--- pretty_name: Lucie Training Dataset license: cc-by-nc-sa-4.0 language: - en - fr - de - es - it - code multilinguality: - multilingual task_categories: - text-generation - text2text-generation task_ids: - language-modeling tags: - text-generation - conditional-text-generation size_categories: - n>1T viewer: true configs: - config_name: default data_files: - path: data/*/*/*/*parquet split: train - config_name: en data_files: - path: data/natural/en/*/*parquet split: train - config_name: fr data_files: - path: data/natural/fr/*/*parquet split: train - config_name: de data_files: - path: data/natural/de/*/*parquet split: train - config_name: es data_files: - path: data/natural/es/*/*parquet split: train - config_name: it data_files: - path: data/natural/it/*/*parquet split: train - config_name: de,fr data_files: - path: data/natural/de-fr/*/*.parquet split: train - config_name: es,en data_files: - path: data/natural/es-en/*/*.parquet split: train - config_name: fr,en data_files: - path: data/natural/fr-en/*/*.parquet split: train - config_name: it,en data_files: - path: data/natural/it-en/*/*.parquet split: train - config_name: natural data_files: - path: data/natural/*/*/*.parquet split: train - config_name: code data_files: - path: data/code/*/*/*parquet split: train - config_name: code-assembly data_files: - path: data/code/assembly/*/*.parquet split: train - config_name: code-c data_files: - path: data/code/c/*/*.parquet split: train - config_name: code-c# data_files: - path: data/code/c#/*/*.parquet split: train - config_name: code-c++ data_files: - path: data/code/c++/*/*.parquet split: train - config_name: code-clojure data_files: - path: data/code/clojure/*/*.parquet split: train - config_name: code-dart data_files: - path: data/code/dart/*/*.parquet split: train - config_name: code-elixir data_files: - path: data/code/elixir/*/*.parquet split: train - config_name: code-erlang data_files: - path: data/code/erlang/*/*.parquet split: train - config_name: code-fortran data_files: - path: data/code/fortran/*/*.parquet split: train - config_name: code-go data_files: - path: data/code/go/*/*.parquet split: train - config_name: code-haskell data_files: - path: data/code/haskell/*/*.parquet split: train - config_name: code-java data_files: - path: data/code/java/*/*.parquet split: train - config_name: code-javascript data_files: - path: data/code/javascript/*/*.parquet split: train - config_name: code-julia data_files: - path: data/code/julia/*/*.parquet split: train - config_name: code-kotlin data_files: - path: data/code/kotlin/*/*.parquet split: train - config_name: code-lua data_files: - path: data/code/lua/*/*.parquet split: train - config_name: code-mathematica data_files: - path: data/code/mathematica/*/*.parquet split: train - config_name: code-matlab data_files: - path: data/code/matlab/*/*.parquet split: train - config_name: code-ocaml data_files: - path: data/code/ocaml/*/*.parquet split: train - config_name: code-perl data_files: - path: data/code/perl/*/*.parquet split: train - config_name: code-php data_files: - path: data/code/php/*/*.parquet split: train - config_name: code-python data_files: - path: data/code/python/*/*.parquet split: train - config_name: code-r data_files: - path: data/code/r/*/*.parquet split: train - config_name: code-racket data_files: - path: data/code/racket/*/*.parquet split: train - config_name: code-ruby data_files: - path: data/code/ruby/*/*.parquet split: train - config_name: code-rust data_files: - path: data/code/rust/*/*.parquet split: train - config_name: code-scala data_files: - path: data/code/scala/*/*.parquet split: train - config_name: code-swift data_files: - path: data/code/swift/*/*.parquet split: train - config_name: code-tex data_files: - path: data/code/tex/*/*.parquet split: train - config_name: code-typescript data_files: - path: data/code/typescript/*/*.parquet split: train - config_name: AmendementsParlement data_files: - path: data/natural/*/AmendementsParlement/*.parquet split: train - config_name: AmericanStories data_files: - path: data/natural/*/AmericanStories/*.parquet split: train - config_name: Claire data_files: - path: data/natural/*/Claire/*.parquet split: train - config_name: Claire-en data_files: - path: data/natural/en/Claire/*.parquet split: train - config_name: Claire-fr data_files: - path: data/natural/fr/Claire/*.parquet split: train - config_name: CroissantAligned data_files: - path: data/natural/*/CroissantAligned/*.parquet split: train - config_name: DiscoursPublics data_files: - path: data/natural/*/DiscoursPublics/*.parquet split: train - config_name: Europarl data_files: - path: data/natural/*/Europarl/*.parquet split: train - config_name: Europarl-de data_files: - path: data/natural/de/Europarl/*.parquet split: train - config_name: Europarl-en data_files: - path: data/natural/en/Europarl/*.parquet split: train - config_name: Europarl-es data_files: - path: data/natural/es/Europarl/*.parquet split: train - config_name: Europarl-fr data_files: - path: data/natural/fr/Europarl/*.parquet split: train - config_name: EuroparlAligned data_files: - path: data/natural/*/EuroparlAligned/*.parquet split: train - config_name: EuroparlAligned-de,fr data_files: - path: data/natural/de-fr/EuroparlAligned/*.parquet split: train - config_name: EuroparlAligned-es,en data_files: - path: data/natural/es-en/EuroparlAligned/*.parquet split: train - config_name: EuroparlAligned-fr,en data_files: - path: data/natural/fr-en/EuroparlAligned/*.parquet split: train - config_name: EuroparlAligned-it,en data_files: - path: data/natural/it-en/EuroparlAligned/*.parquet split: train - config_name: Eurovoc data_files: - path: data/natural/*/Eurovoc/*.parquet split: train - config_name: Eurovoc-de data_files: - path: data/natural/de/Eurovoc/*.parquet split: train - config_name: Eurovoc-en data_files: - path: data/natural/en/Eurovoc/*.parquet split: train - config_name: Eurovoc-es data_files: - path: data/natural/es/Eurovoc/*.parquet split: train - config_name: Eurovoc-it data_files: - path: data/natural/it/Eurovoc/*.parquet split: train - config_name: FineWebEdu data_files: - path: data/natural/*/FineWebEdu/*.parquet split: train - config_name: GallicaMonographies data_files: - path: data/natural/*/GallicaMonographies/*.parquet split: train - config_name: GallicaPress data_files: - path: data/natural/*/GallicaPress/*.parquet split: train - config_name: Gutenberg data_files: - path: data/natural/*/Gutenberg/*.parquet split: train - config_name: Gutenberg-de data_files: - path: data/natural/de/Gutenberg/*.parquet split: train - config_name: Gutenberg-en data_files: - path: data/natural/en/Gutenberg/*.parquet split: train - config_name: Gutenberg-es data_files: - path: data/natural/es/Gutenberg/*.parquet split: train - config_name: Gutenberg-fr data_files: - path: data/natural/fr/Gutenberg/*.parquet split: train - config_name: Gutenberg-it data_files: - path: data/natural/it/Gutenberg/*.parquet split: train - config_name: HAL data_files: - path: data/natural/*/HAL/*.parquet split: train - config_name: InterventionsParlement data_files: - path: data/natural/*/InterventionsParlement/*.parquet split: train - config_name: LEGI data_files: - path: data/natural/*/LEGI/*.parquet split: train - config_name: MathPile data_files: - path: data/natural/*/MathPile/*.parquet split: train - config_name: OpenData data_files: - path: data/natural/*/OpenData/*.parquet split: train - config_name: OpenEdition data_files: - path: data/natural/*/OpenEdition/*.parquet split: train - config_name: PeS2o data_files: - path: data/natural/*/PeS2o/*.parquet split: train - config_name: Pile data_files: - path: data/natural/*/Pile/*.parquet split: train - config_name: Pile-DM_Mathematics data_files: - path: data/natural/*/Pile/*DM_Mathematics.parquet split: train - config_name: Pile-FreeLaw data_files: - path: data/natural/*/Pile/*FreeLaw.parquet split: train - config_name: Pile-NIH_ExPorter data_files: - path: data/natural/*/Pile/*NIH_ExPorter.parquet split: train - config_name: Pile-PhilPapers data_files: - path: data/natural/*/Pile/*PhilPapers.parquet split: train - config_name: Pile-StackExchange data_files: - path: data/natural/*/Pile/*StackExchange.parquet split: train - config_name: Pile-USPTO_Backgrounds data_files: - path: data/natural/*/Pile/*USPTO_Backgrounds.parquet split: train - config_name: Pile-Ubuntu_IRC data_files: - path: data/natural/*/Pile/*Ubuntu_IRC.parquet split: train - config_name: QuestionsEcritesParlement data_files: - path: data/natural/*/QuestionsEcritesParlement/*.parquet split: train - config_name: RedPajama data_files: - path: data/natural/*/RedPajama/*.parquet split: train - config_name: RedPajama-de data_files: - path: data/natural/de/RedPajama/*.parquet split: train - config_name: RedPajama-es data_files: - path: data/natural/es/RedPajama/*.parquet split: train - config_name: RedPajama-fr data_files: - path: data/natural/fr/RedPajama/*.parquet split: train - config_name: RedPajama-it data_files: - path: data/natural/it/RedPajama/*.parquet split: train - config_name: Stac data_files: - path: data/natural/*/Stac/*.parquet split: train - config_name: TheStack data_files: - path: data/code/*/TheStack/*.parquet split: train - config_name: Theses data_files: - path: data/natural/*/Theses/*.parquet split: train - config_name: Wikipedia data_files: - path: data/natural/*/Wikipedia/*.parquet split: train - config_name: Wikipedia-de data_files: - path: data/natural/de/Wikipedia/*.parquet split: train - config_name: Wikipedia-en data_files: - path: data/natural/en/Wikipedia/*.parquet split: train - config_name: Wikipedia-es data_files: - path: data/natural/es/Wikipedia/*.parquet split: train - config_name: Wikipedia-fr data_files: - path: data/natural/fr/Wikipedia/*.parquet split: train - config_name: Wikipedia-it data_files: - path: data/natural/it/Wikipedia/*.parquet split: train - config_name: Wikisource data_files: - path: data/natural/*/Wikisource/*.parquet split: train - config_name: Wiktionary data_files: - path: data/natural/*/Wiktionary/*.parquet split: train - config_name: YouTube data_files: - path: data/natural/*/YouTube/*.parquet split: train --- # Dataset Card The Lucie Training Dataset is a curated collection of text data in English, French, German, Spanish and Italian culled from a variety of sources including: web data, video subtitles, academic papers, digital books, newspapers, and magazines, some of which were processed by Optical Character Recognition (OCR). It also contains samples of diverse programming languages. The Lucie Training Dataset was used to pretrain [Lucie-7B](https://huggingface.co/OpenLLM-France/Lucie-7B), a foundation LLM with strong capabilities in French and English. Table of Contents: * [Dataset Description](#dataset-description) * [Dataset Structure](#dataset-structure) * [Dataset Composition](#dataset-composition) * [Web](#category-web) * [Newspaper](#category-newspaper) * [Technical](#category-technical) * [Book](#category-book) * [Multilingual Parallel Corpora](#category-multilingual-parallel-corpora) * [Legislative Texts](#category-legislative-texts) * [Legislative Transcripts](#category-legislative-transcripts) * [Wiki](#category-wiki) * [Math](#category-math) * [Forum](#category-forum) * [Dialogue](#category-dialogue) * [Programming](#category-programming) * [Details on Data Sources](#details-on-data-sources) * [Example use in python](#example-use-in-python) * [License](#license) * [Citation](#citation) * [Contact](#contact) ## Dataset Description This dataset was made to provide an extensive and diverse dataset for training Large Language Models (LLMs). Here are some of the principal features of the corpus: * Data mix: * The dataset contains equal amounts of French and English data -- it is in fact one of the biggest collections of French text data that has been preprocessed for LLM training -- with the aim of minimizing anglo-centric cultural biases. * German, Spanish and Italian are also represented in small amounts. * Code is also included to boost the reasoning capabilities of LLMs. * Data filtering and deduplication: * The dataset has been cleaned in an effort to remove very low-quality data. * Duplicate data samples have been removed to some extent, following best practices. * Ethics: * Special care has been taken to respect copyright laws and individual privacy. All books, newspapers, monographies, and magazines are in the public domain (which depends on the author's date of death and the country of publication). * All web data in the dataset came from sites with robots.txt files that do not forbid crawling. ### Dataset Structure The corpus contains the following information for each text sample: * `text`: the text sample itself. * `source`: an identifier for the source(s) of the text sample (`Wikipedia`, `RedPajama`, `Gutenberg`, …). The list of all sources is described in this document. * `id`: an identifier that is unique among the source. * `language`: the language of the text sample, which can be: * the ISO 639-1 code of a natural language: `en`, `fr`, `de`, `es`, or `it`; * the common name prefixed by "`code:`" of a programming language: `code:python`, `code:c++`, …; or * a list of ISO 639-1 codes separated by commas, if the text sample is multilingual: `fr,en`, `de,fr`, `es,en`, `it,en` (or in the opposite order if the languages appear in the opposite order in the text). * `url` (optional): the URL of the original text sample on the web, if available. * `title` (optional): the title of the original text sample, if available. * `author` (optional): the author of the original text sample, if available. Usually the author name in plain text, except for `Gutenberg` where it is the JSON serialized object of the author metadata. * `date` (optional): the publication date of the original text sample, if available. The text format of the source depends on the source. * `quality_signals` (optional): a list of quality signals about the text sample (that could be used for further filtering or sample weighting). It can include indicators computed by `fasttext` and `CCNet`, statistics about occurrences of characters, words, special characters, etc. This field is always a JSON serialized object. * `extra` (optional): JSON serialized extra information about the text sample. This can include metadata about the source subset, the rights, etc. Examples of metadata (except from `text`) are shown for each source in [metadata_examples.json](metadata/metadata_examples.json). ### Dataset Composition The following figure show the distribution of the dataset by language (hatch patterns) and document category (colors). ![Dataset composition](figures/fig_dataset_composition.png) The following table provides an overview of the dataset composition, broken down by source and language, sources being grouped by category. The table provides the number of documents, words, tokens, and characters for each subset.
subset | language | M docs | B words | B tokens | B chars | |
---|---|---|---|---|---|---|
TOTAL | 2186.562 | 1356.021 | 2314.862 | 8842.200 | ||
French (fr) | 653.812 | 583.687 | 928.618 | 3619.672 | RedPajama (79.8 %), GallicaPress (13.1 %), GallicaMonographies (2.71 %), HAL (1.75 %), Theses (1.51 %), OpenEdition (0.388 %), Wikipedia (0.317 %), OpenData (0.130 %), wikisource (0.0856 %), Gutenberg (0.0412 %), YouTube (0.0362 %), Claire (0.0335 %), DiscoursPublics (0.0256 %), InterventionsParlement (0.0169 %), QuestionsEcritesParlement (0.0168 %), LEGI (0.0156 %), wiktionary (0.0126 %), AmendementsParlement (0.00795 %), Europarl (0.00772 %) | |
English (en) | 554.289 | 412.202 | 611.894 | 2553.541 | FineWebEdu (76.5 %), PeS2o (10.7 %), AmericanStories (2.34 %), Pile (FreeLaw) (2.29 %), Pile (StackExchange) (1.68 %), MathPile (1.57 %), Wikipedia (1.29 %), Gutenberg (0.901 %), Pile (USPTO_Backgrounds) (0.834 %), Pile (DM_Mathematics) (0.805 %), Eurovoc (0.420 %), Pile (Ubuntu_IRC) (0.353 %), Claire (0.190 %), Pile (PhilPapers) (0.101 %), Pile (NIH_ExPorter) (0.0704 %), Europarl (0.0113 %), Stac (0.0000198 %) | |
Programming Languages (code) | 125.769 | 51.306 | 228.954 | 630.749 | JAVASCRIPT (25.6 %), JAVA (12.1 %), C (10.5 %), PHP (10.0 %), PYTHON (9.47 %), C++ (8.23 %), C# (5.84 %), GO (4.48 %), TYPESCRIPT (4.30 %), RUST (1.42 %), RUBY (1.04 %), SWIFT (0.819 %), KOTLIN (0.768 %), SCALA (0.693 %), TEX (0.658 %), LUA (0.597 %), DART (0.542 %), PERL (0.502 %), MATHEMATICA (0.488 %), ASSEMBLY (0.379 %), HASKELL (0.352 %), FORTRAN (0.341 %), JULIA (0.288 %), OCAML (0.188 %), ERLANG (0.114 %), ELIXIR (0.113 %), CLOJURE (0.0782 %), R (0.0690 %), MATLAB (0.0187 %), RACKET (0.00668 %) | |
German (de) | 165.915 | 105.609 | 206.610 | 764.779 | RedPajama (97.5 %), Wikipedia (1.68 %), Eurovoc (0.725 %), Gutenberg (0.0934 %), Europarl (0.0355 %) | |
Spanish (es) | 171.651 | 123.857 | 200.825 | 759.457 | RedPajama (98.2 %), Wikipedia (1.06 %), Eurovoc (0.703 %), Gutenberg (0.0458 %), Europarl (0.0365 %) | |
Italian (it) | 99.440 | 62.051 | 112.031 | 404.454 | RedPajama (96.8 %), Wikipedia (1.75 %), Eurovoc (1.36 %), Gutenberg (0.115 %) | |
fr-en | 410.032 | 17.016 | 25.494 | 107.658 | CroissantAligned (99.4 %), EuroparlAligned (0.561 %) | |
it-en | 1.901 | 0.100 | 0.151 | 0.638 | EuroparlAligned | |
es-en | 1.961 | 0.103 | 0.143 | 0.631 | EuroparlAligned | |
de-fr | 1.792 | 0.0908 | 0.141 | 0.621 | EuroparlAligned | |
Category: Web | ||||||
RedPajama | French (fr) | 640.770 | 477.758 | 741.023 | 2974.596 | 2023 (5.63 %), 2022 (13.4 %), 2021 (17.2 %), 2020 (15.8 %), 2019 (18.2 %), 2018 (17.1 %), 2017 (11.7 %), 2016 (0.437 %), 2015 (0.167 %), 2014 (0.284 %) |
German (de) | 162.779 | 103.078 | 201.371 | 747.631 | 2023 (23.9 %), 2022 (59.0 %), 2021 (17.1 %) | |
Spanish (es) | 169.447 | 121.751 | 197.125 | 746.984 | 2023 (23.7 %), 2022 (59.2 %), 2021 (17.1 %) | |
Italian (it) | 97.324 | 60.194 | 108.416 | 393.012 | 2023 (23.9 %), 2022 (59.0 %), 2021 (17.1 %) | |
FineWebEdu | English (en) | 421.209 | 327.453 | 467.837 | 2018.215 | 2024 (2.73 %), 2023 (18.9 %), 2022 (18.0 %), 2021 (22.3 %), 2020 (18.1 %), 2019 (20.0 %) |
Category: Newspaper | ||||||
GallicaPress | French (fr) | 3.205 | 67.496 | 121.606 | 408.882 | |
AmericanStories | English (en) | 59.420 | 8.902 | 14.313 | 50.844 | |
Category: Technical | ||||||
PeS2o | English (en) | 38.972 | 42.296 | 65.365 | 268.963 | |
HAL | French (fr) | 0.349 | 9.356 | 16.224 | 58.308 | |
Theses | French (fr) | 0.102 | 7.547 | 14.060 | 47.758 | |
Pile (USPTO_Backgrounds) | English (en) | 5.139 | 3.492 | 5.105 | 22.309 | |
OpenEdition | French (fr) | 0.939 | 2.225 | 3.604 | 14.459 | |
Pile (PhilPapers) | English (en) | 0.0308 | 0.363 | 0.618 | 2.304 | |
Pile (NIH_ExPorter) | English (en) | 0.914 | 0.288 | 0.431 | 1.979 | |
Category: Book | ||||||
GallicaMonographies | French (fr) | 0.278 | 15.106 | 25.169 | 90.456 | |
Gutenberg | English (en) | 0.0563 | 3.544 | 5.516 | 20.579 | |
French (fr) | 0.00345 | 0.227 | 0.383 | 1.392 | ||
German (de) | 0.00188 | 0.0987 | 0.193 | 0.654 | ||
Italian (it) | 0.000958 | 0.0657 | 0.129 | 0.414 | ||
Spanish (es) | 0.000735 | 0.0512 | 0.0920 | 0.303 | ||
Category: Multilingual Parallel Corpora | ||||||
CroissantAligned | fr-en | 408.029 | 16.911 | 25.351 | 107.003 | |
EuroparlAligned | it-en | 1.901 | 0.100 | 0.151 | 0.638 | |
fr-en | 2.003 | 0.105 | 0.143 | 0.655 | ||
es-en | 1.961 | 0.103 | 0.143 | 0.631 | ||
de-fr | 1.792 | 0.0908 | 0.141 | 0.621 | ||
Category: Legislative Texts | ||||||
Pile (FreeLaw) | English (en) | 3.415 | 8.204 | 14.011 | 52.580 | |
Eurovoc | English (en) | 0.272 | 1.523 | 2.571 | 9.468 | |
Italian (it) | 0.245 | 0.731 | 1.527 | 4.867 | ||
German (de) | 0.247 | 0.678 | 1.497 | 4.915 | ||
Spanish (es) | 0.246 | 0.757 | 1.411 | 4.684 | ||
OpenData | French (fr) | 1.169 | 0.755 | 1.209 | 4.638 | |
QuestionsEcritesParlement | French (fr) | 0.189 | 0.108 | 0.156 | 0.705 | |
LEGI | French (fr) | 0.621 | 0.0878 | 0.145 | 0.563 | |
AmendementsParlement | French (fr) | 0.673 | 0.0452 | 0.0738 | 0.274 | |
Category: Legislative Transcripts | ||||||
Europarl | German (de) | 0.0102 | 0.0451 | 0.0734 | 0.327 | |
Spanish (es) | 0.0103 | 0.0524 | 0.0733 | 0.325 | ||
French (fr) | 0.0103 | 0.0528 | 0.0717 | 0.339 | ||
English (en) | 0.0111 | 0.0563 | 0.0690 | 0.339 | ||
DiscoursPublics | French (fr) | 0.110 | 0.163 | 0.238 | 1.025 | |
InterventionsParlement | French (fr) | 1.832 | 0.104 | 0.157 | 0.654 | |
Category: Wiki | ||||||
Wikipedia | English (en) | 6.893 | 4.708 | 7.898 | 26.616 | |
German (de) | 2.877 | 1.709 | 3.476 | 11.252 | ||
French (fr) | 2.648 | 1.726 | 2.940 | 9.879 | ||
Spanish (es) | 1.947 | 1.245 | 2.124 | 7.161 | ||
Italian (it) | 1.870 | 1.060 | 1.959 | 6.161 | ||
wikisource | French (fr) | 0.186 | 0.523 | 0.795 | 3.080 | |
wiktionary | French (fr) | 0.650 | 0.0531 | 0.117 | 0.347 | |
Category: Math | ||||||
MathPile | English (en) | 0.737 | 3.408 | 9.637 | 27.290 | |
Pile (DM_Mathematics) | English (en) | 0.992 | 1.746 | 4.928 | 8.127 | |
Category: Forum | ||||||
Pile (StackExchange) | English (en) | 15.269 | 4.534 | 10.275 | 33.609 | |
Pile (Ubuntu_IRC) | English (en) | 0.0104 | 0.867 | 2.159 | 5.610 | |
Category: Dialogue | ||||||
Claire | English (en) | 0.949 | 0.818 | 1.161 | 4.709 | MediaSum (87.2 %), DialogStudio (10.2 %), BNC (1.46 %), OANC (0.690 %), DailyDialog (0.199 %), ICSI (0.156 %), AMI (0.144 %) |
French (fr) | 0.0393 | 0.210 | 0.311 | 1.314 | AssembleeNationale (60.1 %), Senat (24.5 %), Theatre (9.33 %), ESLO (2.84 %), ORFEO (0.704 %), SUMM (0.601 %), TCOF (0.421 %), CFPP (0.367 %), OFROM (0.320 %), PFC (0.296 %), FREDSum (0.186 %), CLAPI (0.0974 %), CID (0.0756 %), LINAGORA (0.0605 %), ACSYNT (0.0309 %), OTG (0.0200 %), Rhapsodie (0.0152 %), ParisStories (0.0134 %), UBS (0.00524 %) | |
YouTube | French (fr) | 0.0375 | 0.145 | 0.336 | 1.003 | |
Stac | English (en) | 0.0000450 | 0.0000529 | 0.000121 | 0.000327 | |
Category: Programming | ||||||
TheStack | JAVASCRIPT | 21.109 | 8.526 | 58.609 | 141.647 | |
JAVA | 20.152 | 7.421 | 27.680 | 89.297 | ||
C | 8.626 | 5.916 | 24.092 | 57.428 | ||
PHP | 15.905 | 4.865 | 22.883 | 66.844 | ||
PYTHON | 12.962 | 5.434 | 21.683 | 64.304 | ||
C++ | 6.378 | 4.584 | 18.835 | 50.892 | ||
C# | 10.839 | 3.574 | 13.381 | 46.286 | ||
GO | 4.730 | 2.735 | 10.262 | 25.738 | ||
TYPESCRIPT | 10.637 | 2.617 | 9.836 | 28.815 | ||
RUST | 1.387 | 0.872 | 3.241 | 9.529 | ||
RUBY | 3.405 | 0.646 | 2.392 | 7.139 | ||
SWIFT | 1.756 | 0.553 | 1.876 | 6.134 | ||
KOTLIN | 2.243 | 0.454 | 1.758 | 5.769 | ||
SCALA | 1.362 | 0.457 | 1.587 | 4.862 | ||
TEX | 0.398 | 0.394 | 1.507 | 3.805 | ||
LUA | 0.559 | 0.318 | 1.367 | 3.279 | ||
DART | 0.933 | 0.308 | 1.242 | 3.864 | ||
PERL | 0.392 | 0.297 | 1.149 | 2.634 | ||
MATHEMATICA | 0.0269 | 0.120 | 1.117 | 1.720 | ||
ASSEMBLY | 0.248 | 0.209 | 0.867 | 1.575 | ||
HASKELL | 0.545 | 0.307 | 0.807 | 2.364 | ||
FORTRAN | 0.165 | 0.192 | 0.780 | 1.843 | ||
JULIA | 0.299 | 0.152 | 0.660 | 1.539 | ||
OCAML | 0.160 | 0.130 | 0.430 | 1.107 | ||
ERLANG | 0.0994 | 0.0657 | 0.260 | 0.726 | ||
ELIXIR | 0.282 | 0.0731 | 0.258 | 0.737 | ||
CLOJURE | 0.126 | 0.0448 | 0.179 | 0.492 | ||
R | 0.0392 | 0.0278 | 0.158 | 0.305 | ||
MATLAB | 0.000967 | 0.00865 | 0.0427 | 0.0372 | ||
RACKET | 0.00420 | 0.00479 | 0.0153 | 0.0378 |
contact@openllm-france.fr