/", |
|
} |
|
|
|
_URLS = { |
|
"lst_spk_Ind": [URL_TEMPLATE["lst"] + "spk_Ind" + str(n) + ".lst" for n in range(0, 4)], |
|
"lst_spk_all": URL_TEMPLATE["lst"] + "spk_all.lst", |
|
"lst_spk_test": URL_TEMPLATE["lst"] + "spk_test.lst", |
|
"lst_spk_train": URL_TEMPLATE["lst"] + "spk_train.lst", |
|
"lst_transcript": URL_TEMPLATE["lst"] + "transcript.lst", |
|
"speech_Ind": [URL_TEMPLATE["speech"] + "Ind" + str(n) + "/Ind" + str(p).zfill(3) + ".zip" for n in range(0, 4) for p in range(n * 100 + 1, n * 100 + 101)], |
|
"transcript_all": URL_TEMPLATE["text"] + "all_transcript.zip", |
|
"transcript_spk": URL_TEMPLATE["text"] + "spk_transcript.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndSpeechNewsLVCSR(datasets.GeneratorBasedBuilder): |
|
"""Indonesian automatic speech recognition with several local accents reading short news sentences""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="indspeech_news_lvcsr_source", |
|
version=SOURCE_VERSION, |
|
description="indspeech_news_lvcsr source schema", |
|
schema="source", |
|
subset_id="indspeech_news_lvcsr", |
|
), |
|
SEACrowdConfig( |
|
name="indspeech_news_lvcsr_seacrowd_sptext", |
|
version=SEACROWD_VERSION, |
|
description="indspeech_news_lvcsr Nusantara schema", |
|
schema="seacrowd_sptext", |
|
subset_id="indspeech_news_lvcsr", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indspeech_news_lvcsr_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"spk_id": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"accent": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"txt_id": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
lst_spk_train = _URLS["lst_spk_train"] |
|
lst_spk_test = _URLS["lst_spk_test"] |
|
transcript = _URLS["lst_transcript"] |
|
audio_urls = _URLS["speech_Ind"] |
|
|
|
lst_spk_train_dir = Path(dl_manager.download_and_extract(lst_spk_train)) |
|
lst_spk_test_dir = Path(dl_manager.download_and_extract(lst_spk_test)) |
|
transcript_dir = Path(dl_manager.download_and_extract(transcript)) |
|
audio_files_dir = [Path(dl_manager.download_and_extract(aud_url)) / aud_url.split("/")[-1][:-4] for aud_url in audio_urls] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": {"lst_spk": lst_spk_train_dir, "transcript": transcript_dir, "aud_files": audio_files_dir}, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": {"lst_spk": lst_spk_test_dir, "transcript": transcript_dir, "aud_files": audio_files_dir}, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
speaker_ids = open(filepath["lst_spk"], "r").readlines() |
|
speaker_ids = [id.replace("\n", "") for id in speaker_ids] |
|
speech_folders = [aud_folder for aud_folder in filepath["aud_files"] if aud_folder.name in speaker_ids] |
|
speech_files = list(chain(*[list(map((str(speech_folder) + "/").__add__, os.listdir(speech_folder))) for speech_folder in speech_folders])) |
|
|
|
print(speech_files[0]) |
|
|
|
transcript = open(filepath["transcript"], "r").readlines() |
|
transcript = [sentence.replace("\n", "") for sentence in transcript] |
|
|
|
for key, aud_file in enumerate(speech_files): |
|
aud_id = str(Path(aud_file).name).split("\\")[-1][:-4] |
|
aud_info = aud_id.split("_") |
|
|
|
if self.config.schema == "source": |
|
row = { |
|
"spk_id": aud_info[0], |
|
"gender": aud_info[1], |
|
"accent": aud_info[2], |
|
"type": aud_info[3], |
|
"txt_id": aud_info[5], |
|
"audio": aud_file, |
|
"text": transcript[int(aud_info[5])], |
|
} |
|
yield key, row |
|
|
|
elif self.config.schema == "seacrowd_sptext": |
|
row = { |
|
"id": aud_id, |
|
"path": aud_file, |
|
"audio": aud_file, |
|
"text": transcript[int(aud_info[5])], |
|
"speaker_id": aud_info[0], |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": aud_info[1], |
|
}, |
|
} |
|
yield key, row |
|
else: |
|
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |
|
|