Datasets:
holylovenia
commited on
Upload indommlu.py with huggingface_hub
Browse files- indommlu.py +291 -0
indommlu.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
10 |
+
|
11 |
+
_CITATION = """
|
12 |
+
@inproceedings{koto-etal-2023-large,
|
13 |
+
title = "Large Language Models Only Pass Primary School Exams in {I}ndonesia: A Comprehensive Test on {I}ndo{MMLU}",
|
14 |
+
author = "Koto, Fajri and
|
15 |
+
Aisyah, Nurul and
|
16 |
+
Li, Haonan and
|
17 |
+
Baldwin, Timothy",
|
18 |
+
editor = "Bouamor, Houda and
|
19 |
+
Pino, Juan and
|
20 |
+
Bali, Kalika",
|
21 |
+
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
|
22 |
+
month = dec,
|
23 |
+
year = "2023",
|
24 |
+
address = "Singapore",
|
25 |
+
publisher = "Association for Computational Linguistics",
|
26 |
+
url = "https://aclanthology.org/2023.emnlp-main.760",
|
27 |
+
doi = "10.18653/v1/2023.emnlp-main.760",
|
28 |
+
pages = "12359--12374",
|
29 |
+
}
|
30 |
+
"""
|
31 |
+
|
32 |
+
_DATASETNAME = "indommlu"
|
33 |
+
|
34 |
+
_DESCRIPTION = """
|
35 |
+
IndoMMLU is the first multi-task language understanding benchmark for Indonesian culture and languages, which consists
|
36 |
+
of questions from primary school to university entrance exams in Indonesia. By employing professional teachers, we
|
37 |
+
obtain 14,906 questions across 63 tasks and education levels, with 46% of the questions focusing on assessing
|
38 |
+
proficiency in the Indonesian language and knowledge of nine local languages and cultures in Indonesia.
|
39 |
+
"""
|
40 |
+
|
41 |
+
_HOMEPAGE = "https://huggingface.co/datasets/indolem/IndoMMLU"
|
42 |
+
|
43 |
+
_LANGUAGES = ["ind", "ban", "mad", "nij", "sun", "jav", "mak", "bjn", "abl"]
|
44 |
+
|
45 |
+
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
|
46 |
+
|
47 |
+
_LOCAL = False
|
48 |
+
|
49 |
+
_URLS = {_DATASETNAME: {"test": "https://huggingface.co/datasets/indolem/IndoMMLU/resolve/main/IndoMMLU.csv"}}
|
50 |
+
|
51 |
+
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
|
52 |
+
|
53 |
+
_SOURCE_VERSION = "1.0.0"
|
54 |
+
|
55 |
+
_SEACROWD_VERSION = "2024.06.20"
|
56 |
+
|
57 |
+
|
58 |
+
lang2subject = {"ind": "Bahasa Indonesia", "ban": "Bahasa Bali", "mad": "Bahasa Madura", "nij": "Bahasa Dayak Ngaju", "sun": "Bahasa Sunda", "jav": "Bahasa Jawa", "mak": "Bahasa Makassar", "bjn": "Bahasa Banjar", "abl": "Bahasa Lampung"}
|
59 |
+
|
60 |
+
subject2english = {
|
61 |
+
"Sejarah": "History",
|
62 |
+
"Geografi": "Geography",
|
63 |
+
"Bahasa Lampung": "Lampungic",
|
64 |
+
"IPS": "Social science",
|
65 |
+
"Bahasa Bali": "Balinese",
|
66 |
+
"Bahasa Makassar": "Makassarese",
|
67 |
+
"Bahasa Banjar": "Banjarese",
|
68 |
+
"Kimia": "Chemistry",
|
69 |
+
"Biologi": "Biology",
|
70 |
+
"IPA": "Science",
|
71 |
+
"Agama Kristen": "Christian religion",
|
72 |
+
"Kesenian": "Art",
|
73 |
+
"Agama Islam": "Islam religion",
|
74 |
+
"Agama Hindu": "Hindu religion",
|
75 |
+
"Bahasa Madura": "Madurese",
|
76 |
+
"Penjaskes": "Sport",
|
77 |
+
"Bahasa Indonesia": "Indonesian language",
|
78 |
+
"Fisika": "Physics",
|
79 |
+
"Budaya Alam Minangkabau": "Minangkabau culture",
|
80 |
+
"Bahasa Dayak Ngaju": "Dayak language",
|
81 |
+
"Sosiologi": "Sociology",
|
82 |
+
"Ekonomi": "Economy",
|
83 |
+
"Bahasa Sunda": "Sundanese",
|
84 |
+
"Bahasa Jawa": "Javanese",
|
85 |
+
"PPKN": "Civic education",
|
86 |
+
}
|
87 |
+
|
88 |
+
subject2group = {
|
89 |
+
"Sejarah": "Humanities",
|
90 |
+
"Geografi": "Social science",
|
91 |
+
"Bahasa Lampung": "Local languages and cultures",
|
92 |
+
"IPS": "Social science",
|
93 |
+
"Bahasa Bali": "Local languages and cultures",
|
94 |
+
"Bahasa Makassar": "Local languages and cultures",
|
95 |
+
"Bahasa Banjar": "Local languages and cultures",
|
96 |
+
"Kimia": "STEM",
|
97 |
+
"Biologi": "STEM",
|
98 |
+
"IPA": "STEM",
|
99 |
+
"Agama Kristen": "Humanities",
|
100 |
+
"Kesenian": "Humanities",
|
101 |
+
"Agama Islam": "Humanities",
|
102 |
+
"Agama Hindu": "Humanities",
|
103 |
+
"Bahasa Madura": "Local languages and cultures",
|
104 |
+
"Penjaskes": "Humanities",
|
105 |
+
"Bahasa Indonesia": "Indonesian language",
|
106 |
+
"Fisika": "STEM",
|
107 |
+
"Budaya Alam Minangkabau": "Local languages and cultures",
|
108 |
+
"Bahasa Dayak Ngaju": "Local languages and cultures",
|
109 |
+
"Sosiologi": "Social science",
|
110 |
+
"Ekonomi": "Social science",
|
111 |
+
"Bahasa Sunda": "Local languages and cultures",
|
112 |
+
"Bahasa Jawa": "Local languages and cultures",
|
113 |
+
"PPKN": "Social science",
|
114 |
+
}
|
115 |
+
|
116 |
+
special_case = ["SD-SMP-SMA", "SD-SMP"]
|
117 |
+
level_mapper = {
|
118 |
+
"SMA": "SMA", # SMA --> high school level"
|
119 |
+
"Seleksi PTN": "University entrance test",
|
120 |
+
"SD": "SD", # SD --> elementary school level
|
121 |
+
"SMP": "SMP", # SMP --> junior high school level
|
122 |
+
"Kelas I SD": "SD",
|
123 |
+
"Kelas X SMA": "SMA",
|
124 |
+
"Kelas XI SMA": "SMA",
|
125 |
+
"Kelas XII SMA": "SMA",
|
126 |
+
"V SD": "SD",
|
127 |
+
"VI SD": "SD",
|
128 |
+
"VII SMP": "SMP",
|
129 |
+
"VIII SMP ": "SMP",
|
130 |
+
"IX SMP": "SMP",
|
131 |
+
"Kelas III SD": "SD",
|
132 |
+
"Kelas IV SD": "SD",
|
133 |
+
"Kelas II SD": "SD",
|
134 |
+
}
|
135 |
+
|
136 |
+
|
137 |
+
def fix_level(level, kelas):
|
138 |
+
# Fixing Level
|
139 |
+
if level in special_case:
|
140 |
+
kelas = float(kelas)
|
141 |
+
if kelas >= 1 and kelas <= 6:
|
142 |
+
level = "SD"
|
143 |
+
elif kelas >= 7 and kelas <= 9:
|
144 |
+
level = "SMP"
|
145 |
+
elif kelas >= 10:
|
146 |
+
level = "SMA"
|
147 |
+
else:
|
148 |
+
print(level)
|
149 |
+
fixed_level = level_mapper[level]
|
150 |
+
|
151 |
+
# Fixing class
|
152 |
+
kelas = str(kelas)
|
153 |
+
if kelas.strip() in ["PTN", "2023-10-12 00:00:00"]:
|
154 |
+
fixed_kelas = 13
|
155 |
+
elif kelas == "4,5,6":
|
156 |
+
fixed_kelas = 6
|
157 |
+
else:
|
158 |
+
fixed_kelas = int(float(kelas.strip()))
|
159 |
+
|
160 |
+
# sanity check over the level and kelas
|
161 |
+
return fixed_level, fixed_kelas
|
162 |
+
|
163 |
+
|
164 |
+
def pass_schema_filter(schema, row):
|
165 |
+
if schema == "source":
|
166 |
+
return True
|
167 |
+
lang = schema.split("_")[1]
|
168 |
+
if lang not in _LANGUAGES: # seacrowd_qa
|
169 |
+
return True
|
170 |
+
if lang == "ind": # contains "Bahasa Indonesia" and all other non-language subjects
|
171 |
+
return (lang2subject[lang] == row["subject"]) or (row["subject"] not in lang2subject.values())
|
172 |
+
return lang2subject[lang] == row["subject"]
|
173 |
+
|
174 |
+
|
175 |
+
class IndoMMLUDataset(datasets.GeneratorBasedBuilder):
|
176 |
+
"""IndoMMLU is the first multitask language understanding benchmark for Indonesian culture and languages."""
|
177 |
+
|
178 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
179 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
180 |
+
|
181 |
+
BUILDER_CONFIGS = [
|
182 |
+
SEACrowdConfig(
|
183 |
+
name=f"{_DATASETNAME}_source",
|
184 |
+
version=SOURCE_VERSION,
|
185 |
+
description=f"{_DATASETNAME} source schema",
|
186 |
+
schema="source",
|
187 |
+
subset_id=_DATASETNAME,
|
188 |
+
),
|
189 |
+
SEACrowdConfig(
|
190 |
+
name=f"{_DATASETNAME}_seacrowd_qa",
|
191 |
+
version=SEACROWD_VERSION,
|
192 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
193 |
+
schema="seacrowd_qa",
|
194 |
+
subset_id=_DATASETNAME,
|
195 |
+
),
|
196 |
+
]
|
197 |
+
for lang in _LANGUAGES:
|
198 |
+
lang_config = SEACrowdConfig(
|
199 |
+
name=f"{_DATASETNAME}_{lang}_seacrowd_qa",
|
200 |
+
version=SEACROWD_VERSION,
|
201 |
+
description=f"{_DATASETNAME} {lang} SEACrowd schema",
|
202 |
+
schema=f"seacrowd_qa",
|
203 |
+
subset_id=_DATASETNAME,
|
204 |
+
)
|
205 |
+
BUILDER_CONFIGS.append(lang_config)
|
206 |
+
|
207 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
208 |
+
|
209 |
+
def _info(self) -> datasets.DatasetInfo:
|
210 |
+
if self.config.schema == "source":
|
211 |
+
features = datasets.Features(
|
212 |
+
{
|
213 |
+
"subject": datasets.Value("string"),
|
214 |
+
"group": datasets.Value("string"),
|
215 |
+
"level": datasets.Value("string"),
|
216 |
+
"class": datasets.Value("string"),
|
217 |
+
"question": datasets.Value("string"),
|
218 |
+
"options": datasets.Value("string"),
|
219 |
+
"answer": datasets.Value("string"),
|
220 |
+
"is_for_fewshot": datasets.Value("string"),
|
221 |
+
}
|
222 |
+
)
|
223 |
+
|
224 |
+
else:
|
225 |
+
features = schemas.qa_features
|
226 |
+
features["meta"] = {
|
227 |
+
"subject": datasets.Value("string"),
|
228 |
+
"group": datasets.Value("string"),
|
229 |
+
"level": datasets.Value("string"),
|
230 |
+
"class": datasets.Value("string"),
|
231 |
+
"is_for_fewshot": datasets.Value("string"),
|
232 |
+
}
|
233 |
+
|
234 |
+
return datasets.DatasetInfo(
|
235 |
+
description=_DESCRIPTION,
|
236 |
+
features=features,
|
237 |
+
homepage=_HOMEPAGE,
|
238 |
+
license=_LICENSE,
|
239 |
+
citation=_CITATION,
|
240 |
+
)
|
241 |
+
|
242 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
243 |
+
"""Returns SplitGenerators."""
|
244 |
+
urls = _URLS[_DATASETNAME]
|
245 |
+
data_dir = dl_manager.download_and_extract(urls)
|
246 |
+
|
247 |
+
return [
|
248 |
+
datasets.SplitGenerator(
|
249 |
+
name=datasets.Split.TEST,
|
250 |
+
gen_kwargs={"filepath": data_dir, "split": "test"},
|
251 |
+
),
|
252 |
+
]
|
253 |
+
|
254 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
255 |
+
data = csv.DictReader(open(filepath[split], newline=""))
|
256 |
+
print(self.config.schema)
|
257 |
+
for i, row in enumerate(data):
|
258 |
+
if pass_schema_filter(self.config.schema, row):
|
259 |
+
fixed_level, fixed_kelas = fix_level(row["level"], row["kelas"])
|
260 |
+
# The choices are in the format of ["A. xxx", "B. xxx", ...], but answer is only with ["A"], replacing both with only the answer content
|
261 |
+
choices = row["jawaban"].split("\n")
|
262 |
+
answer_choice = row["kunci"]
|
263 |
+
# Find the corresponding choice in the choices.
|
264 |
+
# Skip the 2 datapoint (i = 4223, 14150) with invalid answer_choice.
|
265 |
+
corresponding_choice = next((choice for choice in choices if choice.startswith(answer_choice)), None)
|
266 |
+
if corresponding_choice is None:
|
267 |
+
continue
|
268 |
+
else:
|
269 |
+
if self.config.schema == "source":
|
270 |
+
yield i, {
|
271 |
+
"subject": subject2english[row["subject"]],
|
272 |
+
"group": subject2group[row["subject"]],
|
273 |
+
"level": fixed_level,
|
274 |
+
"class": fixed_kelas,
|
275 |
+
"question": row["soal"],
|
276 |
+
"options": [opt[2:].strip() for opt in choices], # remove A., B., ... in the options,
|
277 |
+
"answer": corresponding_choice[2:].strip(), # remove A., B., ... in the answer
|
278 |
+
"is_for_fewshot": row["is_for_fewshot"],
|
279 |
+
}
|
280 |
+
else:
|
281 |
+
yield i, {
|
282 |
+
"id": str(i),
|
283 |
+
"question_id": str(i),
|
284 |
+
"document_id": str(i),
|
285 |
+
"question": row["soal"],
|
286 |
+
"type": "multiple_choice",
|
287 |
+
"choices": [opt[2:].strip() for opt in choices], # remove A., B., ... in the options
|
288 |
+
"context": "",
|
289 |
+
"answer": [corresponding_choice[2:].strip()], # remove A., B., ... in the answer,
|
290 |
+
"meta": {"subject": subject2english[row["subject"]], "group": subject2group[row["subject"]], "level": fixed_level, "class": fixed_kelas, "is_for_fewshot": row["is_for_fewshot"]},
|
291 |
+
}
|