Datasets:

Languages:
Indonesian
ArXiv:
holylovenia commited on
Commit
c3207b4
·
1 Parent(s): 0769cd1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +15 -3
README.md CHANGED
@@ -5,17 +5,27 @@ language:
5
  - ind
6
  ---
7
 
 
 
8
  I(n)dontKnow-MRC (IDK-MRC) is an Indonesian Machine Reading Comprehension dataset that covers
 
9
  answerable and unanswerable questions. Based on the combination of the existing answerable questions in TyDiQA,
 
10
  the new unanswerable question in IDK-MRC is generated using a question generation model and human-written question.
 
11
  Each paragraph in the dataset has a set of answerable and unanswerable questions with the corresponding answer.
12
 
 
 
13
  Besides IDK-MRC (idk_mrc) dataset, several baseline datasets also provided:
 
14
  1. Trans SQuAD (trans_squad): machine translated SQuAD 2.0 (Muis and Purwarianti, 2020)
 
15
  2. TyDiQA (tydiqa): Indonesian answerable questions set from the TyDiQA-GoldP (Clark et al., 2020)
 
16
  3. Model Gen (model_gen): TyDiQA + the unanswerable questions output from the question generation model
17
- 4. Human Filt (human_filt): Model Gen dataset that has been filtered by human annotator
18
 
 
19
 
20
  ## Dataset Usage
21
 
@@ -23,7 +33,8 @@ Run `pip install nusacrowd` before loading the dataset through HuggingFace's `lo
23
 
24
  ## Citation
25
 
26
- ```@misc{putri2022idk,
 
27
  doi = {10.48550/ARXIV.2210.13778},
28
  url = {https://arxiv.org/abs/2210.13778},
29
  author = {Putri, Rifki Afina and Oh, Alice},
@@ -31,7 +42,6 @@ Run `pip install nusacrowd` before loading the dataset through HuggingFace's `lo
31
  publisher = {arXiv},
32
  year = {2022}
33
  }
34
-
35
  ```
36
 
37
  ## License
@@ -40,6 +50,8 @@ CC-BY-SA 4.0
40
 
41
  ## Homepage
42
 
 
 
43
  ### NusaCatalogue
44
 
45
  For easy indexing and metadata: [https://indonlp.github.io/nusa-catalogue](https://indonlp.github.io/nusa-catalogue)
 
5
  - ind
6
  ---
7
 
8
+ # idk_mrc
9
+
10
  I(n)dontKnow-MRC (IDK-MRC) is an Indonesian Machine Reading Comprehension dataset that covers
11
+
12
  answerable and unanswerable questions. Based on the combination of the existing answerable questions in TyDiQA,
13
+
14
  the new unanswerable question in IDK-MRC is generated using a question generation model and human-written question.
15
+
16
  Each paragraph in the dataset has a set of answerable and unanswerable questions with the corresponding answer.
17
 
18
+
19
+
20
  Besides IDK-MRC (idk_mrc) dataset, several baseline datasets also provided:
21
+
22
  1. Trans SQuAD (trans_squad): machine translated SQuAD 2.0 (Muis and Purwarianti, 2020)
23
+
24
  2. TyDiQA (tydiqa): Indonesian answerable questions set from the TyDiQA-GoldP (Clark et al., 2020)
25
+
26
  3. Model Gen (model_gen): TyDiQA + the unanswerable questions output from the question generation model
 
27
 
28
+ 4. Human Filt (human_filt): Model Gen dataset that has been filtered by human annotator
29
 
30
  ## Dataset Usage
31
 
 
33
 
34
  ## Citation
35
 
36
+ ```
37
+ @misc{putri2022idk,
38
  doi = {10.48550/ARXIV.2210.13778},
39
  url = {https://arxiv.org/abs/2210.13778},
40
  author = {Putri, Rifki Afina and Oh, Alice},
 
42
  publisher = {arXiv},
43
  year = {2022}
44
  }
 
45
  ```
46
 
47
  ## License
 
50
 
51
  ## Homepage
52
 
53
+ [https://github.com/rifkiaputri/IDK-MRC](https://github.com/rifkiaputri/IDK-MRC)
54
+
55
  ### NusaCatalogue
56
 
57
  For easy indexing and metadata: [https://indonlp.github.io/nusa-catalogue](https://indonlp.github.io/nusa-catalogue)