from pathlib import Path from typing import Dict, List, Tuple import datasets from datasets.download.download_manager import DownloadManager from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = r""" @inproceedings{chaudhary-etal-2019-low, title = "Low-Resource Corpus Filtering Using Multilingual Sentence Embeddings", author = "Chaudhary, Vishrav and Tang, Yuqing and Guzm{\'a}n, Francisco and Schwenk, Holger and Koehn, Philipp", editor = "Bojar, Ond{\v{r}}ej and Chatterjee, Rajen and Federmann, Christian and Fishel, Mark and Graham, Yvette and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Martins, Andr{\'e} and Monz, Christof and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Post, Matt and Turchi, Marco and Verspoor, Karin", booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)", month = aug, year = "2019", address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W19-5435", doi = "10.18653/v1/W19-5435", pages = "261--266", } """ _LOCAL = False _LANGUAGES = ["ind", "jav", "sun", "tha", "vie", "zlm", "lao", "khm", "mya", "ceb"] _DATASETNAME = "cc_aligned_sent" _DESCRIPTION = """\ This dataset contains the sentence pairs extracted from CC-Aligned document pairs using similarity scores of LASER embeddings (minimum similarity 1.04, sorted based on decreasing similarity score). It misses some languages not covered by LASER. """ _HOMEPAGE = "https://www2.statmt.org/cc-aligned/" _LICENSE = Licenses.UNKNOWN.value _URL = "https://data.statmt.org/cc-aligned/sentence-aligned/" _SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" _SUBSETS = ["id_ID", "jv_ID", "su_ID", "th_TH", "vi_VN", "ms_MY", "lo_LA", "km_KH", "my_MM", "cx_PH"] class CCAlignedSentencesDataset(datasets.GeneratorBasedBuilder): """CC Aligned Sentences dataset by Chaudhary et al., (2019)""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) SEACROWD_SCHEMA_NAME = "t2t" # Add configurations for loading a dataset per language. dataset_names = sorted([f"{_DATASETNAME}_{subset}" for subset in _SUBSETS]) BUILDER_CONFIGS = [] for name in dataset_names: source_config = SEACrowdConfig( name=f"{name}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=name, ) BUILDER_CONFIGS.append(source_config) seacrowd_config = SEACrowdConfig( name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=name, ) BUILDER_CONFIGS.append(seacrowd_config) # Choose first language as default first_subset = sorted(_SUBSETS)[0] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{first_subset}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "Source_Sentence": datasets.Value("string"), "Target_Sentence": datasets.Value("string"), "LASER_similarity": datasets.Value("float64"), } ) if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": features = schemas.text_to_text.features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: """Return SplitGenerators.""" # Define some functions for parsing config and URL names def _split_at_n(text: str, n: int) -> Tuple[str, str]: """Split text on the n-th instance""" return ("_".join(text.split("_")[:n]), "_".join(text.split("_")[n:])) # Get URL. For cx_PH, the source and target languages are reversed _, subset = _split_at_n(_split_at_n(self.config.name, 5)[0], 3) (source_lang, target_lang) = (subset, "en_XX") if subset == "cx_PH" else ("en_XX", subset) url = _URL + f"{source_lang}-{target_lang}.tsv.xz" filepath = dl_manager.download_and_extract(url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": filepath, "source_lang": source_lang, "target_lang": target_lang, }, ) ] def _generate_examples(self, filepath: Path, source_lang: str, target_lang: str) -> Tuple[int, Dict]: """Yield examples as (key, example) tuples""" with open(filepath, encoding="utf-8") as file: for idx, row in enumerate(file): text_1, text_2, score = row.strip().split("\t") if self.config.schema == "source": example = { "id": idx, "Source_Sentence": text_1, "Target_Sentence": text_2, "LASER_similarity": float(score), } if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": example = { "id": idx, "text_1": text_1, "text_2": text_2, "text_1_name": source_lang, "text_2_name": target_lang, } yield idx, example