--- configs: - config_name: default data_files: - split: train path: data/train-* - split: dev path: data/dev-* - split: test path: data/test-* - split: gen path: data/gen-* - split: train_100 path: data/train_100-* dataset_info: features: - name: input dtype: string - name: output dtype: string - name: domain dtype: string splits: - name: train num_bytes: 4363969 num_examples: 24155 - name: dev num_bytes: 549121 num_examples: 3000 - name: test num_bytes: 548111 num_examples: 3000 - name: gen num_bytes: 5721102 num_examples: 21000 - name: train_100 num_bytes: 5592847 num_examples: 39500 download_size: 5220150 dataset_size: 16775150 --- # Dataset Card for "COGS" It contains the dataset used in the paper [COGS: A Compositional Generalization Challenge Based on Semantic Interpretation.](https://aclanthology.org/2020.emnlp-main.731.pdf) It has four splits, where **gen** refers to the generalization split and **train_100** refers to the training version with 100 primitive exposure examples. You can use it by calling: ``` train_data = datasets.load_dataset("Punchwe/COGS", split="train") train100_data = datasets.load_dataset("Punchwe/COGS", split="train_100") gen_data = datasets.load_dataset("Punchwe/COGS", split="gen") ```