RitchieP commited on
Commit
25b264a
·
verified ·
1 Parent(s): 62eb62e

Delete Verbalex_voice.py

Browse files
Files changed (1) hide show
  1. Verbalex_voice.py +0 -134
Verbalex_voice.py DELETED
@@ -1,134 +0,0 @@
1
- import csv
2
- import os
3
-
4
- import datasets
5
- from tqdm import tqdm
6
-
7
- from VerbaLex_Voice.accents import ACCENTS
8
- from VerbaLex_Voice.release_stats import STATS
9
-
10
- _HOMEPAGE = "https://huggingface.co/datasets/RitchieP/VerbaLex_voice"
11
-
12
- _LICENSE = "https://choosealicense.com/licenses/apache-2.0/"
13
-
14
- _BASE_URL = "https://huggingface.co/datasets/RitchieP/VerbaLex_voice/tree/main"
15
-
16
- _AUDIO_URL = _BASE_URL + "audio/{accent}/{split}/{accent}_{split}.tar"
17
-
18
- _TRANSCRIPT_URL = _BASE_URL + "transcript/{accent}/{split}.tsv"
19
-
20
- _CITATION = """\
21
- """
22
-
23
-
24
- class VerbaLexVoiceConfig(datasets.BuilderConfig):
25
- def __init__(self, name, version, **kwargs):
26
- self.accent = kwargs.pop("accent", None)
27
- self.num_speakers = kwargs.pop("num_speakers", None)
28
- self.num_files = kwargs.pop("num_clips", None)
29
- description = (
30
- f"VerbaLex Voice english speech-to-text dataset in {self.accent} accent."
31
- )
32
-
33
- super(VerbaLexVoiceConfig, self).__init__(
34
- name=name,
35
- version=datasets.Version(version),
36
- description=description,
37
- **kwargs,
38
- )
39
-
40
-
41
- class VerbaLexVoiceDataset(datasets.GeneratorBasedBuilder):
42
- """
43
- VerbaLex is a dataset containing different English accents from non-native English speakers.
44
- This dataset is created directly from the L2-Arctic dataset.
45
- """
46
- BUILDER_CONFIGS = [
47
- VerbaLexVoiceConfig(
48
- name=accent,
49
- version=STATS["version"],
50
- accent=ACCENTS[accent],
51
- num_speakers=accent_stats["numOfSpeaker"],
52
- num_files=accent_stats["numOfWavFiles"]
53
- )
54
- for accent, accent_stats in STATS["accents"].items()
55
- ]
56
-
57
- DEFAULT_CONFIG_NAME = "all"
58
-
59
- def _info(self):
60
- return datasets.DatasetInfo(
61
- description=(
62
- "VerbaLex Voice is a speech dataset focusing on accented English speech."
63
- "It specifically targets speeches from speakers that is a non-native English speaker."
64
- ),
65
- features=datasets.Features(
66
- {
67
- "path": datasets.Value("string"),
68
- "accent": datasets.Value("string"),
69
- "sentence": datasets.Value("string"),
70
- "audio": datasets.Audio(sampling_rate=44_100)
71
- }
72
- ),
73
- supervised_keys=None,
74
- homepage=_HOMEPAGE,
75
- license=_LICENSE,
76
- citation=_CITATION
77
- )
78
-
79
- def _split_generators(self, dl_manager):
80
- """Returns SplitGenerators"""
81
- accent = self.config.name
82
-
83
- splits = ("train", "test")
84
- audio_urls = {}
85
- for split in splits:
86
- audio_urls[split] = _AUDIO_URL.format(accent=accent, split=split)
87
- archive_paths = dl_manager.download(audio_urls)
88
- local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
89
-
90
- meta_urls = {split: _TRANSCRIPT_URL.format(accent=accent, split=split) for split in splits}
91
- meta_paths = dl_manager.download_and_extract(meta_urls)
92
-
93
- split_names = {
94
- "train": datasets.Split.TRAIN,
95
- "test": datasets.Split.TEST
96
- }
97
- split_generators = []
98
- for split in splits:
99
- split_generators.append(
100
- datasets.SplitGenerator(
101
- name=split_names.get(split, split),
102
- gen_kwargs={
103
- "local_extracted_archive_paths": local_extracted_archive_paths.get(split),
104
- "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
105
- "meta_path": meta_paths[split]
106
- }
107
- )
108
- )
109
-
110
- return split_generators
111
-
112
- def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
113
- data_fields = list(self._info().features.keys())
114
- metadata = {}
115
- with open(meta_path, encoding="UTF-8") as f:
116
- reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
117
- for row in tqdm(reader, desc="Reading metadata..."):
118
- if not row["path"].endswith(".wav"):
119
- row["path"] += ".wav"
120
- for field in data_fields:
121
- if field not in row:
122
- row[field] = ""
123
- metadata[row["path"]] = row
124
-
125
- for i, audio_archive in enumerate(archives):
126
- for path, file in audio_archive:
127
- _, filename = os.path.split(path)
128
- if filename in metadata:
129
- result = dict(metadata[filename])
130
- path = os.path.join(local_extracted_archive_paths[i],
131
- path) if local_extracted_archive_paths else path
132
- result["audio"] = {"path": path, "bytes": file.read()}
133
- result["path"] = path
134
- yield path, result