File size: 2,366 Bytes
f65642d d755088 f098bdc d755088 f65642d d755088 f65642d d755088 f65642d d755088 37c1004 c8344ef f65642d 37c1004 f65642d d755088 37c1004 d755088 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
"""XWinograd"""
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@misc{tikhonov2021heads,
title={It's All in the Heads: Using Attention Heads as a Baseline for Cross-Lingual Transfer in Commonsense Reasoning},
author={Alexey Tikhonov and Max Ryabinin},
year={2021},
eprint={2106.12066},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
A multilingual collection of Winograd Schemas in six languages \
that can be used for evaluation of cross-lingual commonsense reasoning capabilities.
"""
_LANG = ["en", "fr", "jp", "pt", "ru", "zh"]
_URL = "https://huggingface.co/datasets/Muennighoff/xwinograd/raw/main/test/{lang}.json"
_VERSION = datasets.Version("1.1.0", "")
class XWinograd(datasets.GeneratorBasedBuilder):
"""XWinograd"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=lang,
description=f"XWinograd in {lang}",
version=_VERSION,
)
for lang in _LANG
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"sentence": datasets.Value("string"),
"option1": datasets.Value("string"),
"option2": datasets.Value("string"),
"answer": datasets.Value("string")
}
),
supervised_keys=None,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download(_URL.format(lang=self.config.name))
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={'filepath': downloaded_files}
)
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
yield id_, {
"sentence": data["sentence"],
"option1": data["option1"],
"option2": data["option2"],
"answer": data["answer"],
}
|