holylovenia
commited on
Upload code_mixed_jv_id.py with huggingface_hub
Browse files- code_mixed_jv_id.py +26 -29
code_mixed_jv_id.py
CHANGED
@@ -36,7 +36,7 @@ showed that the reason for the misclassified was that most of Indonesian
|
|
36 |
language and Javanese language consist of words that were considered as
|
37 |
positive in both Lexicon model.
|
38 |
|
39 |
-
[
|
40 |
"""
|
41 |
from pathlib import Path
|
42 |
from typing import Dict, List, Tuple
|
@@ -44,9 +44,9 @@ from typing import Dict, List, Tuple
|
|
44 |
import datasets
|
45 |
import pandas as pd
|
46 |
|
47 |
-
from
|
48 |
-
from
|
49 |
-
from
|
50 |
|
51 |
_CITATION = """\
|
52 |
@article{Tho_2021,
|
@@ -100,7 +100,7 @@ _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS, Tasks.MACHINE_TRANSLATION]
|
|
100 |
|
101 |
_SOURCE_VERSION = "1.0.0"
|
102 |
|
103 |
-
|
104 |
|
105 |
_LANGUAGES = ['jav', 'ind']
|
106 |
_LOCAL = False
|
@@ -115,35 +115,35 @@ class CodeMixedSenti(datasets.GeneratorBasedBuilder):
|
|
115 |
"""Code-mixed sentiment analysis for Indonesian and Javanese."""
|
116 |
|
117 |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
118 |
-
|
119 |
|
120 |
BUILDER_CONFIGS = [
|
121 |
-
|
122 |
name="code_mixed_jv_id_source",
|
123 |
version=SOURCE_VERSION,
|
124 |
description="code_mixed_jv_id source schema for Javanese and Indonesian",
|
125 |
schema="source",
|
126 |
subset_id="code_mixed_source",
|
127 |
),
|
128 |
-
|
129 |
-
name="
|
130 |
-
version=
|
131 |
-
description="code_mixed_jv_id
|
132 |
-
schema="
|
133 |
subset_id="code_mixed_jv",
|
134 |
),
|
135 |
-
|
136 |
-
name="
|
137 |
-
version=
|
138 |
-
description="code_mixed_jv_id
|
139 |
-
schema="
|
140 |
subset_id="code_mixed_id",
|
141 |
),
|
142 |
-
|
143 |
-
name="
|
144 |
-
version=
|
145 |
-
description="code_mixed_jv_id
|
146 |
-
schema="
|
147 |
subset_id="code_mixed_jv_id",
|
148 |
)
|
149 |
]
|
@@ -157,9 +157,9 @@ class CodeMixedSenti(datasets.GeneratorBasedBuilder):
|
|
157 |
"text_ind": datasets.Value("string"),
|
158 |
"label": datasets.Value("int32")
|
159 |
})
|
160 |
-
elif self.config.schema == "
|
161 |
features = schemas.text_features(["-1", "0", "1"])
|
162 |
-
elif self.config.schema == "
|
163 |
features = schemas.text2text_features
|
164 |
|
165 |
return datasets.DatasetInfo(description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION,)
|
@@ -182,7 +182,7 @@ class CodeMixedSenti(datasets.GeneratorBasedBuilder):
|
|
182 |
ex = {"text_jav": row.text_jav, "text_ind": row.text_ind, "label": row.label}
|
183 |
yield i, ex
|
184 |
i += 1
|
185 |
-
elif self.config.schema == "
|
186 |
prefix_length = len(_DATASETNAME)
|
187 |
start = prefix_length + 1
|
188 |
end = prefix_length + 1 + 2
|
@@ -194,12 +194,9 @@ class CodeMixedSenti(datasets.GeneratorBasedBuilder):
|
|
194 |
ex = {"id": str(i), "text": row.text, "label": str(row.label)}
|
195 |
yield i, ex
|
196 |
i += 1
|
197 |
-
elif self.config.schema == "
|
198 |
i = 0
|
199 |
for row in df.itertuples():
|
200 |
ex = {"id": str(i), "text_1": row.text_jav, "text_2": row.text_ind, "text_1_name": "jav", "text_2_name": "ind"}
|
201 |
yield i, ex
|
202 |
i += 1
|
203 |
-
|
204 |
-
if __name__ == "__main__":
|
205 |
-
datasets.load_dataset(__file__)
|
|
|
36 |
language and Javanese language consist of words that were considered as
|
37 |
positive in both Lexicon model.
|
38 |
|
39 |
+
[seacrowd_schema_name] = (text, t2t)
|
40 |
"""
|
41 |
from pathlib import Path
|
42 |
from typing import Dict, List, Tuple
|
|
|
44 |
import datasets
|
45 |
import pandas as pd
|
46 |
|
47 |
+
from seacrowd.utils import schemas
|
48 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
49 |
+
from seacrowd.utils.constants import Tasks
|
50 |
|
51 |
_CITATION = """\
|
52 |
@article{Tho_2021,
|
|
|
100 |
|
101 |
_SOURCE_VERSION = "1.0.0"
|
102 |
|
103 |
+
_SEACROWD_VERSION = "2024.06.20"
|
104 |
|
105 |
_LANGUAGES = ['jav', 'ind']
|
106 |
_LOCAL = False
|
|
|
115 |
"""Code-mixed sentiment analysis for Indonesian and Javanese."""
|
116 |
|
117 |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
118 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
119 |
|
120 |
BUILDER_CONFIGS = [
|
121 |
+
SEACrowdConfig(
|
122 |
name="code_mixed_jv_id_source",
|
123 |
version=SOURCE_VERSION,
|
124 |
description="code_mixed_jv_id source schema for Javanese and Indonesian",
|
125 |
schema="source",
|
126 |
subset_id="code_mixed_source",
|
127 |
),
|
128 |
+
SEACrowdConfig(
|
129 |
+
name="code_mixed_jv_id_jv_seacrowd_text",
|
130 |
+
version=SEACROWD_VERSION,
|
131 |
+
description="code_mixed_jv_id seacrowd_text schema for Javanese",
|
132 |
+
schema="seacrowd_text",
|
133 |
subset_id="code_mixed_jv",
|
134 |
),
|
135 |
+
SEACrowdConfig(
|
136 |
+
name="code_mixed_jv_id_id_seacrowd_text",
|
137 |
+
version=SEACROWD_VERSION,
|
138 |
+
description="code_mixed_jv_id seacrowd_text schema for Indonesian",
|
139 |
+
schema="seacrowd_text",
|
140 |
subset_id="code_mixed_id",
|
141 |
),
|
142 |
+
SEACrowdConfig(
|
143 |
+
name="code_mixed_jv_id_seacrowd_t2t",
|
144 |
+
version=SEACROWD_VERSION,
|
145 |
+
description="code_mixed_jv_id seacrowd_t2t schema for Javanese and Indonesian",
|
146 |
+
schema="seacrowd_t2t",
|
147 |
subset_id="code_mixed_jv_id",
|
148 |
)
|
149 |
]
|
|
|
157 |
"text_ind": datasets.Value("string"),
|
158 |
"label": datasets.Value("int32")
|
159 |
})
|
160 |
+
elif self.config.schema == "seacrowd_text":
|
161 |
features = schemas.text_features(["-1", "0", "1"])
|
162 |
+
elif self.config.schema == "seacrowd_t2t":
|
163 |
features = schemas.text2text_features
|
164 |
|
165 |
return datasets.DatasetInfo(description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION,)
|
|
|
182 |
ex = {"text_jav": row.text_jav, "text_ind": row.text_ind, "label": row.label}
|
183 |
yield i, ex
|
184 |
i += 1
|
185 |
+
elif self.config.schema == "seacrowd_text":
|
186 |
prefix_length = len(_DATASETNAME)
|
187 |
start = prefix_length + 1
|
188 |
end = prefix_length + 1 + 2
|
|
|
194 |
ex = {"id": str(i), "text": row.text, "label": str(row.label)}
|
195 |
yield i, ex
|
196 |
i += 1
|
197 |
+
elif self.config.schema == "seacrowd_t2t":
|
198 |
i = 0
|
199 |
for row in df.itertuples():
|
200 |
ex = {"id": str(i), "text_1": row.text_jav, "text_2": row.text_ind, "text_1_name": "jav", "text_2_name": "ind"}
|
201 |
yield i, ex
|
202 |
i += 1
|
|
|
|
|
|