Upload 3 files
Browse files- ecm.py +207 -0
- ecm_active_track_v1.py +379 -0
- ecm_env.py +179 -0
ecm.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author(s): Jiaqi Xu
|
2 |
+
# Created on: 2020-11
|
3 |
+
|
4 |
+
"""
|
5 |
+
PSM wrapper
|
6 |
+
Refer to:
|
7 |
+
https://github.com/jhu-dvrk/dvrk-ros/blob/master/dvrk_python/src/dvrk/ecm.py
|
8 |
+
https://github.com/jhu-dvrk/dvrk-ros/blob/7b3d48ca164755ccfc88028e15baa9fbf7aa1360/dvrk_python/src/dvrk/ecm.py
|
9 |
+
https://github.com/jhu-dvrk/sawIntuitiveResearchKit/blob/master/share/kinematic/ecm.json
|
10 |
+
https://github.com/jhu-dvrk/sawIntuitiveResearchKit/blob/4a8b4817ee7404b3183dfba269c0efe5885b41c2/share/arm/ecm-straight.json
|
11 |
+
"""
|
12 |
+
import os
|
13 |
+
import numpy as np
|
14 |
+
import pybullet as p
|
15 |
+
|
16 |
+
from surrol.robots.arm import Arm
|
17 |
+
from surrol.const import ASSET_DIR_PATH
|
18 |
+
from surrol.utils.pybullet_utils import (
|
19 |
+
get_joint_positions,
|
20 |
+
get_link_pose,
|
21 |
+
render_image
|
22 |
+
)
|
23 |
+
|
24 |
+
# Rendering width and height
|
25 |
+
RENDER_HEIGHT = 256
|
26 |
+
RENDER_WIDTH = 256
|
27 |
+
FoV = 60
|
28 |
+
|
29 |
+
LINKS = (
|
30 |
+
'ecm_base_link', 'ecm_yaw_link', 'ecm_pitch_end_link', # -1, 0, 1
|
31 |
+
'ecm_main_insertion_link', 'ecm_tool_link', # 2, 3
|
32 |
+
'ecm_end_link', # 4
|
33 |
+
'ecm_tip_link', # 5
|
34 |
+
'ecm_pitch_front_link', # 6
|
35 |
+
'ecm_pitch_bottom_link', 'ecm_pitch_top_link', # 7, 8
|
36 |
+
'ecm_pitch_back_link', # 9
|
37 |
+
'ecm_remote_center_link', # 10
|
38 |
+
)
|
39 |
+
|
40 |
+
# tooltip-offset; refer to .json
|
41 |
+
tool_T_tip = np.array([[0.0, 1.0, 0.0, 0.0],
|
42 |
+
[-1.0, 0.0, 0.0, 0.0],
|
43 |
+
[0.0, 0.0, 1.0, 0.0],
|
44 |
+
[0.0, 0.0, 0.0, 1.0]])
|
45 |
+
|
46 |
+
# Joint limits. No limits in the .json. TODO: dVRK config modified
|
47 |
+
TOOL_JOINT_LIMIT = {
|
48 |
+
'lower': np.deg2rad([-90.0, -45.0, 0.0, -np.inf]), # not sure about the last joint
|
49 |
+
'upper': np.deg2rad([ 90.0, 66.4, 254.0, np.inf]),
|
50 |
+
}
|
51 |
+
TOOL_JOINT_LIMIT['lower'][2] = -0.01 # allow small tolerance
|
52 |
+
TOOL_JOINT_LIMIT['upper'][2] = 0.254 # prismatic joint (m); not sure, from ambf
|
53 |
+
# [-1.57079633, -0.78539816, 0. , -1.57079633]
|
54 |
+
# [ 1.57079633, 1.15889862, 0.254, 1.57079633]
|
55 |
+
|
56 |
+
|
57 |
+
class Ecm(Arm):
|
58 |
+
NAME = 'ECM'
|
59 |
+
URDF_PATH = os.path.join(ASSET_DIR_PATH, 'ecm/ecm.urdf')
|
60 |
+
DoF = 4 # 4-dof arm
|
61 |
+
JOINT_TYPES = ('R', 'R', 'P', 'R')
|
62 |
+
EEF_LINK_INDEX = 4 # EEF link index, one redundant joint for inverse kinematics
|
63 |
+
TIP_LINK_INDEX = 5 # redundant joint for easier camera matrix computation
|
64 |
+
RCM_LINK_INDEX = 10 # RCM link index
|
65 |
+
# D-H parameters
|
66 |
+
A = np.array([0.0, 0.0, 0.0, 0.0])
|
67 |
+
ALPHA = np.array([np.pi / 2, -np.pi / 2, np.pi / 2, 0.0])
|
68 |
+
D = np.array([0.0, 0.0, -0.3822, 0.3829])
|
69 |
+
THETA = np.array([np.pi / 2, -np.pi / 2, 0.0, 0.0])
|
70 |
+
|
71 |
+
def __init__(self, pos=(0., 0., 1.), orn=(0., 0., 0., 1.),
|
72 |
+
scaling=1.):
|
73 |
+
super(Ecm, self).__init__(self.URDF_PATH, pos, orn,
|
74 |
+
TOOL_JOINT_LIMIT, tool_T_tip, scaling)
|
75 |
+
|
76 |
+
# camera control related parameters
|
77 |
+
self.view_matrix = None
|
78 |
+
self.proj_matrix = None
|
79 |
+
self._homo_delta = np.zeros((2, 1))
|
80 |
+
self._wz = 0
|
81 |
+
|
82 |
+
# b: rcm, e: eef, c: camera
|
83 |
+
pos_eef, orn_eef = get_link_pose(self.body, self.EEF_LINK_INDEX)
|
84 |
+
pos_cam, orn_cam = get_link_pose(self.body, self.TIP_LINK_INDEX)
|
85 |
+
self._tip_offset = np.linalg.norm(np.array(pos_eef) - np.array(pos_cam)) # TODO
|
86 |
+
wRe = np.array(p.getMatrixFromQuaternion(orn_eef)).reshape((3, 3))
|
87 |
+
wRc = np.array(p.getMatrixFromQuaternion(orn_cam)).reshape((3, 3))
|
88 |
+
self._wRc0 = wRc.copy() # initial rotation matrix
|
89 |
+
self._eRc = np.matmul(wRe.T, wRc)
|
90 |
+
|
91 |
+
def _get_joint_positions_all(self, abs_input):
|
92 |
+
""" With the consideration of parallel mechanism constraints and other redundant joints.
|
93 |
+
"""
|
94 |
+
positions = get_joint_positions(self.body, self.joints)
|
95 |
+
joint_positions = [
|
96 |
+
abs_input[0], abs_input[1], # 0, 1
|
97 |
+
abs_input[2] * self.scaling, abs_input[3], # 2, 3
|
98 |
+
positions[4], positions[5], # 4 (0.0), 5 (0.0)
|
99 |
+
abs_input[1], # 6
|
100 |
+
-abs_input[1], -abs_input[1], # 7, 8
|
101 |
+
abs_input[1], # 9
|
102 |
+
positions[10], # 10 (0.0)
|
103 |
+
]
|
104 |
+
return joint_positions
|
105 |
+
|
106 |
+
def cVc_to_dq(self, cVc: np.ndarray) -> np.ndarray:
|
107 |
+
"""
|
108 |
+
convert the camera velocity in its own frame (cVc) into the joint velocity q_dot
|
109 |
+
"""
|
110 |
+
cVc = cVc.reshape((3, 1))
|
111 |
+
|
112 |
+
# restrict the step size, need tune
|
113 |
+
if np.abs(cVc).max() > 0.01:
|
114 |
+
cVc = cVc / np.abs(cVc).max() * 0.01
|
115 |
+
|
116 |
+
# Forward kinematics
|
117 |
+
q = self.get_current_joint_position()
|
118 |
+
bRe = self.robot.fkine(q).R # use rtb instead of PyBullet, no tool_tip_offset
|
119 |
+
_, orn_cam = get_link_pose(self.body, self.TIP_LINK_INDEX)
|
120 |
+
wRc = np.array(p.getMatrixFromQuaternion(orn_cam)).reshape((3, 3))
|
121 |
+
|
122 |
+
# Rotation
|
123 |
+
R1, R2 = self._wRc0, wRc
|
124 |
+
x = R1[0, 0] * R2[1, 0] - R1[1, 0] * R2[0, 0] + R1[0, 1] * R2[1, 1] - R1[1, 1] * R2[0, 1]
|
125 |
+
y = R1[0, 0] * R2[1, 1] - R1[1, 0] * R2[0, 1] - R1[0, 1] * R2[1, 0] + R1[1, 1] * R2[0, 0]
|
126 |
+
dz = np.arctan(x / y)
|
127 |
+
k1, k2 = 25.0, 0.1
|
128 |
+
self._wz = k1 * dz * np.exp(-k2 * np.linalg.norm(self._homo_delta))
|
129 |
+
# print(' -> x: {:.4f}, y: {:.4f}, dz: {:.4f}, wz: {:.4f}'.format(x, y, dz, self._wz))
|
130 |
+
|
131 |
+
# Pseudo Solution
|
132 |
+
d = self._tip_offset
|
133 |
+
Jd = np.matmul(self._eRc,
|
134 |
+
np.array([[0, 0, d, 0],
|
135 |
+
[0, -d, 0, 0],
|
136 |
+
[1, 0, 0, 0]]))
|
137 |
+
Je = np.matmul(self._eRc,
|
138 |
+
np.array([[0, 1, 0, 0],
|
139 |
+
[0, 0, 1, 0],
|
140 |
+
[0, 0, 0, 1]]))
|
141 |
+
|
142 |
+
eVe4 = np.dot(np.linalg.pinv(Jd), cVc) \
|
143 |
+
+ np.dot(np.dot((np.eye(4) - np.dot(np.linalg.pinv(Jd), Jd)), np.linalg.pinv(Je)),
|
144 |
+
np.array([[0], [0], [self._wz]]))
|
145 |
+
eVe = np.zeros((6, 1))
|
146 |
+
eVe[2: 6] = eVe4[0: 4]
|
147 |
+
Q = np.zeros((6, 6))
|
148 |
+
Q[0: 3, 0: 3] = - bRe
|
149 |
+
Q[3: 6, 3: 6] = - bRe
|
150 |
+
bVe = np.dot(Q, eVe)
|
151 |
+
|
152 |
+
# Compute the Jacobian matrix
|
153 |
+
bJe = self.get_jacobian_spatial()
|
154 |
+
dq = np.dot(np.linalg.pinv(bJe), bVe)
|
155 |
+
# print(" -> cVc: {}, q: {}, dq: {}".format(list(np.round(cVc.flatten(), 4)), q, list(dq.flatten())))
|
156 |
+
return dq.flatten()
|
157 |
+
|
158 |
+
def render_image(self, width=RENDER_WIDTH, height=RENDER_HEIGHT):
|
159 |
+
pos_eef, orn_eef = get_link_pose(self.body, self.EEF_LINK_INDEX)
|
160 |
+
pos_tip = get_link_pose(self.body, self.TIP_LINK_INDEX)[0]
|
161 |
+
mat_eef = np.array(p.getMatrixFromQuaternion(orn_eef)).reshape((3, 3))
|
162 |
+
|
163 |
+
# TODO: need to check the up vector
|
164 |
+
self.view_matrix = p.computeViewMatrix(cameraEyePosition=pos_eef,
|
165 |
+
cameraTargetPosition=pos_tip,
|
166 |
+
cameraUpVector=mat_eef[:, 0])
|
167 |
+
self.proj_matrix = p.computeProjectionMatrixFOV(fov=FoV,
|
168 |
+
aspect=float(width) / height,
|
169 |
+
nearVal=0.01,
|
170 |
+
farVal=10.0)
|
171 |
+
|
172 |
+
rgb_array, mask, depth = render_image(width, height,
|
173 |
+
self.view_matrix, self.proj_matrix)
|
174 |
+
return rgb_array, mask, depth
|
175 |
+
|
176 |
+
def get_centroid_proj(self, pos) -> np.ndarray:
|
177 |
+
"""
|
178 |
+
Compute the object position in the camera NDC space.
|
179 |
+
Refer to OpenGL.
|
180 |
+
:param pos: object position in the world frame.
|
181 |
+
"""
|
182 |
+
assert len(pos) in (3, 4)
|
183 |
+
if len(pos) == 3:
|
184 |
+
# homogeneous coordinates: (x, y, z) -> (x, y, z, w)
|
185 |
+
pos_obj = np.ones((4, 1))
|
186 |
+
pos_obj[: 3, 0] = pos
|
187 |
+
else:
|
188 |
+
pos_obj = np.array(pos).reshape((4, 1))
|
189 |
+
|
190 |
+
view_matrix = np.array(self.view_matrix).reshape(4, 4).T
|
191 |
+
proj_matrix = np.array(self.proj_matrix).reshape(4, 4).T
|
192 |
+
# pos in the camera frame
|
193 |
+
pos_cam = np.dot(proj_matrix, np.dot(view_matrix, pos_obj))
|
194 |
+
pos_cam /= pos_cam[3, 0]
|
195 |
+
return np.array([pos_cam[0][0], - pos_cam[1][0]]) # be consistent with get_centroid
|
196 |
+
|
197 |
+
@property
|
198 |
+
def homo_delta(self):
|
199 |
+
return self._homo_delta
|
200 |
+
|
201 |
+
@homo_delta.setter
|
202 |
+
def homo_delta(self, val: np.ndarray):
|
203 |
+
self._homo_delta = val
|
204 |
+
|
205 |
+
@property
|
206 |
+
def wz(self):
|
207 |
+
return self._wz
|
ecm_active_track_v1.py
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
|
4 |
+
import pybullet as p
|
5 |
+
from surrol.tasks.ecm_env import EcmEnv, goal_distance
|
6 |
+
from surrol.utils.pybullet_utils import (
|
7 |
+
get_body_pose,
|
8 |
+
)
|
9 |
+
import random
|
10 |
+
import cv2
|
11 |
+
import pickle
|
12 |
+
from surrol.utils.robotics import (
|
13 |
+
get_euler_from_matrix,
|
14 |
+
get_matrix_from_euler
|
15 |
+
)
|
16 |
+
import torch
|
17 |
+
from surrol.utils.utils import RGB_COLOR_255, Boundary, Trajectory, get_centroid
|
18 |
+
from surrol.robots.ecm import RENDER_HEIGHT, RENDER_WIDTH, FoV
|
19 |
+
from surrol.const import ASSET_DIR_PATH
|
20 |
+
import numpy as np
|
21 |
+
from surrol.robots.psm import Psm1, Psm2
|
22 |
+
import sys
|
23 |
+
sys.path.append('/home/kejianshi/Desktop/Surgical_Robot/science_robotics/stateregress_back')
|
24 |
+
sys.path.append('/home/kejianshi/Desktop/Surgical_Robot/science_robotics/stateregress_back/utils')
|
25 |
+
from general_utils import AttrDict
|
26 |
+
sys.path.append('/home/kejianshi/Desktop/Surgical_Robot/science_robotics/ar_surrol/surrol_datagen/tasks')
|
27 |
+
from depth_anything.dpt import DepthAnything
|
28 |
+
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
|
29 |
+
|
30 |
+
from vmodel import vismodel
|
31 |
+
from config import opts
|
32 |
+
|
33 |
+
class ActiveTrack(EcmEnv):
|
34 |
+
"""
|
35 |
+
Active track is not a GoalEnv since the environment changes internally.
|
36 |
+
The reward is shaped.
|
37 |
+
"""
|
38 |
+
ACTION_MODE = 'cVc'
|
39 |
+
# RCM_ACTION_MODE = 'yaw'
|
40 |
+
QPOS_ECM = (0, 0, 0.02, 0)
|
41 |
+
WORKSPACE_LIMITS = ((-0.3, 0.6), (-0.4, 0.4), (0.05, 0.05))
|
42 |
+
|
43 |
+
CUBE_NUMBER = 18
|
44 |
+
|
45 |
+
def __init__(self, render_mode=None):
|
46 |
+
# to control the step
|
47 |
+
self._step = 0
|
48 |
+
self.counter=0
|
49 |
+
self.img_list={}
|
50 |
+
super(ActiveTrack, self).__init__(render_mode)
|
51 |
+
|
52 |
+
def step(self, action: np.ndarray):
|
53 |
+
obs, reward, done, info = super().step(action)
|
54 |
+
centroid = obs['observation'][-3: -1]
|
55 |
+
if not (-1.2 < centroid[0] < 1.1 and -1.1 < centroid[1] < 1.1):
|
56 |
+
# early stop if out of view
|
57 |
+
done = True
|
58 |
+
info['achieved_goal'] = centroid
|
59 |
+
return obs, reward, done, info
|
60 |
+
|
61 |
+
def compute_reward(self, achieved_goal: np.ndarray, desired_goal: np.ndarray, info):
|
62 |
+
""" Dense reward."""
|
63 |
+
centroid, wz = achieved_goal, self.ecm.wz
|
64 |
+
d = goal_distance(centroid, desired_goal) / 2
|
65 |
+
reward = 1 - (d + np.linalg.norm(wz) * 0.1) # maximum reward is 1, important for baseline DDPG
|
66 |
+
return reward
|
67 |
+
|
68 |
+
def _env_setup(self):
|
69 |
+
super(ActiveTrack, self)._env_setup()
|
70 |
+
opts.device='cuda:0'
|
71 |
+
self.v_model=vismodel(opts)
|
72 |
+
ckpt=torch.load(opts.ckpt_dir, map_location=opts.device)
|
73 |
+
self.v_model.load_state_dict(ckpt['state_dict'])
|
74 |
+
self.v_model.to(opts.device)
|
75 |
+
self.v_model.eval()
|
76 |
+
|
77 |
+
self.use_camera = True
|
78 |
+
|
79 |
+
# robot
|
80 |
+
self.ecm.reset_joint(self.QPOS_ECM)
|
81 |
+
pos_x = random.uniform(0.18, 0.24)
|
82 |
+
pos_y = random.uniform(0.21, 0.24)
|
83 |
+
pos_z = random.uniform(0.5, 0.6)
|
84 |
+
left_right = random.choice([-1, 1])
|
85 |
+
|
86 |
+
self.POSE_PSM1 = ((pos_x, left_right*pos_y, pos_z), (0, 0, -(90+ left_right*20 ) / 180 * np.pi)) #(x:0.18-0.25, y:0.21-0.24, z:0.5)
|
87 |
+
self.QPOS_PSM1 = (0, 0, 0.10, 0, 0, 0)
|
88 |
+
self.PSM_WORLSPACE_LIMITS = ((0.18+0.45,0.18+0.55), (0.24-0.29,0.24-0.19), (0.5-0.1774,0.5-0.1074))
|
89 |
+
self.PSM_WORLSPACE_LIMITS = np.asarray(self.PSM_WORLSPACE_LIMITS) \
|
90 |
+
+ np.array([0., 0., 0.0102]).reshape((3, 1))
|
91 |
+
# trajectory
|
92 |
+
traj = Trajectory(self.PSM_WORLSPACE_LIMITS, seed=None)
|
93 |
+
self.traj = traj
|
94 |
+
self.traj.set_step(self._step)
|
95 |
+
self.psm1 = Psm1(self.POSE_PSM1[0], p.getQuaternionFromEuler(self.POSE_PSM1[1]),
|
96 |
+
scaling=self.SCALING)
|
97 |
+
if left_right == 1:
|
98 |
+
self.psm1.move_joint([0.4516922970194888, -0.11590085534517788, 0.1920614431341014, -0.275713630305575, -0.025332969748983816, -0.44957632598600145])
|
99 |
+
else:
|
100 |
+
self.psm1.move_joint([0.4516922970194888, -0.11590085534517788, 0.1920614431341014, -0.275713630305575, -0.025332969748983816, -0.44957632598600145])
|
101 |
+
# target cube
|
102 |
+
init_psm_Pose = self.psm1.get_current_position(frame='world')
|
103 |
+
# print(init_psm_Pose[:3, 3])
|
104 |
+
# exit()
|
105 |
+
b = Boundary(self.PSM_WORLSPACE_LIMITS)
|
106 |
+
x, y = self.traj.step()
|
107 |
+
obj_id = p.loadURDF(os.path.join(ASSET_DIR_PATH, 'cube/cube.urdf'),
|
108 |
+
(init_psm_Pose[0, 3], init_psm_Pose[1, 3], init_psm_Pose[2, 3]),
|
109 |
+
p.getQuaternionFromEuler(np.random.uniform(np.deg2rad([0, 0, -90]),
|
110 |
+
np.deg2rad([0, 0, 90]))),
|
111 |
+
globalScaling=0.001 * self.SCALING)
|
112 |
+
# print('psm_eef:', self.psm1.get_joint_number())
|
113 |
+
color = RGB_COLOR_255[0]
|
114 |
+
p.changeVisualShape(obj_id, -1,
|
115 |
+
rgbaColor=(color[0] / 255, color[1] / 255, color[2] / 255, 0),
|
116 |
+
specularColor=(0.1, 0.1, 0.1))
|
117 |
+
self.obj_ids['fixed'].append(obj_id) # 0 (target)
|
118 |
+
self.obj_id = obj_id
|
119 |
+
b.add(obj_id, sample=False, min_distance=0.12)
|
120 |
+
# self._cid = p.createConstraint(obj_id, -1, -1, -1,
|
121 |
+
# p.JOINT_FIXED, [0, 0, 0], [0, 0, 0], [x, y, 0.05 * self.SCALING])
|
122 |
+
self._cid = p.createConstraint(
|
123 |
+
parentBodyUniqueId=self.psm1.body,
|
124 |
+
parentLinkIndex=5,
|
125 |
+
childBodyUniqueId=self.obj_id,
|
126 |
+
childLinkIndex=-1,
|
127 |
+
jointType=p.JOINT_FIXED,
|
128 |
+
jointAxis=[0, 0, 0],
|
129 |
+
parentFramePosition=[0, 0, 0],
|
130 |
+
childFramePosition=[0, 0, 0]
|
131 |
+
)
|
132 |
+
|
133 |
+
|
134 |
+
# '''
|
135 |
+
# Set up initial env
|
136 |
+
# '''
|
137 |
+
# self.psm1_eul = np.array(p.getEulerFromQuaternion(
|
138 |
+
# self.psm1.pose_rcm2world(self.psm1.get_current_position(), 'tuple')[1])) # in the world frame
|
139 |
+
|
140 |
+
# # robot
|
141 |
+
# #self.psm1_eul = np.array(p.getEulerFromQuaternion(
|
142 |
+
# # self.psm1.pose_rcm2world(self.psm1.get_current_position(), 'tuple')[1])) # in the world frame
|
143 |
+
|
144 |
+
# if self.RCM_ACTION_MODE == 'yaw':
|
145 |
+
# #self.psm1_eul = np.array([np.deg2rad(-90), 0., self.psm1_eul[2]])
|
146 |
+
# '''
|
147 |
+
# # RCM init
|
148 |
+
# #eul=np.array([np.deg2rad(-90), 0., 0.])
|
149 |
+
# print(self.psm1.wTr)
|
150 |
+
# print(self.psm1.tool_T_tip)
|
151 |
+
# init_pose=self.psm1.get_current_position()
|
152 |
+
|
153 |
+
# eul=np.array([0, 0.,np.deg2rad(-50)])
|
154 |
+
# rcm_eul=get_matrix_from_euler(eul)
|
155 |
+
# init_pose[:3,:3]=rcm_eul
|
156 |
+
|
157 |
+
# rcm_pose=self.psm1.pose_world2rcm(init_pose)
|
158 |
+
# rcm_eul=get_euler_from_matrix(rcm_pose[:3,:3])
|
159 |
+
# print('from [0, 0.,np.deg2rad(-50)] to ',rcm_eul)
|
160 |
+
# #exit()
|
161 |
+
# eul=np.array([0, 0.,np.deg2rad(-90)])
|
162 |
+
# rcm_eul=get_matrix_from_euler(eul)
|
163 |
+
# init_pose[:3,:3]=rcm_eul
|
164 |
+
|
165 |
+
# rcm_pose=self.psm1.pose_world2rcm(init_pose)
|
166 |
+
# rcm_eul=get_euler_from_matrix(rcm_pose[:3,:3])
|
167 |
+
# print('from [0, 0.,np.deg2rad(-90)] to ',rcm_eul)
|
168 |
+
|
169 |
+
# m=np.array([[ 0.93969262 ,-0.34202014 , 0. , 1.21313615],
|
170 |
+
# [ 0.34202014 , 0.93969262 , 0. ,-2.25649898],
|
171 |
+
# [ 0. , 0. , 1. ,-4.25550013],
|
172 |
+
# [ 0. , 0. , 0. , 1. ]])
|
173 |
+
# #print(m.shape)
|
174 |
+
|
175 |
+
# m=get_euler_from_matrix(m[:3,:3])
|
176 |
+
# print('m1: ',m)
|
177 |
+
|
178 |
+
# m=np.array([[ 0. ,-0.93969262 ,-0.34202014 , 1.21313615],
|
179 |
+
# [ 0. ,-0.34202014 , 0.93969262 ,-2.25649898],
|
180 |
+
# [-1. , 0. , 0. ,-4.25550013],
|
181 |
+
# [ 0. , 0. , 0. , 1. ],])
|
182 |
+
# m=get_euler_from_matrix(m[:3,:3])
|
183 |
+
# print('m2: ',m)
|
184 |
+
# exit()
|
185 |
+
# '''
|
186 |
+
# # RCM init
|
187 |
+
# eul=np.array([np.deg2rad(-90), 0., 0.])
|
188 |
+
# eul= get_matrix_from_euler(eul)
|
189 |
+
# init_pose=self.psm1.get_current_position()
|
190 |
+
# self.rcm_init_eul=np.array(get_euler_from_matrix(init_pose[:3, :3]))
|
191 |
+
# init_pose[:3,:3]=eul
|
192 |
+
# rcm_pose=self.psm1.pose_world2rcm_no_tip(init_pose)
|
193 |
+
# rcm_eul=get_euler_from_matrix(rcm_pose[:3,:3])
|
194 |
+
# #print('rcm eul: ',rcm_eul)
|
195 |
+
# #exit()
|
196 |
+
# self.rcm_init_eul[0]=rcm_eul[0]
|
197 |
+
# self.rcm_init_eul[1]=rcm_eul[1]
|
198 |
+
# print(self.rcm_init_eul)
|
199 |
+
# #exit()
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
# elif self.RCM_ACTION_MODE == 'pitch':
|
206 |
+
# self.psm1_eul = np.array([np.deg2rad(0), self.psm1_eul[1], np.deg2rad(-90)])
|
207 |
+
# else:
|
208 |
+
# raise NotImplementedError
|
209 |
+
# self.psm2 = None
|
210 |
+
# self._contact_constraint = None
|
211 |
+
# self._contact_approx = False
|
212 |
+
# other cubes
|
213 |
+
# b.set_boundary(self.workspace_limits + np.array([[-0.2, 0], [0, 0], [0, 0]]))
|
214 |
+
# for i in range(self.CUBE_NUMBER):
|
215 |
+
# obj_id = p.loadURDF(os.path.join(ASSET_DIR_PATH, 'cube/cube.urdf'),
|
216 |
+
# (0, 0, 0.05), (0, 0, 0, 1),
|
217 |
+
# globalScaling=0.8 * self.SCALING)
|
218 |
+
# color = RGB_COLOR_255[1 + i // 2]
|
219 |
+
# p.changeVisualShape(obj_id, -1,
|
220 |
+
# rgbaColor=(color[0] / 255, color[1] / 255, color[2] / 255, 1),
|
221 |
+
# specularColor=(0.1, 0.1, 0.1))
|
222 |
+
# # p.changeDynamics(obj_id, -1, mass=0.01)
|
223 |
+
# b.add(obj_id, min_distance=0.12)
|
224 |
+
|
225 |
+
# def _get_obs(self) -> np.ndarray:
|
226 |
+
# robot_state = self._get_robot_state()
|
227 |
+
# # may need to modify
|
228 |
+
# rgb_array, mask, depth = self.ecm.render_image()
|
229 |
+
# in_view, centroids = get_centroid(mask, self.obj_id)
|
230 |
+
|
231 |
+
# if not in_view:
|
232 |
+
# # out of view; differ when the object is on the boundary.
|
233 |
+
# pos, _ = get_body_pose(self.obj_id)
|
234 |
+
# centroids = self.ecm.get_centroid_proj(pos)
|
235 |
+
# # print(" -> Out of view! {}".format(np.round(centroids, 4)))
|
236 |
+
|
237 |
+
# observation = np.concatenate([
|
238 |
+
# robot_state, np.array(in_view).astype(np.float).ravel(),
|
239 |
+
# centroids.ravel(), np.array(self.ecm.wz).ravel() # achieved_goal.copy(),
|
240 |
+
# ])
|
241 |
+
# return observation
|
242 |
+
def _get_obs(self) -> dict:
|
243 |
+
robot_state = self._get_robot_state()
|
244 |
+
|
245 |
+
render_obs,seg, depth=self.ecm.render_image()
|
246 |
+
#cv2.imwrite('/research/d1/rshr/arlin/data/debug/depth_noise_debug/img.png',cv2.cvtColor(render_obs, cv2.COLOR_BGR2RGB))
|
247 |
+
#plt.imsave('/research/d1/rshr/arlin/data/debug/depth_noise_debug/img2.png',render_obs)
|
248 |
+
#print('depth max: ',np.max(depth))
|
249 |
+
#exit()
|
250 |
+
render_obs=cv2.resize(render_obs,(320,240))
|
251 |
+
|
252 |
+
self.counter+=1
|
253 |
+
#print(render_obs[0][0])
|
254 |
+
#exit()
|
255 |
+
#seg=np.array(seg==6).astype(int)
|
256 |
+
|
257 |
+
seg=np.array((seg==6 )| (seg==1)).astype(int)
|
258 |
+
#seg=np.array(seg==1).astype(int)
|
259 |
+
#seg=np.resize(seg,(320,240))
|
260 |
+
|
261 |
+
#plt.imsave('/research/d1/rshr/arlin/data/debug/depth_noise_debug/depth.png',depth)
|
262 |
+
#exit()
|
263 |
+
seg = cv2.resize(seg, (320,240), interpolation =cv2.INTER_NEAREST)
|
264 |
+
#plt.imsave('/research/d1/rshr/arlin/data/debug/seg_debug/noise_{}/seg.png'.format(self.curr_intensity),seg)
|
265 |
+
#exit()
|
266 |
+
depth = cv2.resize(depth, (320,240), interpolation =cv2.INTER_NEAREST)
|
267 |
+
#print(np.max(depth))
|
268 |
+
#depth = cv2.resize(depth, (320,240),interpolation=cv2.INTER_LANCZOS4)
|
269 |
+
|
270 |
+
|
271 |
+
#image=cv2.cvtColor(render_obs, cv2.COLOR_BGR2RGB) / 255.0
|
272 |
+
#plt.imsave('/home/student/code/regress_data7/seg/seg_{}.png'.format(self.counter),seg)
|
273 |
+
#image = self.transform({'image': image})['image']
|
274 |
+
#image=torch.from_numpy(image).to("cuda:0").float()
|
275 |
+
|
276 |
+
# test depth noise
|
277 |
+
|
278 |
+
#if np.random.randn()<0.5:
|
279 |
+
# instensity=np.random.randint(3,15)/100
|
280 |
+
#instensity=0.1
|
281 |
+
# depth = add_gaussian_noise(depth, instensity)
|
282 |
+
'''
|
283 |
+
if self.counter==10:
|
284 |
+
cv2.imwrite('/research/d1/rshr/arlin/data/debug/depth_noise_debug/gaussian/img.png',cv2.cvtColor(render_obs, cv2.COLOR_BGR2RGB))
|
285 |
+
plt.imsave('/research/d1/rshr/arlin/data/debug/depth_noise_debug/gaussian/depth.png',depth)
|
286 |
+
for i in [0.01,0.05,0.1,0.15,0.2]:
|
287 |
+
noisy_depth_map = add_random_noise(depth, i)
|
288 |
+
plt.imsave('/research/d1/rshr/arlin/data/debug/depth_noise_debug/gaussian/noise_{}.png'.format(i),noisy_depth_map)
|
289 |
+
|
290 |
+
exit()
|
291 |
+
'''
|
292 |
+
|
293 |
+
#noisy_segmentation_map = add_noise_to_segmentation(seg, self.seg_noise_intensity)
|
294 |
+
#noisy_depth_map = add_gaussian_noise(depth, self.curr_intensity)
|
295 |
+
#if self.counter==10:
|
296 |
+
# plt.imsave('/research/d1/rshr/arlin/data/debug/seg_debug/noise_{}/img.png'.format(self.curr_intensity),render_obs)
|
297 |
+
# plt.imsave('/research/d1/rshr/arlin/data/debug/seg_debug/noise_{}/seg.png'.format(self.curr_intensity),seg)
|
298 |
+
# plt.imsave('/research/d1/rshr/arlin/data/debug/seg_debug/noise_{}/noise_seg.png'.format(self.curr_intensity),noisy_segmentation_map)
|
299 |
+
|
300 |
+
seg=torch.from_numpy(seg).to("cuda:0").float()
|
301 |
+
depth=torch.from_numpy(depth).to("cuda:0").float()
|
302 |
+
|
303 |
+
|
304 |
+
with torch.no_grad():
|
305 |
+
v_output=self.v_model.get_obs(seg.unsqueeze(0), depth.unsqueeze(0))[0]#.cpu().data().numpy()
|
306 |
+
#print(v_output.shape)
|
307 |
+
v_output=v_output.cpu().numpy()
|
308 |
+
|
309 |
+
achieved_goal = np.array([
|
310 |
+
v_output[0], v_output[1], self.ecm.wz
|
311 |
+
])
|
312 |
+
|
313 |
+
observation = np.concatenate([
|
314 |
+
robot_state, np.array([0.0]).astype(np.float).ravel(),
|
315 |
+
v_output.ravel(), np.array(self.ecm.wz).ravel() # achieved_goal.copy(),
|
316 |
+
])
|
317 |
+
obs = {
|
318 |
+
'observation': observation.copy(),
|
319 |
+
'achieved_goal': achieved_goal.copy(),
|
320 |
+
'desired_goal': np.array([0., 0., 0.]).copy()
|
321 |
+
}
|
322 |
+
return obs
|
323 |
+
|
324 |
+
|
325 |
+
def _sample_goal(self) -> np.ndarray:
|
326 |
+
""" Samples a new goal and returns it.
|
327 |
+
"""
|
328 |
+
goal = np.array([0., 0.])
|
329 |
+
return goal.copy()
|
330 |
+
|
331 |
+
def _step_callback(self):
|
332 |
+
""" Move the target along the trajectory
|
333 |
+
"""
|
334 |
+
for _ in range(10):
|
335 |
+
x, y = self.traj.step()
|
336 |
+
self._step = self.traj.get_step()
|
337 |
+
current_PSM_position = self.psm1.get_current_position(frame='world')
|
338 |
+
new_PSM_position = current_PSM_position.copy()
|
339 |
+
|
340 |
+
new_PSM_position[0, 3] =x
|
341 |
+
new_PSM_position[1, 3] =y
|
342 |
+
new_PSM_position = self.psm1.pose_world2rcm(new_PSM_position)
|
343 |
+
self.psm1.move(new_PSM_position)
|
344 |
+
# pivot = [x, y, 0.05 * self.SCALING]
|
345 |
+
# p.changeConstraint(self._cid, pivot, maxForce=50)
|
346 |
+
p.stepSimulation()
|
347 |
+
|
348 |
+
def get_oracle_action(self, obs) -> np.ndarray:
|
349 |
+
"""
|
350 |
+
Define a human expert strategy
|
351 |
+
"""
|
352 |
+
centroid = obs['observation'][-3: -1]
|
353 |
+
cam_u = centroid[0] * RENDER_WIDTH
|
354 |
+
cam_v = centroid[1] * RENDER_HEIGHT
|
355 |
+
self.ecm.homo_delta = np.array([cam_u, cam_v]).reshape((2, 1))
|
356 |
+
if np.linalg.norm(self.ecm.homo_delta) < 8 and np.linalg.norm(self.ecm.wz) < 0.1:
|
357 |
+
# e difference is small enough
|
358 |
+
action = np.zeros(3)
|
359 |
+
else:
|
360 |
+
# print("Pixel error: {:.4f}".format(np.linalg.norm(self.ecm.homo_delta)))
|
361 |
+
# controller
|
362 |
+
fov = np.deg2rad(FoV)
|
363 |
+
fx = (RENDER_WIDTH / 2) / np.tan(fov / 2)
|
364 |
+
fy = (RENDER_HEIGHT / 2) / np.tan(fov / 2) # TODO: not sure
|
365 |
+
cz = 1.0
|
366 |
+
Lmatrix = np.array([[-fx / cz, 0., cam_u / cz],
|
367 |
+
[0., -fy / cz, cam_v / cz]])
|
368 |
+
action = 0.5 * np.dot(np.linalg.pinv(Lmatrix), self.ecm.homo_delta).flatten() / 0.01
|
369 |
+
if np.abs(action).max() > 1:
|
370 |
+
action /= np.abs(action).max()
|
371 |
+
return action
|
372 |
+
|
373 |
+
|
374 |
+
if __name__ == "__main__":
|
375 |
+
env = ActiveTrack(render_mode='human') # create one process and corresponding env
|
376 |
+
|
377 |
+
env.test(horizon=200)
|
378 |
+
env.close()
|
379 |
+
time.sleep(2)
|
ecm_env.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pybullet as p
|
3 |
+
from surrol.gym.surrol_env import SurRoLEnv, RENDER_HEIGHT
|
4 |
+
from surrol.robots.ecm import Ecm
|
5 |
+
from surrol.utils.pybullet_utils import (
|
6 |
+
get_link_pose,
|
7 |
+
reset_camera
|
8 |
+
)
|
9 |
+
from surrol.utils.robotics import get_pose_2d_from_matrix
|
10 |
+
|
11 |
+
|
12 |
+
def goal_distance(goal_a, goal_b):
|
13 |
+
assert goal_a.shape == goal_b.shape
|
14 |
+
return np.linalg.norm(goal_a - goal_b, axis=-1)
|
15 |
+
|
16 |
+
|
17 |
+
class EcmEnv(SurRoLEnv):
|
18 |
+
"""
|
19 |
+
Single arm env using ECM (active_track is not a GoalEnv)
|
20 |
+
Refer to Gym fetch
|
21 |
+
https://github.com/openai/gym/blob/master/gym/envs/robotics/fetch_env.py
|
22 |
+
ravens
|
23 |
+
https://github.com/google-research/ravens/blob/master/ravens/environments/environment.py
|
24 |
+
"""
|
25 |
+
ACTION_SIZE = 3 # (dx, dy, dz) or cVc or droll (1)
|
26 |
+
ACTION_MODE = 'cVc'
|
27 |
+
DISTANCE_THRESHOLD = 0.005
|
28 |
+
POSE_ECM = ((0.15, 0.0, 0.7524), (0, 30 / 180 * np.pi, 0))
|
29 |
+
QPOS_ECM = (0, 0.6, 0.04, 0)
|
30 |
+
WORKSPACE_LIMITS = ((0.45, 0.55), (-0.05, 0.05), (0.60, 0.70))
|
31 |
+
SCALING = 1.
|
32 |
+
|
33 |
+
def __init__(self, render_mode: str = None, cid = -1):
|
34 |
+
# workspace
|
35 |
+
self.workspace_limits = np.asarray(self.WORKSPACE_LIMITS)
|
36 |
+
self.workspace_limits *= self.SCALING
|
37 |
+
|
38 |
+
# camera
|
39 |
+
self.use_camera = False
|
40 |
+
|
41 |
+
# has_object
|
42 |
+
self.has_object = False
|
43 |
+
self.obj_id = None
|
44 |
+
|
45 |
+
super(EcmEnv, self).__init__(render_mode, cid)
|
46 |
+
|
47 |
+
# change duration
|
48 |
+
self._duration = 0.1
|
49 |
+
|
50 |
+
# distance_threshold
|
51 |
+
self.distance_threshold = self.DISTANCE_THRESHOLD * self.SCALING
|
52 |
+
|
53 |
+
# render related setting
|
54 |
+
self._view_matrix = p.computeViewMatrixFromYawPitchRoll(
|
55 |
+
cameraTargetPosition=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING),
|
56 |
+
distance=1.80 * self.SCALING,
|
57 |
+
yaw=150,
|
58 |
+
pitch=-30,
|
59 |
+
roll=0,
|
60 |
+
upAxisIndex=2
|
61 |
+
)
|
62 |
+
|
63 |
+
def render(self, mode='rgb_array'):
|
64 |
+
# TODO: check how to disable specular color when using EGL renderer
|
65 |
+
if mode != "rgb_array":
|
66 |
+
return np.array([])
|
67 |
+
rgb_array = super().render(mode)
|
68 |
+
if self.use_camera:
|
69 |
+
rgb_cam, _ = self.ecm.render_image(RENDER_HEIGHT, RENDER_HEIGHT)
|
70 |
+
rgb_array = np.concatenate((rgb_array, rgb_cam), axis=1)
|
71 |
+
return rgb_array
|
72 |
+
|
73 |
+
def compute_reward(self, achieved_goal: np.ndarray, desired_goal: np.ndarray, info):
|
74 |
+
""" Sparse reward. """
|
75 |
+
# d = goal_distance(achieved_goal, desired_goal)
|
76 |
+
# return - (d > self.distance_threshold).astype(np.float32)
|
77 |
+
return self._is_success(achieved_goal, desired_goal).astype(np.float32) - 1.
|
78 |
+
|
79 |
+
def _env_setup(self):
|
80 |
+
assert self.ACTION_MODE in ('cVc', 'dmove', 'droll')
|
81 |
+
# camera
|
82 |
+
if self._render_mode == 'human':
|
83 |
+
reset_camera(yaw=150.0, pitch=-30.0, dist=1.50 * self.SCALING,
|
84 |
+
target=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING))
|
85 |
+
|
86 |
+
# robot
|
87 |
+
self.ecm = Ecm(self.POSE_ECM[0], p.getQuaternionFromEuler(self.POSE_ECM[1]),
|
88 |
+
scaling=self.SCALING)
|
89 |
+
|
90 |
+
pass # need to implement based on every task
|
91 |
+
# self.obj_ids
|
92 |
+
|
93 |
+
def _get_robot_state(self) -> np.ndarray:
|
94 |
+
# TODO
|
95 |
+
# robot state: eef pose in the ECM coordinate
|
96 |
+
pose_rcm = get_pose_2d_from_matrix(self.ecm.get_current_position())
|
97 |
+
return np.concatenate([
|
98 |
+
np.array(pose_rcm[0]), np.array(p.getEulerFromQuaternion(pose_rcm[1]))
|
99 |
+
])
|
100 |
+
|
101 |
+
def _get_obs(self) -> dict:
|
102 |
+
robot_state = self._get_robot_state()
|
103 |
+
# may need to modify
|
104 |
+
if self.has_object:
|
105 |
+
pos, _ = get_link_pose(self.obj_id, -1)
|
106 |
+
object_pos = np.array(pos)
|
107 |
+
else:
|
108 |
+
object_pos = np.zeros(0)
|
109 |
+
|
110 |
+
if self.has_object:
|
111 |
+
achieved_goal = object_pos.copy()
|
112 |
+
else:
|
113 |
+
achieved_goal = np.array(get_link_pose(self.ecm.body, self.ecm.EEF_LINK_INDEX)[0]) # eef position
|
114 |
+
|
115 |
+
observation = np.concatenate([
|
116 |
+
robot_state, object_pos.ravel(), # achieved_goal.copy(),
|
117 |
+
])
|
118 |
+
obs = {
|
119 |
+
'observation': observation.copy(),
|
120 |
+
'achieved_goal': achieved_goal.copy(),
|
121 |
+
'desired_goal': self.goal.copy()
|
122 |
+
}
|
123 |
+
return obs
|
124 |
+
|
125 |
+
def _set_action(self, action: np.ndarray):
|
126 |
+
"""
|
127 |
+
delta_position (3) and delta_theta (1); in world coordinate
|
128 |
+
"""
|
129 |
+
# print('action: ', action)
|
130 |
+
assert len(action) == self.ACTION_SIZE
|
131 |
+
action = action.copy() # ensure that we don't change the action outside of this scope
|
132 |
+
if self.ACTION_MODE == 'cVc':
|
133 |
+
# hyper-parameters are sensitive; need to tune
|
134 |
+
# if np.linalg.norm(action) > 1:
|
135 |
+
# action /= np.linalg.norm(action)
|
136 |
+
action *= 0.01 * self.SCALING # velocity (HeadPitch, HeadYaw), limit maximum change in velocity
|
137 |
+
dq = 0.05 * self.ecm.cVc_to_dq(action) # scaled
|
138 |
+
result = self.ecm.dmove_joint(dq)
|
139 |
+
if result is False:
|
140 |
+
return False
|
141 |
+
else:
|
142 |
+
return True
|
143 |
+
elif self.ACTION_MODE == 'dmove':
|
144 |
+
# Incremental motion in cartesian space in the base frame
|
145 |
+
action *= 0.01 * self.SCALING
|
146 |
+
pose_rcm = self.ecm.get_current_position()
|
147 |
+
pose_rcm[:3, 3] += action
|
148 |
+
pos, _ = self.ecm.pose_rcm2world(pose_rcm, 'tuple')
|
149 |
+
joint_positions = self.ecm.inverse_kinematics((pos, None), self.ecm.EEF_LINK_INDEX) # do not consider orn
|
150 |
+
self.ecm.move_joint(joint_positions[:self.ecm.DoF])
|
151 |
+
elif self.ACTION_MODE == 'droll':
|
152 |
+
# change the roll angle
|
153 |
+
action *= np.deg2rad(3)
|
154 |
+
self.ecm.dmove_joint_one(action[0], 3)
|
155 |
+
else:
|
156 |
+
raise NotImplementedError
|
157 |
+
|
158 |
+
def _is_success(self, achieved_goal, desired_goal):
|
159 |
+
""" Indicates whether or not the achieved goal successfully achieved the desired goal.
|
160 |
+
"""
|
161 |
+
d = goal_distance(achieved_goal, desired_goal)
|
162 |
+
return (d < self.distance_threshold).astype(np.float32)
|
163 |
+
|
164 |
+
def _sample_goal(self) -> np.ndarray:
|
165 |
+
""" Samples a new goal and returns it.
|
166 |
+
"""
|
167 |
+
raise NotImplementedError
|
168 |
+
|
169 |
+
@property
|
170 |
+
def action_size(self):
|
171 |
+
return self.ACTION_SIZE
|
172 |
+
|
173 |
+
def get_oracle_action(self, obs) -> np.ndarray:
|
174 |
+
"""
|
175 |
+
Define a scripted oracle strategy
|
176 |
+
"""
|
177 |
+
raise NotImplementedError
|
178 |
+
|
179 |
+
|