Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 14,604 Bytes
3c40969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df3d1cd
 
 
 
e497f10
 
 
 
71269d8
5bd858a
 
 
71269d8
5bd858a
 
 
c5ed47b
 
 
 
3c40969
 
d64e379
3c40969
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
fe24391
 
 
 
 
 
 
 
 
 
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
 
 
 
 
63adc8e
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
3c40969
 
 
 
fe24391
 
 
 
 
 
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c40969
c5ed47b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39ef121
c5ed47b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39ef121
c5ed47b
 
 
 
 
 
 
 
 
 
39ef121
c5ed47b
 
 
39ef121
c5ed47b
 
 
39ef121
c5ed47b
 
 
39ef121
c5ed47b
 
 
39ef121
c5ed47b
 
 
39ef121
c5ed47b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
---
pretty_name: Lucie Training Dataset
license: cc-by-nc-sa-4.0
language:
- en
- fr
- de
- es
- it
- code
multilinguality:
- multilingual
task_categories:
- text-generation
- text2text-generation
task_ids:
- language-modeling
tags:
- text-generation
- conditional-text-generation
size_categories:
- n>1T
viewer: true
configs:
- config_name: default
  data_files:
  - path: data/*/*/*/*parquet
    split: train
- config_name: en
  data_files:
  - path: data/natural/en/*/*parquet
    split: train
- config_name: fr
  data_files:
  - path: data/natural/fr/*/*parquet
    split: train
- config_name: de
  data_files:
  - path: data/natural/de/*/*parquet
    split: train
- config_name: es
  data_files:
  - path: data/natural/es/*/*parquet
    split: train
- config_name: it
  data_files:
  - path: data/natural/it/*/*parquet
    split: train
- config_name: de,fr
  data_files:
  - path: data/natural/de-fr/*/*.parquet
    split: train
- config_name: es,en
  data_files:
  - path: data/natural/es-en/*/*.parquet
    split: train
- config_name: fr,en
  data_files:
  - path: data/natural/fr-en/*/*.parquet
    split: train
- config_name: it,en
  data_files:
  - path: data/natural/it-en/*/*.parquet
    split: train
- config_name: natural
  data_files:
  - path: data/natural/*/*/*.parquet
    split: train
- config_name: code
  data_files:
  - path: data/code/*/*/*parquet
    split: train
- config_name: code-assembly
  data_files:
  - path: data/code/assembly/*/*.parquet
    split: train
- config_name: code-c
  data_files:
  - path: data/code/c/*/*.parquet
    split: train
- config_name: code-c#
  data_files:
  - path: data/code/c#/*/*.parquet
    split: train
- config_name: code-c++
  data_files:
  - path: data/code/c++/*/*.parquet
    split: train
- config_name: code-clojure
  data_files:
  - path: data/code/clojure/*/*.parquet
    split: train
- config_name: code-dart
  data_files:
  - path: data/code/dart/*/*.parquet
    split: train
- config_name: code-elixir
  data_files:
  - path: data/code/elixir/*/*.parquet
    split: train
- config_name: code-erlang
  data_files:
  - path: data/code/erlang/*/*.parquet
    split: train
- config_name: code-fortran
  data_files:
  - path: data/code/fortran/*/*.parquet
    split: train
- config_name: code-go
  data_files:
  - path: data/code/go/*/*.parquet
    split: train
- config_name: code-haskell
  data_files:
  - path: data/code/haskell/*/*.parquet
    split: train
- config_name: code-java
  data_files:
  - path: data/code/java/*/*.parquet
    split: train
- config_name: code-javascript
  data_files:
  - path: data/code/javascript/*/*.parquet
    split: train
- config_name: code-julia
  data_files:
  - path: data/code/julia/*/*.parquet
    split: train
- config_name: code-kotlin
  data_files:
  - path: data/code/kotlin/*/*.parquet
    split: train
- config_name: code-lua
  data_files:
  - path: data/code/lua/*/*.parquet
    split: train
- config_name: code-mathematica
  data_files:
  - path: data/code/mathematica/*/*.parquet
    split: train
- config_name: code-matlab
  data_files:
  - path: data/code/matlab/*/*.parquet
    split: train
- config_name: code-ocaml
  data_files:
  - path: data/code/ocaml/*/*.parquet
    split: train
- config_name: code-perl
  data_files:
  - path: data/code/perl/*/*.parquet
    split: train
- config_name: code-php
  data_files:
  - path: data/code/php/*/*.parquet
    split: train
- config_name: code-python
  data_files:
  - path: data/code/python/*/*.parquet
    split: train
- config_name: code-r
  data_files:
  - path: data/code/r/*/*.parquet
    split: train
- config_name: code-racket
  data_files:
  - path: data/code/racket/*/*.parquet
    split: train
- config_name: code-ruby
  data_files:
  - path: data/code/ruby/*/*.parquet
    split: train
- config_name: code-rust
  data_files:
  - path: data/code/rust/*/*.parquet
    split: train
- config_name: code-scala
  data_files:
  - path: data/code/scala/*/*.parquet
    split: train
- config_name: code-swift
  data_files:
  - path: data/code/swift/*/*.parquet
    split: train
- config_name: code-tex
  data_files:
  - path: data/code/tex/*/*.parquet
    split: train
- config_name: code-typescript
  data_files:
  - path: data/code/typescript/*/*.parquet
    split: train
- config_name: AmendementsParlement
  data_files:
  - path: data/natural/*/AmendementsParlement/*.parquet
    split: train
- config_name: AmericanStories
  data_files:
  - path: data/natural/*/AmericanStories/*.parquet
    split: train
- config_name: Claire
  data_files:
  - path: data/natural/*/Claire/*.parquet
    split: train
- config_name: Claire-en
  data_files:
  - path: data/natural/en/Claire/*.parquet
    split: train
- config_name: Claire-fr
  data_files:
  - path: data/natural/fr/Claire/*.parquet
    split: train
- config_name: CroissantAligned
  data_files:
  - path: data/natural/*/CroissantAligned/*.parquet
    split: train
- config_name: DiscoursPublics
  data_files:
  - path: data/natural/*/DiscoursPublics/*.parquet
    split: train
- config_name: Europarl
  data_files:
  - path: data/natural/*/Europarl/*.parquet
    split: train
- config_name: Europarl-de
  data_files:
  - path: data/natural/de/Europarl/*.parquet
    split: train
- config_name: Europarl-en
  data_files:
  - path: data/natural/en/Europarl/*.parquet
    split: train
- config_name: Europarl-es
  data_files:
  - path: data/natural/es/Europarl/*.parquet
    split: train
- config_name: Europarl-fr
  data_files:
  - path: data/natural/fr/Europarl/*.parquet
    split: train
- config_name: EuroparlAligned
  data_files:
  - path: data/natural/*/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-de,fr
  data_files:
  - path: data/natural/de-fr/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-es,en
  data_files:
  - path: data/natural/es-en/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-fr,en
  data_files:
  - path: data/natural/fr-en/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-it,en
  data_files:
  - path: data/natural/it-en/EuroparlAligned/*.parquet
    split: train
- config_name: Eurovoc
  data_files:
  - path: data/natural/*/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-de
  data_files:
  - path: data/natural/de/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-en
  data_files:
  - path: data/natural/en/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-es
  data_files:
  - path: data/natural/es/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-it
  data_files:
  - path: data/natural/it/Eurovoc/*.parquet
    split: train
- config_name: FineWebEdu
  data_files:
  - path: data/natural/*/FineWebEdu/*.parquet
    split: train
- config_name: GallicaMonographies
  data_files:
  - path: data/natural/*/GallicaMonographies/*.parquet
    split: train
- config_name: GallicaPress
  data_files:
  - path: data/natural/*/GallicaPress/*.parquet
    split: train
- config_name: Gutenberg
  data_files:
  - path: data/natural/*/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-de
  data_files:
  - path: data/natural/de/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-en
  data_files:
  - path: data/natural/en/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-es
  data_files:
  - path: data/natural/es/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-fr
  data_files:
  - path: data/natural/fr/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-it
  data_files:
  - path: data/natural/it/Gutenberg/*.parquet
    split: train
- config_name: HAL
  data_files:
  - path: data/natural/*/HAL/*.parquet
    split: train
- config_name: MathPile
  data_files:
  - path: data/natural/*/MathPile/*.parquet
    split: train
- config_name: OpenData
  data_files:
  - path: data/natural/*/OpenData/*.parquet
    split: train
- config_name: OpenEdition
  data_files:
  - path: data/natural/*/OpenEdition/*.parquet
    split: train
- config_name: PeS2o
  data_files:
  - path: data/natural/*/PeS2o/*.parquet
    split: train
- config_name: Persee
  data_files:
  - path: data/natural/*/Persee/*.parquet
    split: train
- config_name: RedPajama
  data_files:
  - path: data/natural/*/RedPajama/*.parquet
    split: train
- config_name: RedPajama-de
  data_files:
  - path: data/natural/de/RedPajama/*.parquet
    split: train
- config_name: RedPajama-es
  data_files:
  - path: data/natural/es/RedPajama/*.parquet
    split: train
- config_name: RedPajama-fr
  data_files:
  - path: data/natural/fr/RedPajama/*.parquet
    split: train
- config_name: RedPajama-it
  data_files:
  - path: data/natural/it/RedPajama/*.parquet
    split: train
- config_name: Stac
  data_files:
  - path: data/natural/*/Stac/*.parquet
    split: train
- config_name: TheStack
  data_files:
  - path: data/code/*/TheStack/*.parquet
    split: train
- config_name: Theses
  data_files:
  - path: data/natural/*/Theses/*.parquet
    split: train
- config_name: Wikipedia
  data_files:
  - path: data/natural/*/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-de
  data_files:
  - path: data/natural/de/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-en
  data_files:
  - path: data/natural/en/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-es
  data_files:
  - path: data/natural/es/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-fr
  data_files:
  - path: data/natural/fr/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-it
  data_files:
  - path: data/natural/it/Wikipedia/*.parquet
    split: train
- config_name: Wikisource
  data_files:
  - path: data/natural/*/Wikisource/*.parquet
    split: train
- config_name: Wiktionary
  data_files:
  - path: data/natural/*/Wiktionary/*.parquet
    split: train
- config_name: YouTube
  data_files:
  - path: data/natural/*/YouTube/*.parquet
    split: train
---

# Dataset Card

The Lucie Training Dataset is a curated collection of text data
in English, French, German, Spanish and Italian,
from the web,
video subtitles,
collections of books, newspapers, monographies, and magazines processed by Optical Character Recognition (OCR),
as well as collections of files in diverse programming languages.

It was used to pretrain [Lucie-7B](https://huggingface.co/OpenLLM-France/Lucie-7B),
a foundation LLM with strong capabilities in French and English.

## Dataset Description

This dataset was made to provide an extensive and diverse dataset for training Large Language Models (LLM),
with the following motivations in mind:
* Data mix:
    * French is as well represented as English
    (Lucie Training Dataset is one of the biggest of collection of French text data with a minimum of quality),
    to avoid that the LLM is culturally biased towards English.
    * German, Spanish and Italian are also represented to some extend,
    * Code is also included to boost the reasoning capabilities of LLM.
* Data filtering and deduplication:
    * The dataset is cleaned low-quality data
    * The dataset is cleaned from duplicates to some extend, following best practices.
* Ethics:
    * A special care was taken to respect copyright laws and the privacy of individuals.
      All books, newspapers, monographies, and magazines are in the public domain
  (which depends on the author's death date, and the country of publication).
    * There is no data from the web for which robots.txt files forbid crawling.

### Dataset Structure

The corpus contains the following information for each text sample:
* `text`: the text sample itself.
* `source`: an identifier for the source(s) of the text sample (`Wikipedia`, `RedPajama`, `Gutenberg`, …).
  The list of all sources is described in this document.
* `id`: an identifier that is unique among the source.
* `language`: the language of the text sample, which can be:
    * the ISO 639-1 code of a natural language: `en`, `fr`, `de`, `es`, or `it`;
    * the common name prefixed by "`code:`" of a programming language:  `code:python`, `code:c++`, …; or
    * a list of ISO 639-1 codes separated by commas, if the text sample is multilingual: `fr,en`, `de,fr`, `es,en`, `it,en`
     (or in the opposite order if the languages appear in the opposite order in the text).
* `url` (optional): the URL of the original text sample on the web, if available.
* `title` (optional): the title of the original text sample, if available.
* `author` (optional): the author of the original text sample, if available.
   Usually the author name in plain text, except for `Gutenberg` where it is the JSON serialized object of the author metadata.
* `date` (optional): the publication date of the original text sample, if available. The text format of the source depends on the source.
* `quality_signals` (optional): a list of quality signals about the text sample (that could be used for further filtering or sample weighting).
  It can include indicators computed by `fasttext` and `CCNet`, statistics about occurrences of characters, words, special characters, etc.
  This field is always a JSON serialized object.
* `extra` (optional): JSON serialized extra information about the text sample.
  This can include metadata about the source subset, the rights, etc.

Examples of metadata (except from `text`) are shown for each source in [metadata_examples.json](metadata_examples.json).

### Example use in python

Load the dataset using the `datasets` library:
```python
from datasets import load_dataset

kwargs = {"split": "train", "streaming": True}

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", **kwargs)
```

Several configurations are available to select a language, a source, or both, illustrated in the following examples.

Load data in French:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr", **kwargs)
```
Load data where French and English are aligned:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr,en", **kwargs)
```
Load data corresponding to files with programming languages:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code", **kwargs)
```
Load data in Python:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code:python", **kwargs)
```
Load data from Wikipedia (in available languages):
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia", **kwargs)
```
Load data from French pages of Wikipedia ([wikipedia.fr](https://www.wikipedia.fr/)):
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia-fr", **kwargs)
```