|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import gc |
|
import hashlib |
|
import itertools |
|
import logging |
|
import math |
|
import os |
|
import re |
|
import shutil |
|
import warnings |
|
from pathlib import Path |
|
from typing import List, Optional |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
import torch.utils.checkpoint |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from peft import LoraConfig |
|
from peft.utils import get_peft_model_state_dict |
|
from PIL import Image |
|
from PIL.ImageOps import exif_transpose |
|
from safetensors.torch import load_file, save_file |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, PretrainedConfig |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
DPMSolverMultistepScheduler, |
|
StableDiffusionXLPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.loaders import LoraLoaderMixin |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import compute_snr |
|
from diffusers.utils import ( |
|
check_min_version, |
|
convert_all_state_dict_to_peft, |
|
convert_state_dict_to_diffusers, |
|
convert_state_dict_to_kohya, |
|
is_wandb_available, |
|
) |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
|
|
|
|
check_min_version("0.25.0.dev0") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def save_model_card( |
|
repo_id: str, |
|
images=None, |
|
base_model=str, |
|
train_text_encoder=False, |
|
train_text_encoder_ti=False, |
|
token_abstraction_dict=None, |
|
instance_prompt=str, |
|
validation_prompt=str, |
|
repo_folder=None, |
|
vae_path=None, |
|
): |
|
img_str = "widget:\n" |
|
for i, image in enumerate(images): |
|
image.save(os.path.join(repo_folder, f"image_{i}.png")) |
|
img_str += f""" |
|
- text: '{validation_prompt if validation_prompt else ' ' }' |
|
output: |
|
url: |
|
"image_{i}.png" |
|
""" |
|
if not images: |
|
img_str += f""" |
|
- text: '{instance_prompt}' |
|
""" |
|
embeddings_filename = f"{repo_folder}_emb" |
|
instance_prompt_webui = re.sub(r"<s\d+>", "", re.sub(r"<s\d+>", embeddings_filename, instance_prompt, count=1)) |
|
ti_keys = ", ".join(f'"{match}"' for match in re.findall(r"<s\d+>", instance_prompt)) |
|
if instance_prompt_webui != embeddings_filename: |
|
instance_prompt_sentence = f"For example, `{instance_prompt_webui}`" |
|
else: |
|
instance_prompt_sentence = "" |
|
trigger_str = f"You should use {instance_prompt} to trigger the image generation." |
|
diffusers_imports_pivotal = "" |
|
diffusers_example_pivotal = "" |
|
webui_example_pivotal = "" |
|
if train_text_encoder_ti: |
|
trigger_str = ( |
|
"To trigger image generation of trained concept(or concepts) replace each concept identifier " |
|
"in you prompt with the new inserted tokens:\n" |
|
) |
|
diffusers_imports_pivotal = """from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
""" |
|
diffusers_example_pivotal = f"""embedding_path = hf_hub_download(repo_id='{repo_id}', filename='{embeddings_filename}.safetensors' repo_type="model") |
|
state_dict = load_file(embedding_path) |
|
pipeline.load_textual_inversion(state_dict["clip_l"], token=[{ti_keys}], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) |
|
pipeline.load_textual_inversion(state_dict["clip_g"], token=[{ti_keys}], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) |
|
""" |
|
webui_example_pivotal = f"""- *Embeddings*: download **[`{embeddings_filename}.safetensors` here 💾](/{repo_id}/blob/main/{embeddings_filename}.safetensors)**. |
|
- Place it on it on your `embeddings` folder |
|
- Use it by adding `{embeddings_filename}` to your prompt. {instance_prompt_sentence} |
|
(you need both the LoRA and the embeddings as they were trained together for this LoRA) |
|
""" |
|
if token_abstraction_dict: |
|
for key, value in token_abstraction_dict.items(): |
|
tokens = "".join(value) |
|
trigger_str += f""" |
|
to trigger concept `{key}` → use `{tokens}` in your prompt \n |
|
""" |
|
|
|
yaml = f"""--- |
|
tags: |
|
- stable-diffusion-xl |
|
- stable-diffusion-xl-diffusers |
|
- text-to-image |
|
- diffusers |
|
- lora |
|
- template:sd-lora |
|
{img_str} |
|
base_model: {base_model} |
|
instance_prompt: {instance_prompt} |
|
license: openrail++ |
|
--- |
|
""" |
|
|
|
model_card = f""" |
|
# SDXL LoRA DreamBooth - {repo_id} |
|
|
|
<Gallery /> |
|
|
|
## Model description |
|
|
|
### These are {repo_id} LoRA adaption weights for {base_model}. |
|
|
|
## Download model |
|
|
|
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke |
|
|
|
- **LoRA**: download **[`{repo_folder}.safetensors` here 💾](/{repo_id}/blob/main/{repo_folder}.safetensors)**. |
|
- Place it on your `models/Lora` folder. |
|
- On AUTOMATIC1111, load the LoRA by adding `<lora:{repo_folder}:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). |
|
{webui_example_pivotal} |
|
|
|
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) |
|
|
|
```py |
|
from diffusers import AutoPipelineForText2Image |
|
import torch |
|
{diffusers_imports_pivotal} |
|
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') |
|
pipeline.load_lora_weights('{repo_id}', weight_name='pytorch_lora_weights.safetensors') |
|
{diffusers_example_pivotal} |
|
image = pipeline('{validation_prompt if validation_prompt else instance_prompt}').images[0] |
|
``` |
|
|
|
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) |
|
|
|
## Trigger words |
|
|
|
{trigger_str} |
|
|
|
## Details |
|
All [Files & versions](/{repo_id}/tree/main). |
|
|
|
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). |
|
|
|
LoRA for the text encoder was enabled. {train_text_encoder}. |
|
|
|
Pivotal tuning was enabled: {train_text_encoder_ti}. |
|
|
|
Special VAE used for training: {vae_path}. |
|
|
|
""" |
|
with open(os.path.join(repo_folder, "README.md"), "w") as f: |
|
f.write(yaml + model_card) |
|
|
|
|
|
def import_model_class_from_model_name_or_path( |
|
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" |
|
): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, subfolder=subfolder, revision=revision |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "CLIPTextModelWithProjection": |
|
from transformers import CLIPTextModelWithProjection |
|
|
|
return CLIPTextModelWithProjection |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand.To load the custom captions, the training set directory needs to follow the structure of a " |
|
"datasets ImageFolder, containing both the images and the corresponding caption for each image. see: " |
|
"https://huggingface.co/docs/datasets/image_dataset for more information" |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset. In some cases, a dataset may have more than one configuration (for example " |
|
"if it contains different subsets of data within, and you only wish to load a specific subset - in that case specify the desired configuration using --dataset_config_name. Leave as " |
|
"None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--instance_data_dir", |
|
type=str, |
|
default=None, |
|
help="A path to local folder containing the training data of instance images. Specify this arg instead of " |
|
"--dataset_name if you wish to train using a local folder without custom captions. If you wish to train with custom captions please specify " |
|
"--dataset_name instead.", |
|
) |
|
|
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
|
|
parser.add_argument( |
|
"--image_column", |
|
type=str, |
|
default="image", |
|
help="The column of the dataset containing the target image. By " |
|
"default, the standard Image Dataset maps out 'file_name' " |
|
"to 'image'.", |
|
) |
|
parser.add_argument( |
|
"--caption_column", |
|
type=str, |
|
default=None, |
|
help="The column of the dataset containing the instance prompt for each image", |
|
) |
|
|
|
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") |
|
|
|
parser.add_argument( |
|
"--class_data_dir", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="A folder containing the training data of class images.", |
|
) |
|
parser.add_argument( |
|
"--instance_prompt", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", |
|
) |
|
parser.add_argument( |
|
"--token_abstraction", |
|
type=str, |
|
default="TOK", |
|
help="identifier specifying the instance(or instances) as used in instance_prompt, validation prompt, " |
|
"captions - e.g. TOK. To use multiple identifiers, please specify them in a comma seperated string - e.g. " |
|
"'TOK,TOK2,TOK3' etc.", |
|
) |
|
|
|
parser.add_argument( |
|
"--num_new_tokens_per_abstraction", |
|
type=int, |
|
default=2, |
|
help="number of new tokens inserted to the tokenizers per token_abstraction identifier when " |
|
"--train_text_encoder_ti = True. By default, each --token_abstraction (e.g. TOK) is mapped to 2 new " |
|
"tokens - <si><si+1> ", |
|
) |
|
|
|
parser.add_argument( |
|
"--class_prompt", |
|
type=str, |
|
default=None, |
|
help="The prompt to specify images in the same class as provided instance images.", |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
help="A prompt that is used during validation to verify that the model is learning.", |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=4, |
|
help="Number of images that should be generated during validation with `validation_prompt`.", |
|
) |
|
parser.add_argument( |
|
"--validation_epochs", |
|
type=int, |
|
default=50, |
|
help=( |
|
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--with_prior_preservation", |
|
default=False, |
|
action="store_true", |
|
help="Flag to add prior preservation loss.", |
|
) |
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") |
|
parser.add_argument( |
|
"--num_class_images", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Minimal class images for prior preservation loss. If there are not enough images already present in" |
|
" class_data_dir, additional images will be sampled with class_prompt." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="lora-dreambooth-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=1024, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--crops_coords_top_left_h", |
|
type=int, |
|
default=0, |
|
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), |
|
) |
|
parser.add_argument( |
|
"--crops_coords_top_left_w", |
|
type=int, |
|
default=0, |
|
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_text_encoder", |
|
action="store_true", |
|
help="Whether to train the text encoder. If set, the text encoder should be float32 precision.", |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" |
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
|
|
parser.add_argument( |
|
"--text_encoder_lr", |
|
type=float, |
|
default=5e-6, |
|
help="Text encoder learning rate to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--snr_gamma", |
|
type=float, |
|
default=None, |
|
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " |
|
"More details here: https://arxiv.org/abs/2303.09556.", |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--train_text_encoder_ti", |
|
action="store_true", |
|
help=("Whether to use textual inversion"), |
|
) |
|
|
|
parser.add_argument( |
|
"--train_text_encoder_ti_frac", |
|
type=float, |
|
default=0.5, |
|
help=("The percentage of epochs to perform textual inversion"), |
|
) |
|
|
|
parser.add_argument( |
|
"--train_text_encoder_frac", |
|
type=float, |
|
default=1.0, |
|
help=("The percentage of epochs to perform text encoder tuning"), |
|
) |
|
|
|
parser.add_argument( |
|
"--optimizer", |
|
type=str, |
|
default="adamW", |
|
help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'), |
|
) |
|
|
|
parser.add_argument( |
|
"--use_8bit_adam", |
|
action="store_true", |
|
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", |
|
) |
|
|
|
parser.add_argument( |
|
"--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers." |
|
) |
|
parser.add_argument( |
|
"--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers." |
|
) |
|
parser.add_argument( |
|
"--prodigy_beta3", |
|
type=float, |
|
default=None, |
|
help="coefficients for computing the Prodidy stepsize using running averages. If set to None, " |
|
"uses the value of square root of beta2. Ignored if optimizer is adamW", |
|
) |
|
parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") |
|
parser.add_argument( |
|
"--adam_weight_decay_text_encoder", type=float, default=None, help="Weight decay to use for text_encoder" |
|
) |
|
|
|
parser.add_argument( |
|
"--adam_epsilon", |
|
type=float, |
|
default=1e-08, |
|
help="Epsilon value for the Adam optimizer and Prodigy optimizers.", |
|
) |
|
|
|
parser.add_argument( |
|
"--prodigy_use_bias_correction", |
|
type=bool, |
|
default=True, |
|
help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW", |
|
) |
|
parser.add_argument( |
|
"--prodigy_safeguard_warmup", |
|
type=bool, |
|
default=True, |
|
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. " |
|
"Ignored if optimizer is adamW", |
|
) |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--prior_generation_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp32", "fp16", "bf16"], |
|
help=( |
|
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument( |
|
"--rank", |
|
type=int, |
|
default=4, |
|
help=("The dimension of the LoRA update matrices."), |
|
) |
|
parser.add_argument( |
|
"--cache_latents", |
|
action="store_true", |
|
default=False, |
|
help="Cache the VAE latents", |
|
) |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
if args.dataset_name is None and args.instance_data_dir is None: |
|
raise ValueError("Specify either `--dataset_name` or `--instance_data_dir`") |
|
|
|
if args.dataset_name is not None and args.instance_data_dir is not None: |
|
raise ValueError("Specify only one of `--dataset_name` or `--instance_data_dir`") |
|
|
|
if args.train_text_encoder and args.train_text_encoder_ti: |
|
raise ValueError( |
|
"Specify only one of `--train_text_encoder` or `--train_text_encoder_ti. " |
|
"For full LoRA text encoder training check --train_text_encoder, for textual " |
|
"inversion training check `--train_text_encoder_ti`" |
|
) |
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
if args.with_prior_preservation: |
|
if args.class_data_dir is None: |
|
raise ValueError("You must specify a data directory for class images.") |
|
if args.class_prompt is None: |
|
raise ValueError("You must specify prompt for class images.") |
|
else: |
|
|
|
if args.class_data_dir is not None: |
|
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") |
|
if args.class_prompt is not None: |
|
warnings.warn("You need not use --class_prompt without --with_prior_preservation.") |
|
|
|
return args |
|
|
|
|
|
|
|
class TokenEmbeddingsHandler: |
|
def __init__(self, text_encoders, tokenizers): |
|
self.text_encoders = text_encoders |
|
self.tokenizers = tokenizers |
|
|
|
self.train_ids: Optional[torch.Tensor] = None |
|
self.inserting_toks: Optional[List[str]] = None |
|
self.embeddings_settings = {} |
|
|
|
def initialize_new_tokens(self, inserting_toks: List[str]): |
|
idx = 0 |
|
for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders): |
|
assert isinstance(inserting_toks, list), "inserting_toks should be a list of strings." |
|
assert all( |
|
isinstance(tok, str) for tok in inserting_toks |
|
), "All elements in inserting_toks should be strings." |
|
|
|
self.inserting_toks = inserting_toks |
|
special_tokens_dict = {"additional_special_tokens": self.inserting_toks} |
|
tokenizer.add_special_tokens(special_tokens_dict) |
|
text_encoder.resize_token_embeddings(len(tokenizer)) |
|
|
|
self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks) |
|
|
|
|
|
std_token_embedding = text_encoder.text_model.embeddings.token_embedding.weight.data.std() |
|
|
|
print(f"{idx} text encodedr's std_token_embedding: {std_token_embedding}") |
|
|
|
text_encoder.text_model.embeddings.token_embedding.weight.data[self.train_ids] = ( |
|
torch.randn(len(self.train_ids), text_encoder.text_model.config.hidden_size) |
|
.to(device=self.device) |
|
.to(dtype=self.dtype) |
|
* std_token_embedding |
|
) |
|
self.embeddings_settings[ |
|
f"original_embeddings_{idx}" |
|
] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone() |
|
self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding |
|
|
|
inu = torch.ones((len(tokenizer),), dtype=torch.bool) |
|
inu[self.train_ids] = False |
|
|
|
self.embeddings_settings[f"index_no_updates_{idx}"] = inu |
|
|
|
print(self.embeddings_settings[f"index_no_updates_{idx}"].shape) |
|
|
|
idx += 1 |
|
|
|
def save_embeddings(self, file_path: str): |
|
assert self.train_ids is not None, "Initialize new tokens before saving embeddings." |
|
tensors = {} |
|
|
|
idx_to_text_encoder_name = {0: "clip_l", 1: "clip_g"} |
|
for idx, text_encoder in enumerate(self.text_encoders): |
|
assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[0] == len( |
|
self.tokenizers[0] |
|
), "Tokenizers should be the same." |
|
new_token_embeddings = text_encoder.text_model.embeddings.token_embedding.weight.data[self.train_ids] |
|
|
|
|
|
|
|
|
|
tensors[idx_to_text_encoder_name[idx]] = new_token_embeddings |
|
|
|
|
|
save_file(tensors, file_path) |
|
|
|
@property |
|
def dtype(self): |
|
return self.text_encoders[0].dtype |
|
|
|
@property |
|
def device(self): |
|
return self.text_encoders[0].device |
|
|
|
@torch.no_grad() |
|
def retract_embeddings(self): |
|
for idx, text_encoder in enumerate(self.text_encoders): |
|
index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"] |
|
text_encoder.text_model.embeddings.token_embedding.weight.data[index_no_updates] = ( |
|
self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates] |
|
.to(device=text_encoder.device) |
|
.to(dtype=text_encoder.dtype) |
|
) |
|
|
|
|
|
|
|
std_token_embedding = self.embeddings_settings[f"std_token_embedding_{idx}"] |
|
|
|
index_updates = ~index_no_updates |
|
new_embeddings = text_encoder.text_model.embeddings.token_embedding.weight.data[index_updates] |
|
off_ratio = std_token_embedding / new_embeddings.std() |
|
|
|
new_embeddings = new_embeddings * (off_ratio**0.1) |
|
text_encoder.text_model.embeddings.token_embedding.weight.data[index_updates] = new_embeddings |
|
|
|
|
|
class DreamBoothDataset(Dataset): |
|
""" |
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. |
|
It pre-processes the images. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
instance_data_root, |
|
instance_prompt, |
|
class_prompt, |
|
dataset_name, |
|
dataset_config_name, |
|
cache_dir, |
|
image_column, |
|
caption_column, |
|
train_text_encoder_ti, |
|
class_data_root=None, |
|
class_num=None, |
|
token_abstraction_dict=None, |
|
size=1024, |
|
repeats=1, |
|
center_crop=False, |
|
): |
|
self.size = size |
|
self.center_crop = center_crop |
|
|
|
self.instance_prompt = instance_prompt |
|
self.custom_instance_prompts = None |
|
self.class_prompt = class_prompt |
|
self.token_abstraction_dict = token_abstraction_dict |
|
self.train_text_encoder_ti = train_text_encoder_ti |
|
|
|
|
|
if dataset_name is not None: |
|
try: |
|
from datasets import load_dataset |
|
except ImportError: |
|
raise ImportError( |
|
"You are trying to load your data using the datasets library. If you wish to train using custom " |
|
"captions please install the datasets library: `pip install datasets`. If you wish to load a " |
|
"local folder containing images only, specify --instance_data_dir instead." |
|
) |
|
|
|
|
|
|
|
dataset = load_dataset( |
|
dataset_name, |
|
dataset_config_name, |
|
cache_dir=cache_dir, |
|
) |
|
|
|
column_names = dataset["train"].column_names |
|
|
|
|
|
if image_column is None: |
|
image_column = column_names[0] |
|
logger.info(f"image column defaulting to {image_column}") |
|
else: |
|
if image_column not in column_names: |
|
raise ValueError( |
|
f"`--image_column` value '{image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" |
|
) |
|
instance_images = dataset["train"][image_column] |
|
|
|
if caption_column is None: |
|
logger.info( |
|
"No caption column provided, defaulting to instance_prompt for all images. If your dataset " |
|
"contains captions/prompts for the images, make sure to specify the " |
|
"column as --caption_column" |
|
) |
|
self.custom_instance_prompts = None |
|
else: |
|
if caption_column not in column_names: |
|
raise ValueError( |
|
f"`--caption_column` value '{caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" |
|
) |
|
custom_instance_prompts = dataset["train"][caption_column] |
|
|
|
self.custom_instance_prompts = [] |
|
for caption in custom_instance_prompts: |
|
self.custom_instance_prompts.extend(itertools.repeat(caption, repeats)) |
|
else: |
|
self.instance_data_root = Path(instance_data_root) |
|
if not self.instance_data_root.exists(): |
|
raise ValueError("Instance images root doesn't exists.") |
|
|
|
instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())] |
|
self.custom_instance_prompts = None |
|
|
|
self.instance_images = [] |
|
for img in instance_images: |
|
self.instance_images.extend(itertools.repeat(img, repeats)) |
|
self.num_instance_images = len(self.instance_images) |
|
self._length = self.num_instance_images |
|
|
|
if class_data_root is not None: |
|
self.class_data_root = Path(class_data_root) |
|
self.class_data_root.mkdir(parents=True, exist_ok=True) |
|
self.class_images_path = list(self.class_data_root.iterdir()) |
|
if class_num is not None: |
|
self.num_class_images = min(len(self.class_images_path), class_num) |
|
else: |
|
self.num_class_images = len(self.class_images_path) |
|
self._length = max(self.num_class_images, self.num_instance_images) |
|
else: |
|
self.class_data_root = None |
|
|
|
self.image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
instance_image = self.instance_images[index % self.num_instance_images] |
|
instance_image = exif_transpose(instance_image) |
|
|
|
if not instance_image.mode == "RGB": |
|
instance_image = instance_image.convert("RGB") |
|
example["instance_images"] = self.image_transforms(instance_image) |
|
|
|
if self.custom_instance_prompts: |
|
caption = self.custom_instance_prompts[index % self.num_instance_images] |
|
if caption: |
|
if self.train_text_encoder_ti: |
|
|
|
for token_abs, token_replacement in self.token_abstraction_dict.items(): |
|
caption = caption.replace(token_abs, "".join(token_replacement)) |
|
example["instance_prompt"] = caption |
|
else: |
|
example["instance_prompt"] = self.instance_prompt |
|
|
|
else: |
|
example["instance_prompt"] = self.instance_prompt |
|
|
|
if self.class_data_root: |
|
class_image = Image.open(self.class_images_path[index % self.num_class_images]) |
|
class_image = exif_transpose(class_image) |
|
|
|
if not class_image.mode == "RGB": |
|
class_image = class_image.convert("RGB") |
|
example["class_images"] = self.image_transforms(class_image) |
|
example["class_prompt"] = self.class_prompt |
|
|
|
return example |
|
|
|
|
|
def collate_fn(examples, with_prior_preservation=False): |
|
pixel_values = [example["instance_images"] for example in examples] |
|
prompts = [example["instance_prompt"] for example in examples] |
|
|
|
|
|
|
|
if with_prior_preservation: |
|
pixel_values += [example["class_images"] for example in examples] |
|
prompts += [example["class_prompt"] for example in examples] |
|
|
|
pixel_values = torch.stack(pixel_values) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
|
|
batch = {"pixel_values": pixel_values, "prompts": prompts} |
|
return batch |
|
|
|
|
|
class PromptDataset(Dataset): |
|
"A simple dataset to prepare the prompts to generate class images on multiple GPUs." |
|
|
|
def __init__(self, prompt, num_samples): |
|
self.prompt = prompt |
|
self.num_samples = num_samples |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
example["prompt"] = self.prompt |
|
example["index"] = index |
|
return example |
|
|
|
|
|
def tokenize_prompt(tokenizer, prompt, add_special_tokens=False): |
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
add_special_tokens=add_special_tokens, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
return text_input_ids |
|
|
|
|
|
|
|
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None): |
|
prompt_embeds_list = [] |
|
|
|
for i, text_encoder in enumerate(text_encoders): |
|
if tokenizers is not None: |
|
tokenizer = tokenizers[i] |
|
text_input_ids = tokenize_prompt(tokenizer, prompt) |
|
else: |
|
assert text_input_ids_list is not None |
|
text_input_ids = text_input_ids_list[i] |
|
|
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(text_encoder.device), |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) |
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
|
|
def main(args): |
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) |
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
kwargs_handlers=[kwargs], |
|
) |
|
|
|
if args.report_to == "wandb": |
|
if not is_wandb_available(): |
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") |
|
import wandb |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if args.with_prior_preservation: |
|
class_images_dir = Path(args.class_data_dir) |
|
if not class_images_dir.exists(): |
|
class_images_dir.mkdir(parents=True) |
|
cur_class_images = len(list(class_images_dir.iterdir())) |
|
|
|
if cur_class_images < args.num_class_images: |
|
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 |
|
if args.prior_generation_precision == "fp32": |
|
torch_dtype = torch.float32 |
|
elif args.prior_generation_precision == "fp16": |
|
torch_dtype = torch.float16 |
|
elif args.prior_generation_precision == "bf16": |
|
torch_dtype = torch.bfloat16 |
|
pipeline = StableDiffusionXLPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
torch_dtype=torch_dtype, |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
num_new_images = args.num_class_images - cur_class_images |
|
logger.info(f"Number of class images to sample: {num_new_images}.") |
|
|
|
sample_dataset = PromptDataset(args.class_prompt, num_new_images) |
|
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) |
|
|
|
sample_dataloader = accelerator.prepare(sample_dataloader) |
|
pipeline.to(accelerator.device) |
|
|
|
for example in tqdm( |
|
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process |
|
): |
|
images = pipeline(example["prompt"]).images |
|
|
|
for i, image in enumerate(images): |
|
hash_image = hashlib.sha1(image.tobytes()).hexdigest() |
|
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" |
|
image.save(image_filename) |
|
|
|
del pipeline |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
model_id = args.hub_model_id or Path(args.output_dir).name |
|
repo_id = None |
|
if args.push_to_hub: |
|
repo_id = create_repo(repo_id=model_id, exist_ok=True, token=args.hub_token).repo_id |
|
|
|
|
|
tokenizer_one = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=args.revision, |
|
variant=args.variant, |
|
use_fast=False, |
|
) |
|
tokenizer_two = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer_2", |
|
revision=args.revision, |
|
variant=args.variant, |
|
use_fast=False, |
|
) |
|
|
|
|
|
text_encoder_cls_one = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, args.revision |
|
) |
|
text_encoder_cls_two = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" |
|
) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
text_encoder_one = text_encoder_cls_one.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant |
|
) |
|
text_encoder_two = text_encoder_cls_two.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant |
|
) |
|
vae_path = ( |
|
args.pretrained_model_name_or_path |
|
if args.pretrained_vae_model_name_or_path is None |
|
else args.pretrained_vae_model_name_or_path |
|
) |
|
vae = AutoencoderKL.from_pretrained( |
|
vae_path, |
|
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
vae_scaling_factor = vae.config.scaling_factor |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant |
|
) |
|
|
|
if args.train_text_encoder_ti: |
|
|
|
|
|
token_abstraction_list = "".join(args.token_abstraction.split()).split(",") |
|
logger.info(f"list of token identifiers: {token_abstraction_list}") |
|
|
|
token_abstraction_dict = {} |
|
token_idx = 0 |
|
for i, token in enumerate(token_abstraction_list): |
|
token_abstraction_dict[token] = [ |
|
f"<s{token_idx + i + j}>" for j in range(args.num_new_tokens_per_abstraction) |
|
] |
|
token_idx += args.num_new_tokens_per_abstraction - 1 |
|
|
|
|
|
for token_abs, token_replacement in token_abstraction_dict.items(): |
|
args.instance_prompt = args.instance_prompt.replace(token_abs, "".join(token_replacement)) |
|
if args.with_prior_preservation: |
|
args.class_prompt = args.class_prompt.replace(token_abs, "".join(token_replacement)) |
|
|
|
|
|
embedding_handler = TokenEmbeddingsHandler( |
|
[text_encoder_one, text_encoder_two], [tokenizer_one, tokenizer_two] |
|
) |
|
inserting_toks = [] |
|
for new_tok in token_abstraction_dict.values(): |
|
inserting_toks.extend(new_tok) |
|
embedding_handler.initialize_new_tokens(inserting_toks=inserting_toks) |
|
|
|
|
|
vae.requires_grad_(False) |
|
text_encoder_one.requires_grad_(False) |
|
text_encoder_two.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
vae.to(accelerator.device, dtype=torch.float32) |
|
|
|
text_encoder_one.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder_two.to(accelerator.device, dtype=weight_dtype) |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warn( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, " |
|
"please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
if args.train_text_encoder: |
|
text_encoder_one.gradient_checkpointing_enable() |
|
text_encoder_two.gradient_checkpointing_enable() |
|
|
|
|
|
unet_lora_config = LoraConfig( |
|
r=args.rank, |
|
lora_alpha=args.rank, |
|
init_lora_weights="gaussian", |
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"], |
|
) |
|
unet.add_adapter(unet_lora_config) |
|
|
|
|
|
|
|
if args.train_text_encoder: |
|
text_lora_config = LoraConfig( |
|
r=args.rank, |
|
lora_alpha=args.rank, |
|
init_lora_weights="gaussian", |
|
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], |
|
) |
|
text_encoder_one.add_adapter(text_lora_config) |
|
text_encoder_two.add_adapter(text_lora_config) |
|
|
|
|
|
|
|
elif args.train_text_encoder_ti: |
|
text_lora_parameters_one = [] |
|
for name, param in text_encoder_one.named_parameters(): |
|
if "token_embedding" in name: |
|
|
|
param = param.to(dtype=torch.float32) |
|
param.requires_grad = True |
|
text_lora_parameters_one.append(param) |
|
else: |
|
param.requires_grad = False |
|
text_lora_parameters_two = [] |
|
for name, param in text_encoder_two.named_parameters(): |
|
if "token_embedding" in name: |
|
|
|
param = param.to(dtype=torch.float32) |
|
param.requires_grad = True |
|
text_lora_parameters_two.append(param) |
|
else: |
|
param.requires_grad = False |
|
|
|
|
|
if args.mixed_precision == "fp16": |
|
models = [unet] |
|
if args.train_text_encoder: |
|
models.extend([text_encoder_one, text_encoder_two]) |
|
for model in models: |
|
for param in model.parameters(): |
|
|
|
if param.requires_grad: |
|
param.data = param.to(torch.float32) |
|
|
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
|
|
|
|
unet_lora_layers_to_save = None |
|
text_encoder_one_lora_layers_to_save = None |
|
text_encoder_two_lora_layers_to_save = None |
|
|
|
for model in models: |
|
if isinstance(model, type(accelerator.unwrap_model(unet))): |
|
unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model)) |
|
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))): |
|
if args.train_text_encoder: |
|
text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers( |
|
get_peft_model_state_dict(model) |
|
) |
|
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))): |
|
if args.train_text_encoder: |
|
text_encoder_two_lora_layers_to_save = convert_state_dict_to_diffusers( |
|
get_peft_model_state_dict(model) |
|
) |
|
else: |
|
raise ValueError(f"unexpected save model: {model.__class__}") |
|
|
|
|
|
weights.pop() |
|
|
|
StableDiffusionXLPipeline.save_lora_weights( |
|
output_dir, |
|
unet_lora_layers=unet_lora_layers_to_save, |
|
text_encoder_lora_layers=text_encoder_one_lora_layers_to_save, |
|
text_encoder_2_lora_layers=text_encoder_two_lora_layers_to_save, |
|
) |
|
if args.train_text_encoder_ti: |
|
embedding_handler.save_embeddings(f"{output_dir}/{args.output_dir}_emb.safetensors") |
|
|
|
def load_model_hook(models, input_dir): |
|
unet_ = None |
|
text_encoder_one_ = None |
|
text_encoder_two_ = None |
|
|
|
while len(models) > 0: |
|
model = models.pop() |
|
|
|
if isinstance(model, type(accelerator.unwrap_model(unet))): |
|
unet_ = model |
|
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))): |
|
text_encoder_one_ = model |
|
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))): |
|
text_encoder_two_ = model |
|
else: |
|
raise ValueError(f"unexpected save model: {model.__class__}") |
|
|
|
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir) |
|
LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_) |
|
|
|
text_encoder_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder." in k} |
|
LoraLoaderMixin.load_lora_into_text_encoder( |
|
text_encoder_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_one_ |
|
) |
|
|
|
text_encoder_2_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder_2." in k} |
|
LoraLoaderMixin.load_lora_into_text_encoder( |
|
text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_two_ |
|
) |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters())) |
|
|
|
if args.train_text_encoder: |
|
text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters())) |
|
text_lora_parameters_two = list(filter(lambda p: p.requires_grad, text_encoder_two.parameters())) |
|
|
|
|
|
freeze_text_encoder = not (args.train_text_encoder or args.train_text_encoder_ti) |
|
|
|
|
|
unet_lora_parameters_with_lr = {"params": unet_lora_parameters, "lr": args.learning_rate} |
|
if not freeze_text_encoder: |
|
|
|
text_lora_parameters_one_with_lr = { |
|
"params": text_lora_parameters_one, |
|
"weight_decay": args.adam_weight_decay_text_encoder |
|
if args.adam_weight_decay_text_encoder |
|
else args.adam_weight_decay, |
|
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, |
|
} |
|
text_lora_parameters_two_with_lr = { |
|
"params": text_lora_parameters_two, |
|
"weight_decay": args.adam_weight_decay_text_encoder |
|
if args.adam_weight_decay_text_encoder |
|
else args.adam_weight_decay, |
|
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, |
|
} |
|
params_to_optimize = [ |
|
unet_lora_parameters_with_lr, |
|
text_lora_parameters_one_with_lr, |
|
text_lora_parameters_two_with_lr, |
|
] |
|
else: |
|
params_to_optimize = [unet_lora_parameters_with_lr] |
|
|
|
|
|
if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"): |
|
logger.warn( |
|
f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]." |
|
"Defaulting to adamW" |
|
) |
|
args.optimizer = "adamw" |
|
|
|
if args.use_8bit_adam and not args.optimizer.lower() == "adamw": |
|
logger.warn( |
|
f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was " |
|
f"set to {args.optimizer.lower()}" |
|
) |
|
|
|
if args.optimizer.lower() == "adamw": |
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
if args.optimizer.lower() == "prodigy": |
|
try: |
|
import prodigyopt |
|
except ImportError: |
|
raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`") |
|
|
|
optimizer_class = prodigyopt.Prodigy |
|
|
|
if args.learning_rate <= 0.1: |
|
logger.warn( |
|
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0" |
|
) |
|
if args.train_text_encoder and args.text_encoder_lr: |
|
logger.warn( |
|
f"Learning rates were provided both for the unet and the text encoder- e.g. text_encoder_lr:" |
|
f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. " |
|
f"When using prodigy only learning_rate is used as the initial learning rate." |
|
) |
|
|
|
|
|
params_to_optimize[1]["lr"] = args.learning_rate |
|
params_to_optimize[2]["lr"] = args.learning_rate |
|
|
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
beta3=args.prodigy_beta3, |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
decouple=args.prodigy_decouple, |
|
use_bias_correction=args.prodigy_use_bias_correction, |
|
safeguard_warmup=args.prodigy_safeguard_warmup, |
|
) |
|
|
|
|
|
train_dataset = DreamBoothDataset( |
|
instance_data_root=args.instance_data_dir, |
|
instance_prompt=args.instance_prompt, |
|
class_prompt=args.class_prompt, |
|
dataset_name=args.dataset_name, |
|
dataset_config_name=args.dataset_config_name, |
|
cache_dir=args.cache_dir, |
|
image_column=args.image_column, |
|
train_text_encoder_ti=args.train_text_encoder_ti, |
|
caption_column=args.caption_column, |
|
class_data_root=args.class_data_dir if args.with_prior_preservation else None, |
|
token_abstraction_dict=token_abstraction_dict if args.train_text_encoder_ti else None, |
|
class_num=args.num_class_images, |
|
size=args.resolution, |
|
repeats=args.repeats, |
|
center_crop=args.center_crop, |
|
) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=args.train_batch_size, |
|
shuffle=True, |
|
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def compute_time_ids(): |
|
|
|
original_size = (args.resolution, args.resolution) |
|
target_size = (args.resolution, args.resolution) |
|
crops_coords_top_left = (args.crops_coords_top_left_h, args.crops_coords_top_left_w) |
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
add_time_ids = torch.tensor([add_time_ids]) |
|
add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype) |
|
return add_time_ids |
|
|
|
if not args.train_text_encoder: |
|
tokenizers = [tokenizer_one, tokenizer_two] |
|
text_encoders = [text_encoder_one, text_encoder_two] |
|
|
|
def compute_text_embeddings(prompt, text_encoders, tokenizers): |
|
with torch.no_grad(): |
|
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt) |
|
prompt_embeds = prompt_embeds.to(accelerator.device) |
|
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device) |
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
|
|
instance_time_ids = compute_time_ids() |
|
|
|
|
|
|
|
|
|
if freeze_text_encoder and not train_dataset.custom_instance_prompts: |
|
instance_prompt_hidden_states, instance_pooled_prompt_embeds = compute_text_embeddings( |
|
args.instance_prompt, text_encoders, tokenizers |
|
) |
|
|
|
|
|
if args.with_prior_preservation: |
|
class_time_ids = compute_time_ids() |
|
if freeze_text_encoder: |
|
class_prompt_hidden_states, class_pooled_prompt_embeds = compute_text_embeddings( |
|
args.class_prompt, text_encoders, tokenizers |
|
) |
|
|
|
|
|
if freeze_text_encoder and not train_dataset.custom_instance_prompts: |
|
del tokenizers, text_encoders |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
|
add_time_ids = instance_time_ids |
|
if args.with_prior_preservation: |
|
add_time_ids = torch.cat([add_time_ids, class_time_ids], dim=0) |
|
|
|
|
|
add_special_tokens = True if args.train_text_encoder_ti else False |
|
|
|
if not train_dataset.custom_instance_prompts: |
|
if freeze_text_encoder: |
|
prompt_embeds = instance_prompt_hidden_states |
|
unet_add_text_embeds = instance_pooled_prompt_embeds |
|
if args.with_prior_preservation: |
|
prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0) |
|
unet_add_text_embeds = torch.cat([unet_add_text_embeds, class_pooled_prompt_embeds], dim=0) |
|
|
|
|
|
else: |
|
tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt, add_special_tokens) |
|
tokens_two = tokenize_prompt(tokenizer_two, args.instance_prompt, add_special_tokens) |
|
if args.with_prior_preservation: |
|
class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt, add_special_tokens) |
|
class_tokens_two = tokenize_prompt(tokenizer_two, args.class_prompt, add_special_tokens) |
|
tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0) |
|
tokens_two = torch.cat([tokens_two, class_tokens_two], dim=0) |
|
|
|
if args.train_text_encoder_ti and args.validation_prompt: |
|
|
|
for token_abs, token_replacement in train_dataset.token_abstraction_dict.items(): |
|
args.validation_prompt = args.validation_prompt.replace(token_abs, "".join(token_replacement)) |
|
print("validation prompt:", args.validation_prompt) |
|
|
|
if args.cache_latents: |
|
latents_cache = [] |
|
for batch in tqdm(train_dataloader, desc="Caching latents"): |
|
with torch.no_grad(): |
|
batch["pixel_values"] = batch["pixel_values"].to( |
|
accelerator.device, non_blocking=True, dtype=torch.float32 |
|
) |
|
latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist) |
|
|
|
if args.validation_prompt is None: |
|
del vae |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
|
|
if not freeze_text_encoder: |
|
unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler |
|
) |
|
else: |
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("dreambooth-lora-sd-xl", config=vars(args)) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
|
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
if args.train_text_encoder: |
|
num_train_epochs_text_encoder = int(args.train_text_encoder_frac * args.num_train_epochs) |
|
elif args.train_text_encoder_ti: |
|
num_train_epochs_text_encoder = int(args.train_text_encoder_ti_frac * args.num_train_epochs) |
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
|
|
if args.train_text_encoder or args.train_text_encoder_ti: |
|
if epoch == num_train_epochs_text_encoder: |
|
print("PIVOT HALFWAY", epoch) |
|
|
|
|
|
optimizer.param_groups[1]["lr"] = 0.0 |
|
optimizer.param_groups[2]["lr"] = 0.0 |
|
|
|
else: |
|
|
|
text_encoder_one.train() |
|
text_encoder_two.train() |
|
|
|
if args.train_text_encoder: |
|
text_encoder_one.text_model.embeddings.requires_grad_(True) |
|
text_encoder_two.text_model.embeddings.requires_grad_(True) |
|
|
|
unet.train() |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet): |
|
prompts = batch["prompts"] |
|
|
|
if train_dataset.custom_instance_prompts: |
|
if freeze_text_encoder: |
|
prompt_embeds, unet_add_text_embeds = compute_text_embeddings( |
|
prompts, text_encoders, tokenizers |
|
) |
|
|
|
else: |
|
tokens_one = tokenize_prompt(tokenizer_one, prompts, add_special_tokens) |
|
tokens_two = tokenize_prompt(tokenizer_two, prompts, add_special_tokens) |
|
|
|
if args.cache_latents: |
|
model_input = latents_cache[step].sample() |
|
else: |
|
pixel_values = batch["pixel_values"].to(dtype=vae.dtype) |
|
model_input = vae.encode(pixel_values).latent_dist.sample() |
|
|
|
model_input = model_input * vae_scaling_factor |
|
if args.pretrained_vae_model_name_or_path is None: |
|
model_input = model_input.to(weight_dtype) |
|
|
|
|
|
noise = torch.randn_like(model_input) |
|
bsz = model_input.shape[0] |
|
|
|
timesteps = torch.randint( |
|
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device |
|
) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) |
|
|
|
|
|
if not train_dataset.custom_instance_prompts: |
|
elems_to_repeat_text_embeds = bsz // 2 if args.with_prior_preservation else bsz |
|
elems_to_repeat_time_ids = bsz // 2 if args.with_prior_preservation else bsz |
|
|
|
else: |
|
elems_to_repeat_text_embeds = 1 |
|
elems_to_repeat_time_ids = bsz // 2 if args.with_prior_preservation else bsz |
|
|
|
|
|
if freeze_text_encoder: |
|
unet_added_conditions = { |
|
"time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1), |
|
"text_embeds": unet_add_text_embeds.repeat(elems_to_repeat_text_embeds, 1), |
|
} |
|
prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1) |
|
model_pred = unet( |
|
noisy_model_input, |
|
timesteps, |
|
prompt_embeds_input, |
|
added_cond_kwargs=unet_added_conditions, |
|
).sample |
|
else: |
|
unet_added_conditions = {"time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1)} |
|
prompt_embeds, pooled_prompt_embeds = encode_prompt( |
|
text_encoders=[text_encoder_one, text_encoder_two], |
|
tokenizers=None, |
|
prompt=None, |
|
text_input_ids_list=[tokens_one, tokens_two], |
|
) |
|
unet_added_conditions.update( |
|
{"text_embeds": pooled_prompt_embeds.repeat(elems_to_repeat_text_embeds, 1)} |
|
) |
|
prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1) |
|
model_pred = unet( |
|
noisy_model_input, timesteps, prompt_embeds_input, added_cond_kwargs=unet_added_conditions |
|
).sample |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(model_input, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
if args.with_prior_preservation: |
|
|
|
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) |
|
target, target_prior = torch.chunk(target, 2, dim=0) |
|
|
|
|
|
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") |
|
|
|
if args.snr_gamma is None: |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
else: |
|
|
|
|
|
|
|
|
|
if args.with_prior_preservation: |
|
|
|
|
|
snr_timesteps, _ = torch.chunk(timesteps, 2, dim=0) |
|
else: |
|
snr_timesteps = timesteps |
|
|
|
snr = compute_snr(noise_scheduler, snr_timesteps) |
|
base_weight = ( |
|
torch.stack([snr, args.snr_gamma * torch.ones_like(snr_timesteps)], dim=1).min(dim=1)[0] / snr |
|
) |
|
|
|
if noise_scheduler.config.prediction_type == "v_prediction": |
|
|
|
mse_loss_weights = base_weight + 1 |
|
else: |
|
|
|
mse_loss_weights = base_weight |
|
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") |
|
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights |
|
loss = loss.mean() |
|
|
|
if args.with_prior_preservation: |
|
|
|
loss = loss + args.prior_loss_weight * prior_loss |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
params_to_clip = ( |
|
itertools.chain(unet_lora_parameters, text_lora_parameters_one, text_lora_parameters_two) |
|
if (args.train_text_encoder or args.train_text_encoder_ti) |
|
else unet_lora_parameters |
|
) |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if args.train_text_encoder_ti: |
|
for idx, text_encoder in enumerate(text_encoders): |
|
embedding_handler.retract_embeddings() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if accelerator.is_main_process: |
|
if args.validation_prompt is not None and epoch % args.validation_epochs == 0: |
|
logger.info( |
|
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" |
|
f" {args.validation_prompt}." |
|
) |
|
|
|
if freeze_text_encoder: |
|
text_encoder_one = text_encoder_cls_one.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="text_encoder", |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
text_encoder_two = text_encoder_cls_two.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="text_encoder_2", |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
pipeline = StableDiffusionXLPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
vae=vae, |
|
text_encoder=accelerator.unwrap_model(text_encoder_one), |
|
text_encoder_2=accelerator.unwrap_model(text_encoder_two), |
|
unet=accelerator.unwrap_model(unet), |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
|
|
|
|
scheduler_args = {} |
|
|
|
if "variance_type" in pipeline.scheduler.config: |
|
variance_type = pipeline.scheduler.config.variance_type |
|
|
|
if variance_type in ["learned", "learned_range"]: |
|
variance_type = "fixed_small" |
|
|
|
scheduler_args["variance_type"] = variance_type |
|
|
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config( |
|
pipeline.scheduler.config, **scheduler_args |
|
) |
|
|
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None |
|
pipeline_args = {"prompt": args.validation_prompt} |
|
|
|
with torch.cuda.amp.autocast(): |
|
images = [ |
|
pipeline(**pipeline_args, generator=generator).images[0] |
|
for _ in range(args.num_validation_images) |
|
] |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
"validation": [ |
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") |
|
for i, image in enumerate(images) |
|
] |
|
} |
|
) |
|
|
|
del pipeline |
|
torch.cuda.empty_cache() |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
unet = accelerator.unwrap_model(unet) |
|
unet = unet.to(torch.float32) |
|
unet_lora_layers = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet)) |
|
|
|
if args.train_text_encoder: |
|
text_encoder_one = accelerator.unwrap_model(text_encoder_one) |
|
text_encoder_lora_layers = convert_state_dict_to_diffusers( |
|
get_peft_model_state_dict(text_encoder_one.to(torch.float32)) |
|
) |
|
text_encoder_two = accelerator.unwrap_model(text_encoder_two) |
|
text_encoder_2_lora_layers = convert_state_dict_to_diffusers( |
|
get_peft_model_state_dict(text_encoder_two.to(torch.float32)) |
|
) |
|
else: |
|
text_encoder_lora_layers = None |
|
text_encoder_2_lora_layers = None |
|
|
|
StableDiffusionXLPipeline.save_lora_weights( |
|
save_directory=args.output_dir, |
|
unet_lora_layers=unet_lora_layers, |
|
text_encoder_lora_layers=text_encoder_lora_layers, |
|
text_encoder_2_lora_layers=text_encoder_2_lora_layers, |
|
) |
|
images = [] |
|
if args.validation_prompt and args.num_validation_images > 0: |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
vae_path, |
|
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipeline = StableDiffusionXLPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
vae=vae, |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
|
|
|
|
scheduler_args = {} |
|
|
|
if "variance_type" in pipeline.scheduler.config: |
|
variance_type = pipeline.scheduler.config.variance_type |
|
|
|
if variance_type in ["learned", "learned_range"]: |
|
variance_type = "fixed_small" |
|
|
|
scheduler_args["variance_type"] = variance_type |
|
|
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args) |
|
|
|
|
|
pipeline.load_lora_weights(args.output_dir) |
|
|
|
|
|
pipeline = pipeline.to(accelerator.device) |
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None |
|
images = [ |
|
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] |
|
for _ in range(args.num_validation_images) |
|
] |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
"test": [ |
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") |
|
for i, image in enumerate(images) |
|
] |
|
} |
|
) |
|
|
|
if args.train_text_encoder_ti: |
|
embedding_handler.save_embeddings( |
|
f"{args.output_dir}/{args.output_dir}_emb.safetensors", |
|
) |
|
|
|
|
|
lora_state_dict = load_file(f"{args.output_dir}/pytorch_lora_weights.safetensors") |
|
peft_state_dict = convert_all_state_dict_to_peft(lora_state_dict) |
|
kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict) |
|
save_file(kohya_state_dict, f"{args.output_dir}/{args.output_dir}.safetensors") |
|
|
|
save_model_card( |
|
model_id if not args.push_to_hub else repo_id, |
|
images=images, |
|
base_model=args.pretrained_model_name_or_path, |
|
train_text_encoder=args.train_text_encoder, |
|
train_text_encoder_ti=args.train_text_encoder_ti, |
|
token_abstraction_dict=train_dataset.token_abstraction_dict, |
|
instance_prompt=args.instance_prompt, |
|
validation_prompt=args.validation_prompt, |
|
repo_folder=args.output_dir, |
|
vae_path=args.pretrained_vae_model_name_or_path, |
|
) |
|
if args.push_to_hub: |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|