stsb_multi_mt / stsb_multi_mt.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.1)
433e96b
raw
history blame
7.46 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""These are different multilingual translations and the English original of the STSbenchmark dataset."""
import csv
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}
"""
_DESCRIPTION = """\
These are different multilingual translations and the English original of the STSbenchmark dataset. \
Translation has been done with deepl.com.
"""
_HOMEPAGE = "https://github.com/PhilipMay/stsb-multi-mt"
_LICENSE = "custom license - see project page"
_BASE_URL = "https://raw.githubusercontent.com/PhilipMay/stsb-multi-mt/main/data"
class StsbMultiMt(datasets.GeneratorBasedBuilder):
"""These are different multilingual translations and the English original of the STSbenchmark dataset.
Translation has been done with deepl.com.
"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="en",
version=VERSION,
description="This is the original English STS benchmark data set.",
),
datasets.BuilderConfig(
name="de",
version=VERSION,
description="This is the German STS benchmark data set.",
),
datasets.BuilderConfig(
name="es",
version=VERSION,
description="This is the Spanish STS benchmark data set.",
),
datasets.BuilderConfig(
name="fr",
version=VERSION,
description="This is the French STS benchmark data set.",
),
datasets.BuilderConfig(
name="it",
version=VERSION,
description="This is the Italian STS benchmark data set.",
),
# here seems to be an issue - see https://github.com/PhilipMay/stsb-multi-mt/issues/1
# datasets.BuilderConfig(name="ja", version=VERSION, description="This is the Japanese STS benchmark data set."),
datasets.BuilderConfig(
name="nl",
version=VERSION,
description="This is the Dutch STS benchmark data set.",
),
datasets.BuilderConfig(
name="pl",
version=VERSION,
description="This is the Polish STS benchmark data set.",
),
datasets.BuilderConfig(
name="pt",
version=VERSION,
description="This is the Portuguese STS benchmark data set.",
),
datasets.BuilderConfig(
name="ru",
version=VERSION,
description="This is the Russian STS benchmark data set.",
),
datasets.BuilderConfig(
name="zh",
version=VERSION,
description="This is the Chinese (simplified) STS benchmark data set.",
),
]
def _info(self):
features = datasets.Features(
{
"sentence1": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"similarity_score": datasets.Value("float"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": "{}/stsb-{}-train.csv".format(_BASE_URL, self.config.name),
"dev": "{}/stsb-{}-dev.csv".format(_BASE_URL, self.config.name),
"test": "{}/stsb-{}-test.csv".format(_BASE_URL, self.config.name),
}
downloaded_files = dl_manager.download(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["test"],
},
),
datasets.SplitGenerator(
name=datasets.NamedSplit("dev"),
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["dev"],
},
),
]
def _generate_examples(
self,
filepath, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
"""Yields examples as (key, example) tuples."""
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
with open(filepath, newline="", encoding="utf-8") as csvfile:
csv_dict_reader = csv.DictReader(
csvfile,
fieldnames=["sentence1", "sentence2", "similarity_score"],
dialect="excel",
)
for id_, row in enumerate(csv_dict_reader):
# do asserts
assert "sentence1" in row
assert isinstance(row["sentence1"], str)
assert len(row["sentence1"].strip()) > 0
assert "sentence2" in row
assert isinstance(row["sentence2"], str)
assert len(row["sentence2"].strip()) > 0
assert "similarity_score" in row
assert isinstance(row["similarity_score"], str)
assert len(row["similarity_score"].strip()) > 0
# convert similarity_score from str to float
row["similarity_score"] = float(row["similarity_score"])
# do more asserts
assert row["similarity_score"] >= 0.0
assert row["similarity_score"] <= 5.0
yield id_, row