File size: 3,156 Bytes
b109984 2d791da b109984 2d791da b109984 2d791da b109984 2d791da b109984 2d791da b109984 2d791da b109984 2d791da b109984 2d791da b109984 2d791da b109984 2d791da b109984 2d791da b109984 2d791da b109984 2d791da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
"""WRENCH classification dataset."""
import json
import datasets
class WrenchConfig(datasets.BuilderConfig):
"""BuilderConfig for WRENCH."""
def __init__(
self,
dataset_path,
**kwargs,
):
super(WrenchConfig, self).__init__(
version=datasets.Version("1.0.0", ""), **kwargs
)
self.dataset_path = dataset_path
class Wrench(datasets.GeneratorBasedBuilder):
"""WRENCH classification dataset."""
BUILDER_CONFIGS = [
WrenchConfig(
name="imdb",
dataset_path="./classification/imdb",
),
WrenchConfig(
name="yelp",
dataset_path="./classification/yelp",
),
WrenchConfig(
name="youtube",
dataset_path="./classification/youtube",
),
WrenchConfig(
name="sms",
dataset_path="./classification/sms",
),
WrenchConfig(
name="agnews",
dataset_path="./classification/agnews",
),
WrenchConfig(
name="trec",
dataset_path="./classification/trec",
),
WrenchConfig(
name="cdr",
dataset_path="./classification/cdr",
),
WrenchConfig(
name="semeval",
dataset_path="./classification/semeval",
),
WrenchConfig(
name="chemprot",
dataset_path="./classification/chemprot",
),
]
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.Value("int8"),
"weak_labels": datasets.Sequence(datasets.Value("int8")),
}
)
)
def _split_generators(self, dl_manager):
dataset_path = self.config.dataset_path
train_path = dl_manager.download_and_extract(f"{dataset_path}/train.json")
valid_path = dl_manager.download_and_extract(f"{dataset_path}/valid.json")
test_path = dl_manager.download_and_extract(f"{dataset_path}/test.json")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}
),
]
def _generate_examples(self, filepath):
"""Generate Custom examples."""
with open(filepath, encoding="utf-8") as f:
json_data = json.load(f)
for idx in json_data:
data = json_data[idx]
text = data["data"]["text"]
weak_labels = data["weak_labels"]
label = data["label"]
yield int(idx), {
"text": text,
"label": label,
"weak_labels": weak_labels,
}
|