|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@misc{lent2023creoleval, |
|
title={CreoleVal: Multilingual Multitask Benchmarks for Creoles}, |
|
author={Heather Lent and Kushal Tatariya and Raj Dabre and Yiyi Chen and Marcell Fekete and Esther Ploeger and Li Zhou and Hans Erik Heje and Diptesh Kanojia and Paul Belony and Marcel Bollmann and \ |
|
Loïc Grobol and Miryam de Lhoneux and Daniel Hershcovich and Michel DeGraff and Anders Søgaard and Johannes Bjerva}, |
|
year={2023}, |
|
eprint={2310.19567}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "creole_rc" |
|
_DESCRIPTION = """\ |
|
CreoleRC is a subset created by the CreoleVal paper. Relation classification (RC) aims to identify semantic associations between entities within a text, essential for applications like knowledge base \ |
|
completion and question answering. The dataset is sourced from Wikipedia and manually annotated. CreoleRC contains 5 creoles, but SEACrowd is interested specifically in the Chavacano subset. |
|
""" |
|
_HOMEPAGE = "https://github.com/hclent/CreoleVal/tree/main/nlu/relation_classification" |
|
_LANGUAGES = ["cbk"] |
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
_LOCAL = False |
|
_URLS = { |
|
"csv": "https://raw.githubusercontent.com/hclent/CreoleVal/main/nlu/relation_classification/data/relation_extraction/cbk-zam.csv", |
|
"json": "https://raw.githubusercontent.com/hclent/CreoleVal/main/nlu/relation_classification/data/relation_extraction/cbk-zam.json", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class CreoleRC(datasets.GeneratorBasedBuilder): |
|
"""Creole relation classification dataset, Chavacano subset, from https://github.com/hclent/CreoleVal/tree/main/nlu/relation_classification.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SEACROWD_SCHEMA_NAME = "kb" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"ent1": datasets.Value("string"), |
|
"ent2": datasets.Value("string"), |
|
"ent1_qcode": datasets.Value("string"), |
|
"ent2_qcode": datasets.Value("string"), |
|
"property": datasets.Value("string"), |
|
"property_desc": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"edgeset_left": datasets.Sequence(datasets.Value("int32")), |
|
"edgeset_right": datasets.Sequence(datasets.Value("int32")), |
|
"edgeset_triple": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
data_paths = { |
|
"csv": Path(dl_manager.download_and_extract(_URLS["csv"])), |
|
"json": Path(dl_manager.download_and_extract(_URLS["json"])), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"csv_filepath": data_paths["csv"], |
|
"json_filepath": data_paths["json"], |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
|
|
|
|
def _generate_examples(self, csv_filepath: Path, json_filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(csv_filepath, "r", encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader(csv_file) |
|
csv_data = [row for row in csv_reader] |
|
csv_data = csv_data[1:] |
|
|
|
|
|
with open(json_filepath, "r", encoding="utf-8") as json_file: |
|
json_data = json.load(json_file) |
|
|
|
|
|
|
|
properties_desc = {"P17": "country", "P30": "continent", "P106": "occupation", "P131": "located in the administrative territorial entity", "P361": "part of", "P1376": " capital of country"} |
|
|
|
num_sample = len(csv_data) |
|
|
|
for i in range(num_sample): |
|
if self.config.schema == "source": |
|
example = { |
|
"id": str(i), |
|
"sentence": csv_data[i][0], |
|
"ent1": csv_data[i][1], |
|
"ent2": csv_data[i][2], |
|
"ent1_qcode": csv_data[i][3], |
|
"ent2_qcode": csv_data[i][4], |
|
"property": csv_data[i][5], |
|
"property_desc": properties_desc[csv_data[i][5]], |
|
"tokens": json_data[i]["tokens"], |
|
"edgeset_left": json_data[i]["edgeSet"]["left"], |
|
"edgeset_right": json_data[i]["edgeSet"]["right"], |
|
"edgeset_triple": json_data[i]["edgeSet"]["triple"], |
|
} |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
offset_entity1 = csv_data[i][0].find(csv_data[i][1]) |
|
offset_entity2 = csv_data[i][0].find(csv_data[i][2]) |
|
|
|
if (offset_entity1 == -1) or (offset_entity2 == -1): |
|
continue |
|
|
|
example = { |
|
"id": str(i), |
|
"passages": [{"id": f"passage-{i}", "type": "text", "text": [csv_data[i][0]], "offsets": [[0, len(csv_data[i][0])]]}], |
|
"entities": [ |
|
{"id": f"{i}-entity-{csv_data[i][3]}", "type": "text", "text": [csv_data[i][1]], "normalized": [{"db_name": csv_data[i][1], "db_id": csv_data[i][3]}], "offsets": [[offset_entity1, offset_entity1 + len(csv_data[i][1])]]}, |
|
{"id": f"{i}-entity-{csv_data[i][4]}", "type": "text", "text": [csv_data[i][2]], "normalized": [{"db_name": csv_data[i][2], "db_id": csv_data[i][4]}], "offsets": [[offset_entity2, offset_entity2 + len(csv_data[i][2])]]}, |
|
], |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [ |
|
{ |
|
"id": f"{i}-relation-{csv_data[i][5]}", |
|
"type": properties_desc[csv_data[i][5]], |
|
"arg1_id": f"{i}-entity-{csv_data[i][3]}", |
|
"arg2_id": f"{i}-entity-{csv_data[i][4]}", |
|
"normalized": [{"db_name": properties_desc[csv_data[i][5]], "db_id": csv_data[i][5]}], |
|
} |
|
], |
|
} |
|
|
|
yield i, example |
|
|