"{\"inputs\":\"Can you solve the below in JAVA?\\nMoamen has an array of n distinct integers. He wants to sort that array in non-decreasing order by doing the following operations in order exactly once:\\n\\n 1. Split the array into exactly k non-empty subarrays such that each element belongs to exactly one subarray. \\n 2. Reorder these subarrays arbitrary. \\n 3. Merge the subarrays in their new order. \\n\\n\\n\\nA sequence a is a subarray of a sequence b if a can be obtained from b by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.\\n\\nCan you tell Moamen if there is a way to sort the array in non-decreasing order using the operations written above?\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^3) \u2014 the number of test cases. The description of the test cases follows.\\n\\nThe first line of each test case contains two integers n and k (1 \u2264 k \u2264 n \u2264 10^5).\\n\\nThe second line contains n integers a_1, a_2, \u2026, a_n (0 \u2264 |a_i| \u2264 10^9). It is guaranteed that all numbers are distinct.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 3\u22c510^5.\\n\\nOutput\\n\\nFor each test case, you should output a single string.\\n\\nIf Moamen can sort the array in non-decreasing order, output \\\"YES\\\" (without quotes). Otherwise, output \\\"NO\\\" (without quotes).\\n\\nYou can print each letter of \\\"YES\\\" and \\\"NO\\\" in any case (upper or lower).\\n\\nExample\\n\\nInput\\n\\n\\n3\\n5 4\\n6 3 4 2 1\\n4 2\\n1 -4 0 -2\\n5 1\\n1 2 3 4 5\\n\\n\\nOutput\\n\\n\\nYes\\nNo\\nYes\\n\\nNote\\n\\nIn the first test case, a = [6, 3, 4, 2, 1], and k = 4, so we can do the operations as follows: \\n\\n 1. Split a into \\\\{ [6], [3, 4], [2], [1] \\\\}. \\n 2. Reorder them: \\\\{ [1], [2], [3,4], [6] \\\\}. \\n 3. Merge them: [1, 2, 3, 4, 6], so now the array is sorted. \\n\\n\\n\\nIn the second test case, there is no way to sort the array by splitting it into only 2 subarrays.\\n\\nAs an example, if we split it into \\\\{ [1, -4], [0, -2] \\\\}, we can reorder them into \\\\{ [1, -4], [0, -2] \\\\} or \\\\{ [0, -2], [1, -4] \\\\}. However, after merging the subarrays, it is impossible to get a sorted array.\",\"targets\":\"import java.util.Arrays;\\nimport java.util.HashMap;\\nimport java.util.Map;\\nimport java.util.Scanner;\\n \\npublic class Main{\\n \\n \\n public static void main(String[] args) {\\n Scanner sc = new Scanner(System.in);\\n int time = sc.nextInt();\\n for (int j = 0; j < time; j++) {\\n int a = sc.nextInt();\\n int b = sc.nextInt();\\n int[] x = new int[a];\\n for (int i = 0; i < a; i++) {\\n x[i] = sc.nextInt();\\n }\\n System.out.println(b>=getTime(x)?\\\"Yes\\\":\\\"No\\\");\\n }\\n }\\n \\n public static int getTime(int[] arr){\\n int len = arr.length;\\n Map map = new HashMap<>();\\n int index = 0;\\n for(int i:arr){\\n map.put(i,index++);\\n }\\n Arrays.sort(arr);\\n int k=1;\\n for(int i=0;i\\nusing namespace std;\\nint main() {\\n long long n;\\n cin >> n;\\n long c = 0;\\n while (n > 0) {\\n if (n >= 100) {\\n long k = n \\/ 100;\\n c += k;\\n n -= (k * 100);\\n } else if (n >= 20) {\\n long k = n \\/ 20;\\n c += k;\\n n -= (k * 20);\\n } else if (n >= 10) {\\n long k = n \\/ 10;\\n c += k;\\n n -= (k * 10);\\n } else if (n >= 5) {\\n long k = n \\/ 5;\\n c += k;\\n n -= (k * 5);\\n } else if (n >= 1) {\\n c += n;\\n break;\\n }\\n }\\n cout << c;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given a string s, consisting of n letters, each letter is either 'a' or 'b'. The letters in the string are numbered from 1 to n.\\n\\ns[l; r] is a continuous substring of letters from index l to r of the string inclusive. \\n\\nA string is called balanced if the number of letters 'a' in it is equal to the number of letters 'b'. For example, strings \\\"baba\\\" and \\\"aabbab\\\" are balanced and strings \\\"aaab\\\" and \\\"b\\\" are not.\\n\\nFind any non-empty balanced substring s[l; r] of string s. Print its l and r (1 \u2264 l \u2264 r \u2264 n). If there is no such substring, then print -1 -1.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 1000) \u2014 the number of testcases.\\n\\nThen the descriptions of t testcases follow.\\n\\nThe first line of the testcase contains a single integer n (1 \u2264 n \u2264 50) \u2014 the length of the string.\\n\\nThe second line of the testcase contains a string s, consisting of n letters, each letter is either 'a' or 'b'.\\n\\nOutput\\n\\nFor each testcase print two integers. If there exists a non-empty balanced substring s[l; r], then print l r (1 \u2264 l \u2264 r \u2264 n). Otherwise, print -1 -1.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n1\\na\\n6\\nabbaba\\n6\\nabbaba\\n9\\nbabbabbaa\\n\\n\\nOutput\\n\\n\\n-1 -1\\n1 6\\n3 6\\n2 5\\n\\nNote\\n\\nIn the first testcase there are no non-empty balanced subtrings.\\n\\nIn the second and third testcases there are multiple balanced substrings, including the entire string \\\"abbaba\\\" and substring \\\"baba\\\".\\nimpor\",\"targets\":\"t java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.util.ArrayList;\\nimport java.util.List;\\nimport java.util.Objects;\\nimport java.util.StringTokenizer;\\n\\nimport static java.lang.Math.log;\\nimport static java.lang.Math.min;\\n\\npublic class Codeforces742 {\\n\\n \\/\\/------------------------------------------CONSTANTS---------------------------------------------------------------\\n public static final int MOD = (int) (1e9 + 7);\\n\\n \\/\\/---------------------------------------------I\\/0------------------------------------------------------------------\\n\\n static class FastReader {\\n BufferedReader br;\\n StringTokenizer st;\\n\\n public FastReader()\\n {\\n br = new BufferedReader(\\n new InputStreamReader(System.in));\\n }\\n\\n String next()\\n {\\n while (st == null || !st.hasMoreElements()) {\\n try {\\n st = new StringTokenizer(br.readLine());\\n }\\n catch (IOException e) {\\n e.printStackTrace();\\n }\\n }\\n return st.nextToken();\\n }\\n\\n int nextInt() { return Integer.parseInt(next()); }\\n\\n long nextLong() { return Long.parseLong(next()); }\\n\\n double nextDouble()\\n {\\n return Double.parseDouble(next());\\n }\\n\\n String nextLine()\\n {\\n String str = \\\"\\\";\\n try {\\n str = br.readLine();\\n }\\n catch (IOException e) {\\n e.printStackTrace();\\n }\\n return str;\\n }\\n }\\n\\n public static void print(String s) {\\n System.out.println(s);\\n }\\n\\n public static void main(String[] args) {\\n FastReader sc = new FastReader();\\n\\n int t = 1;\\n t = sc.nextInt();\\n\\n for(int i = 0; i\\nusing namespace std;\\nconst int MAXN = 1e5 + 5;\\nlong long dp[MAXN];\\nvector arr;\\nint to_del[MAXN];\\nvector print_ans;\\nbool check() {\\n for (auto i : print_ans)\\n if (i != 0) return false;\\n return true;\\n}\\nint main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n ;\\n int n;\\n cin >> n;\\n for (int i = 0; i < n; i++) {\\n int x;\\n cin >> x;\\n arr.push_back(x);\\n }\\n sort(arr.begin(), arr.end());\\n reverse(arr.begin(), arr.end());\\n int zeroes = 0;\\n int sum = 0;\\n for (int i = 0; i < n; i++) {\\n if (arr[i] == 0) zeroes++;\\n sum += arr[i];\\n }\\n if (zeroes == 0) {\\n cout << -1 << endl;\\n return 0;\\n } else {\\n if (sum % 3 == 0) {\\n for (int i = 0; i < n; i++) print_ans.push_back(arr[i]);\\n } else if (sum % 3 == 1) {\\n bool found = false;\\n for (int i = n - 1; i >= 0; i--) {\\n if (arr[i] % 3 == 1) {\\n to_del[i] = 1;\\n found = true;\\n break;\\n }\\n }\\n if (found) {\\n for (int i = 0; i < n; i++) {\\n if (to_del[i] == 0) print_ans.push_back(arr[i]);\\n }\\n } else {\\n int find_two = 0;\\n for (int i = n - 1; i >= 0; i--) {\\n if (arr[i] % 3 == 2) {\\n to_del[i] = 1;\\n find_two++;\\n if (find_two == 2) break;\\n }\\n }\\n if (find_two == 2) {\\n for (int i = 0; i < n; i++) {\\n if (to_del[i] == 0) print_ans.push_back(arr[i]);\\n }\\n } else {\\n cout << -1 << endl;\\n return 0;\\n }\\n }\\n } else {\\n bool found = false;\\n for (int i = n - 1; i >= 0; i--) {\\n if (arr[i] % 3 == 2) {\\n to_del[i] = 1;\\n found = true;\\n break;\\n }\\n }\\n if (found) {\\n for (int i = 0; i < n; i++) {\\n if (to_del[i] == 0) print_ans.push_back(arr[i]);\\n }\\n } else {\\n int find_two = 0;\\n for (int i = n - 1; i >= 0; i--) {\\n if (arr[i] % 3 == 1) {\\n to_del[i] = 1;\\n find_two++;\\n ...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Alice and Bob are playing a game on a matrix, consisting of 2 rows and m columns. The cell in the i-th row in the j-th column contains a_{i, j} coins in it.\\n\\nInitially, both Alice and Bob are standing in a cell (1, 1). They are going to perform a sequence of moves to reach a cell (2, m).\\n\\nThe possible moves are: \\n\\n * Move right \u2014 from some cell (x, y) to (x, y + 1); \\n * Move down \u2014 from some cell (x, y) to (x + 1, y). \\n\\n\\n\\nFirst, Alice makes all her moves until she reaches (2, m). She collects the coins in all cells she visit (including the starting cell).\\n\\nWhen Alice finishes, Bob starts his journey. He also performs the moves to reach (2, m) and collects the coins in all cells that he visited, but Alice didn't.\\n\\nThe score of the game is the total number of coins Bob collects.\\n\\nAlice wants to minimize the score. Bob wants to maximize the score. What will the score of the game be if both players play optimally?\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of testcases.\\n\\nThen the descriptions of t testcases follow.\\n\\nThe first line of the testcase contains a single integer m (1 \u2264 m \u2264 10^5) \u2014 the number of columns of the matrix.\\n\\nThe i-th of the next 2 lines contain m integers a_{i,1}, a_{i,2}, ..., a_{i,m} (1 \u2264 a_{i,j} \u2264 10^4) \u2014 the number of coins in the cell in the i-th row in the j-th column of the matrix.\\n\\nThe sum of m over all testcases doesn't exceed 10^5.\\n\\nOutput\\n\\nFor each testcase print a single integer \u2014 the score of the game if both players play optimally.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3\\n1 3 7\\n3 5 1\\n3\\n1 3 9\\n3 5 1\\n1\\n4\\n7\\n\\n\\nOutput\\n\\n\\n7\\n8\\n0\\n\\nNote\\n\\nThe paths for the testcases are shown on the following pictures. Alice's path is depicted in red and Bob's path is depicted in blue.\\n\\n\\n#incl\",\"targets\":\"ude \\nusing namespace std;\\nvoid fast(void) __attribute__((constructor));\\nvoid fast(void) {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n}\\nvoid solve() {\\n long long m;\\n cin >> m;\\n vector a(m), b(m);\\n for (long long i = 0; i < m; ++i) cin >> a[i];\\n for (long long i = 0; i < m; ++i) cin >> b[i];\\n vector pref(m + 1);\\n for (long long i = 0; i < m; ++i) {\\n pref[i + 1] = pref[i] + b[i];\\n }\\n vector suf(m + 1);\\n for (long long i = m - 1; i >= 0; --i) {\\n suf[i] = suf[i + 1] + a[i];\\n }\\n long long ans = (long long)1e9;\\n for (long long i = 0; i < m; ++i) {\\n ans = min(ans, max(pref[i], suf[i + 1]));\\n }\\n cout << ans;\\n}\\nsigned main(void) {\\n long long t;\\n cin >> t;\\n while (t--) {\\n solve();\\n cout << \\\"\\\\n\\\";\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in PYTHON3?\\nYou are given two strings s and t, both consisting of lowercase English letters. You are going to type the string s character by character, from the first character to the last one.\\n\\nWhen typing a character, instead of pressing the button corresponding to it, you can press the \\\"Backspace\\\" button. It deletes the last character you have typed among those that aren't deleted yet (or does nothing if there are no characters in the current string). For example, if s is \\\"abcbd\\\" and you press Backspace instead of typing the first and the fourth characters, you will get the string \\\"bd\\\" (the first press of Backspace deletes no character, and the second press deletes the character 'c'). Another example, if s is \\\"abcaa\\\" and you press Backspace instead of the last two letters, then the resulting text is \\\"a\\\".\\n\\nYour task is to determine whether you can obtain the string t, if you type the string s and press \\\"Backspace\\\" instead of typing several (maybe zero) characters of s.\\n\\nInput\\n\\nThe first line contains a single integer q (1 \u2264 q \u2264 10^5) \u2014 the number of test cases.\\n\\nThe first line of each test case contains the string s (1 \u2264 |s| \u2264 10^5). Each character of s is a lowercase English letter.\\n\\nThe second line of each test case contains the string t (1 \u2264 |t| \u2264 10^5). Each character of t is a lowercase English letter.\\n\\nIt is guaranteed that the total number of characters in the strings over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, print \\\"YES\\\" if you can obtain the string t by typing the string s and replacing some characters with presses of \\\"Backspace\\\" button, or \\\"NO\\\" if you cannot.\\n\\nYou may print each letter in any case (YES, yes, Yes will all be recognized as positive answer, NO, no and nO will all be recognized as negative answer).\\n\\nExample\\n\\nInput\\n\\n\\n4\\nababa\\nba\\nababa\\nbb\\naaa\\naaaa\\naababa\\nababa\\n\\n\\nOutput\\n\\n\\nYES\\nNO\\nNO\\nYES\\n\\nNote\\n\\nConsider the example test from the statement.\\n\\nIn order to obtain \\\"ba\\\" from \\\"ababa\\\", you may press Backspace instead of typing the first and the fourth characters.\\n\\nThere's no way...\",\"targets\":\"import bisect\\nimport math\\nimport collections\\nimport sys\\nimport copy\\nfrom functools import reduce\\nimport decimal\\n\\nsys.setrecursionlimit(10 ** 9)\\ndecimal.getcontext().rounding = decimal.ROUND_HALF_UP\\n\\ngraphDict = collections.defaultdict\\nqueue = collections.deque\\n\\n\\nclass Graphs:\\n def __init__(self):\\n self.graph = graphDict(list)\\n\\n def add_edge(self, u, v):\\n self.graph[u].append(v)\\n\\n def dfs_utility(self, nodes, visited_nodes):\\n visited_nodes.add(nodes)\\n for neighbour in self.graph[nodes]:\\n if neighbour not in visited_nodes:\\n self.dfs_utility(neighbour, visited_nodes)\\n else:\\n return neighbour\\n\\n def dfs(self, node):\\n Visited = set()\\n self.dfs_utility(node, Visited)\\n\\n def bfs(self, node):\\n visited = set()\\n if node not in visited:\\n queue.append(node)\\n visited.add(node)\\n while queue:\\n parent = queue.popleft()\\n print(parent)\\n for item in self.graph[parent]:\\n if item not in visited:\\n queue.append(item)\\n visited.add(item)\\n\\n\\ndef rounding(n):\\n return int(decimal.Decimal(f'{n}').to_integral_value())\\n\\n\\ndef factors(n):\\n return set(reduce(list.__add__,\\n ([i, n \\/\\/ i] for i in range(1, int(n ** 0.5) + 1) if n % i == 0)))\\n\\n\\ndef inp():\\n return sys.stdin.readline().strip()\\n\\n\\ndef map_inp(v_type):\\n return map(v_type, inp().split())\\n\\n\\ndef list_inp(v_type):\\n return list(map_inp(v_type))\\n\\n\\n######################################## Solution ####################################\\n\\nfor _ in range(int(inp())):\\n s = inp()\\n t = inp()\\n j = 0\\n if len(t) > len(s):\\n print(\\\"NO\\\")\\n else:\\n ans = \\\"YES\\\"\\n clone = \\\"\\\"\\n j = len(t) - 1\\n i = len(s) - 1\\n while i > -1:\\n if s[i] == t[j]:\\n clone += t[j]\\n j -= 1\\n i -= 1\\n else:\\n i -= 2\\n if j < 0:\\n ...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Dr .: Peter, I've finally done it.\\nPeter: What's wrong, Dr. David? Is it a silly invention again?\\nDr .: This table, this table.\\n\\n\\n| Character | Sign\\n--- | ---\\n(Blank) | 101\\n'| 000000\\n, | 000011\\n-| 10010001\\n. | 010001\\n? | 000001\\nA | 100101\\nB | 10011010\\n| Character | Sign\\n--- | ---\\nC | 0101\\nD | 0001\\nE | 110\\nF | 01001\\nG | 10011011\\nH | 010000\\nI | 0111\\nJ | 10011000\\n| Character | Sign\\n--- | ---\\nK | 0110\\nL | 00100\\nM | 10011001\\nN | 10011110\\nO | 00101\\nP | 111\\nQ | 10011111\\nR | 1000\\n| Character | Sign\\n--- | ---\\nS | 00110\\nT | 00111\\nU | 10011100\\nV | 10011101\\nW | 000010\\nX | 10010010\\nY | 10010011\\nZ | 10010000\\n\\n\\n\\nPeter: What? This table is.\\nDr .: Okay, just do what you say. First, write your name on a piece of paper.\\nPeter: Yes, \\\"PETER POTTER\\\".\\nDr .: Then, replace each character with the \\\"code\\\" in this table.\\nPeter: Well, change \\\"P\\\" to \\\"111\\\" and \\\"E\\\" to \\\"110\\\" ... It's quite annoying.\\n\\n\\n111 110 00111 110 1000 101 111 00101 00111 00111 110 1000\\n\\n\\nbecame. It looks like a barcode.\\nDr .: All right. Then connect all the replaced strings and separate them by 5 characters.\\nPeter: Yes, if you connect and separate.\\n\\n\\n11111 00011 11101 00010 11110 01010 01110 01111 10100 0\\n\\n\\nIt turned out to be something like this. But what about the last \\\"0\\\" guy?\\nDr .: Add 0 to make it 5 letters.\\nPeter: Well, there is only one 0 at the end, so I should add four more 0s. I was able to do it.\\n\\n\\n\\n11111 00011 11101 00010 11110 01010 01110 01111 10100 00000\\n\\n\\nDr .: Next, use this table.\\n\\n\\n| Sign | Character\\n--- | ---\\n00000 | A\\n00001 | B\\n00010 | C\\n00011 | D\\n00100 | E\\n00101 | F\\n00110 | G\\n00111 | H\\n| Sign | Character\\n--- | ---\\n01000 | I\\n01001 | J\\n01010 | K\\n01011 | L\\n01100 | M\\n01101 | N\\n01110 | O\\n01111 | P\\n| Sign | Character\\n--- | ---\\n10000 | Q\\n10001 | R\\n10010 | S\\n10011 | T\\n10100 | U\\n10101 | V\\n10110 | W\\n10111 | X\\n| Sign | Character\\n--- | ---\\n11000 | Y\\n11001 | Z\\n11010 | (blank)\\n11011 | ..\\n11100 |,\\n11101 |-\\n11110 |'\\n11111 |?\\n\\n\\n\\nPeter: How do you use this ... yeah! Now you're going to replace the code with a letter!\\nDr .: That's right. If it is \\\"11111\\\", go to \\\"?\\\",...\\n#incl\",\"targets\":\"ude \\n#include \\n\\nusing namespace std;\\n\\nchar c1[32] = {' ','\\\\'',',','-','.','?','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'};\\nstring s1[32] = {\\\"101\\\", \\\"000000\\\",\\\"000011\\\",\\\"10010001\\\",\\\"010001\\\",\\\"000001\\\",\\\"100101\\\",\\\"10011010\\\",\\n\\t\\t\\t\\t \\\"0101\\\",\\\"0001\\\",\\\"110\\\",\\\"01001\\\",\\\"10011011\\\",\\\"010000\\\",\\\"0111\\\",\\\"10011000\\\",\\n\\t\\t\\t\\t \\\"0110\\\",\\\"00100\\\",\\\"10011001\\\",\\\"10011110\\\",\\\"00101\\\",\\\"111\\\",\\\"10011111\\\",\\\"1000\\\",\\n\\t\\t\\t\\t \\\"00110\\\",\\\"00111\\\",\\\"10011100\\\",\\\"10011101\\\",\\\"000010\\\",\\\"10010010\\\",\\\"10010011\\\",\\\"10010000\\\"};\\n\\nstring s2[32] = {\\\"00000\\\", \\\"00001\\\", \\\"00010\\\", \\\"00011\\\", \\\"00100\\\", \\\"00101\\\", \\\"00110\\\", \\\"00111\\\", \\n\\t\\t\\t\\t \\\"01000\\\", \\\"01001\\\", \\\"01010\\\", \\\"01011\\\", \\\"01100\\\", \\\"01101\\\", \\\"01110\\\", \\\"01111\\\", \\n\\t\\t\\t\\t \\\"10000\\\", \\\"10001\\\", \\\"10010\\\", \\\"10011\\\", \\\"10100\\\", \\\"10101\\\", \\\"10110\\\", \\\"10111\\\", \\n\\t\\t\\t\\t \\\"11000\\\", \\\"11001\\\", \\\"11010\\\", \\\"11011\\\", \\\"11100\\\", \\\"11101\\\", \\\"11110\\\", \\\"11111\\\"};\\nchar c2[32] = {'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z', ' ', '.',',','-','\\\\'','?'};\\n\\nvoid solve()\\n{\\n\\tstring s;\\n\\twhile(getline(cin, s))\\n\\t{\\n\\t\\tstring binary;\\n\\t\\tfor(int i = 0; i < s.size(); ++i)\\n\\t\\t{\\n\\t\\t\\tfor(int j = 0; j < 32; ++j)\\n\\t\\t\\t{\\n\\t\\t\\t\\tif(s[i] == c1[j])\\n\\t\\t\\t\\t{\\n\\t\\t\\t\\t\\tbinary += s1[j];\\n\\t\\t\\t\\t}\\n\\t\\t\\t}\\n\\t\\t}\\n\\t\\twhile(binary.size() % 5)\\n\\t\\t{\\n\\t\\t\\tbinary += '0';\\n\\t\\t}\\n\\t\\t\\n\\t\\tstring ans;\\n\\t\\tfor(int i = 0; i < binary.size(); i += 5)\\n\\t\\t{\\n\\t\\t\\tstring temp;\\n\\t\\t\\tfor(int j = 0; j < 5; ++j)\\n\\t\\t\\t{\\n\\t\\t\\t\\ttemp += binary[i + j];\\n\\t\\t\\t}\\n\\t\\t\\tfor(int j = 0; j < 32; ++j)\\n\\t\\t\\t{\\n\\t\\t\\t\\tif(temp == s2[j])\\n\\t\\t\\t\\t{\\n\\t\\t\\t\\t\\tans += c2[j];\\n\\t\\t\\t\\t}\\n\\t\\t\\t}\\n\\t\\t}\\n\\t\\tcout << ans << endl;\\n\\t}\\n}\\n\\nint main()\\n{\\n\\tsolve();\\n\\treturn(0);\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"The new generation external memory contains an array of integers a[1 \u2026 n] = [a_1, a_2, \u2026, a_n].\\n\\nThis type of memory does not support changing the value of an arbitrary element. Instead, it allows you to cut out any segment of the given array, cyclically shift (rotate) it by any offset and insert it back into the same place.\\n\\nTechnically, each cyclic shift consists of two consecutive actions: \\n\\n 1. You may select arbitrary indices l and r (1 \u2264 l < r \u2264 n) as the boundaries of the segment. \\n 2. Then you replace the segment a[l \u2026 r] with it's cyclic shift to the left by an arbitrary offset d. The concept of a cyclic shift can be also explained by following relations: the sequence [1, 4, 1, 3] is a cyclic shift of the sequence [3, 1, 4, 1] to the left by the offset 1 and the sequence [4, 1, 3, 1] is a cyclic shift of the sequence [3, 1, 4, 1] to the left by the offset 2. \\n\\n\\n\\nFor example, if a = [1, \\\\color{blue}{3, 2, 8}, 5], then choosing l = 2, r = 4 and d = 2 yields a segment a[2 \u2026 4] = [3, 2, 8]. This segment is then shifted by the offset d = 2 to the left, and you get a segment [8, 3, 2] which then takes the place of of the original elements of the segment. In the end you get a = [1, \\\\color{blue}{8, 3, 2}, 5].\\n\\nSort the given array a using no more than n cyclic shifts of any of its segments. Note that you don't need to minimize the number of cyclic shifts. Any method that requires n or less cyclic shifts will be accepted.\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases.\\n\\nThe next 2t lines contain the descriptions of the test cases. \\n\\nThe first line of each test case description contains an integer n (2 \u2264 n \u2264 50) \u2014 the length of the array. The second line consists of space-separated elements of the array a_i (-10^9 \u2264 a_i \u2264 10^9). Elements of array a may repeat and don't have to be unique.\\n\\nOutput\\n\\nPrint t answers to all input test cases. \\n\\nThe first line of the answer of each test case should contain an integer k (0 \u2264 k \u2264 n) \u2014 the number of actions to sort the array....\\nUsing python3 can you solve the prior task?\",\"targets\":\"def rotate(arr, left, cnt):\\n return arr[:left] + arr[left+cnt:] + arr[left:left+cnt]\\n \\nfor _ in range(int(input())):\\n n = int(input())\\n a = list(map(int, input().split()))\\n\\n st = sorted(a)\\n\\n ans = []\\n for i in range(1, n+1):\\n # print('=>', a)\\n if a[i-1] != st[i-1]:\\n index = a.index(st[i-1], i-1)\\n r = index - i + 1\\n\\n # print(i, r, index)\\n\\n ans.append((i, n, r))\\n a = rotate(a, i-1, r)\\n # print('!=', a)\\n \\n print(len(ans))\\n\\n for x in ans:\\n print(*x)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Monocarp is playing a computer game. Now he wants to complete the first level of this game.\\n\\nA level is a rectangular grid of 2 rows and n columns. Monocarp controls a character, which starts in cell (1, 1) \u2014 at the intersection of the 1-st row and the 1-st column.\\n\\nMonocarp's character can move from one cell to another in one step if the cells are adjacent by side and\\/or corner. Formally, it is possible to move from cell (x_1, y_1) to cell (x_2, y_2) in one step if |x_1 - x_2| \u2264 1 and |y_1 - y_2| \u2264 1. Obviously, it is prohibited to go outside the grid.\\n\\nThere are traps in some cells. If Monocarp's character finds himself in such a cell, he dies, and the game ends.\\n\\nTo complete a level, Monocarp's character should reach cell (2, n) \u2014 at the intersection of row 2 and column n.\\n\\nHelp Monocarp determine if it is possible to complete the level.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 100) \u2014 the number of test cases. Then the test cases follow. Each test case consists of three lines.\\n\\nThe first line contains a single integer n (3 \u2264 n \u2264 100) \u2014 the number of columns.\\n\\nThe next two lines describe the level. The i-th of these lines describes the i-th line of the level \u2014 the line consists of the characters '0' and '1'. The character '0' corresponds to a safe cell, the character '1' corresponds to a trap cell.\\n\\nAdditional constraint on the input: cells (1, 1) and (2, n) are safe.\\n\\nOutput\\n\\nFor each test case, output YES if it is possible to complete the level, and NO otherwise.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n3\\n000\\n000\\n4\\n0011\\n1100\\n4\\n0111\\n1110\\n6\\n010101\\n101010\\n\\n\\nOutput\\n\\n\\nYES\\nYES\\nNO\\nYES\\n\\nNote\\n\\nConsider the example from the statement.\\n\\nIn the first test case, one of the possible paths is (1, 1) \u2192 (2, 2) \u2192 (2, 3).\\n\\nIn the second test case, one of the possible paths is (1, 1) \u2192 (1, 2) \u2192 (2, 3) \u2192 (2, 4).\\n\\nIn the fourth test case, one of the possible paths is (1, 1) \u2192 (2, 2) \u2192 (1, 3) \u2192 (2, 4) \u2192 (1, 5) \u2192 (2, 6).\\nSolve the task in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nint main() {\\n long t;\\n cin >> t;\\n while (t--) {\\n long n;\\n cin >> n;\\n string s1;\\n string s2;\\n cin >> s1;\\n cin >> s2;\\n int flag = 0;\\n for (long i = 1; i < n; i++) {\\n if (s1[i] == '1' && s2[i] == '1') {\\n flag = 1;\\n break;\\n }\\n }\\n if (s2[n - 1] == '1') {\\n flag = 1;\\n }\\n if (flag == 1) {\\n cout << \\\"NO\\\" << endl;\\n } else {\\n cout << \\\"YES\\\" << endl;\\n }\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Monocarp has got an array a consisting of n integers. Let's denote k as the mathematic mean of these elements (note that it's possible that k is not an integer). \\n\\nThe mathematic mean of an array of n elements is the sum of elements divided by the number of these elements (i. e. sum divided by n).\\n\\nMonocarp wants to delete exactly two elements from a so that the mathematic mean of the remaining (n - 2) elements is still equal to k.\\n\\nYour task is to calculate the number of pairs of positions [i, j] (i < j) such that if the elements on these positions are deleted, the mathematic mean of (n - 2) remaining elements is equal to k (that is, it is equal to the mathematic mean of n elements of the original array a).\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of testcases.\\n\\nThe first line of each testcase contains one integer n (3 \u2264 n \u2264 2 \u22c5 10^5) \u2014 the number of elements in the array.\\n\\nThe second line contains a sequence of integers a_1, a_2, ..., a_n (0 \u2264 a_i \u2264 10^{9}), where a_i is the i-th element of the array.\\n\\nThe sum of n over all testcases doesn't exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nPrint one integer \u2014 the number of pairs of positions [i, j] (i < j) such that if the elements on these positions are deleted, the mathematic mean of (n - 2) remaining elements is equal to k (that is, it is equal to the mathematic mean of n elements of the original array a).\\n\\nExample\\n\\nInput\\n\\n\\n4\\n4\\n8 8 8 8\\n3\\n50 20 10\\n5\\n1 4 7 3 5\\n7\\n1 2 3 4 5 6 7\\n\\n\\nOutput\\n\\n\\n6\\n0\\n2\\n3\\n\\nNote\\n\\nIn the first example, any pair of elements can be removed since all of them are equal.\\n\\nIn the second example, there is no way to delete two elements so the mathematic mean doesn't change.\\n\\nIn the third example, it is possible to delete the elements on positions 1 and 3, or the elements on positions 4 and 5.\\nfrom\",\"targets\":\"sys import stdin, stdout\\nip = lambda : stdin.readline().rstrip(\\\"\\\\r\\\\n\\\")\\nips = lambda : ip().split()\\nmp = lambda : map(int, ips())\\nls = lambda : list(mp())\\nout = lambda x, end='\\\\n': stdout.write(f\\\"{x}{end}\\\")\\nfrom collections import defaultdict\\n# inf = float(\\\"inf\\\")\\n# mod = 10**9+7\\n \\nfor _ in range(int(ip())):\\n n = int(ip())\\n a = ls()\\n s = sum(a)*2\\n if s%n != 0:\\n out(0)\\n else:\\n s \\/\\/= n\\n d = defaultdict(int)\\n c = 0\\n for i in range(n):\\n if d.get(s-a[i], -1) != -1:\\n c += d[s-a[i]]\\n d[a[i]] += 1\\n out(c)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Monocarp is playing yet another computer game. In this game, his character has to kill a dragon. The battle with the dragon lasts 100^{500} seconds, during which Monocarp attacks the dragon with a poisoned dagger. The i-th attack is performed at the beginning of the a_i-th second from the battle start. The dagger itself does not deal damage, but it applies a poison effect on the dragon, which deals 1 damage during each of the next k seconds (starting with the same second when the dragon was stabbed by the dagger). However, if the dragon has already been poisoned, then the dagger updates the poison effect (i.e. cancels the current poison effect and applies a new one).\\n\\nFor example, suppose k = 4, and Monocarp stabs the dragon during the seconds 2, 4 and 10. Then the poison effect is applied at the start of the 2-nd second and deals 1 damage during the 2-nd and 3-rd seconds; then, at the beginning of the 4-th second, the poison effect is reapplied, so it deals exactly 1 damage during the seconds 4, 5, 6 and 7; then, during the 10-th second, the poison effect is applied again, and it deals 1 damage during the seconds 10, 11, 12 and 13. In total, the dragon receives 10 damage.\\n\\nMonocarp knows that the dragon has h hit points, and if he deals at least h damage to the dragon during the battle \u2014 he slays the dragon. Monocarp has not decided on the strength of the poison he will use during the battle, so he wants to find the minimum possible value of k (the number of seconds the poison effect lasts) that is enough to deal at least h damage to the dragon.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases.\\n\\nThe first line of the test case contains two integers n and h (1 \u2264 n \u2264 100; 1 \u2264 h \u2264 10^{18}) \u2014 the number of Monocarp's attacks and the amount of damage that needs to be dealt.\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^9; a_i < a_{i + 1}), where a_i is the second when the i-th attack is performed.\\n\\nOutput\\n\\nFor each test case, print a single...\\nSolve the task in JAVA.\",\"targets\":\"import java.util.*;\\nimport java.lang.*;\\nimport java.io.*;\\n\\n\\npublic class Main {\\n\\n\\tpublic static void solve() {\\n\\t\\tint n = in.nextInt();\\n\\t\\tlong h = in.nextLong();\\n\\t\\tint[] a = array(n);\\n\\t\\tfor (int i = 0; i < n - 1; i++) {\\n\\t\\t\\ta[i] = a[i + 1] - a[i];\\n\\t\\t}\\n\\t\\tlong low = 1;\\n\\t\\tlong high = (long)1e18;\\n\\t\\twhile (low <= high) {\\n\\t\\t\\tlong mid = low + (high - low) \\/ 2;\\n\\t\\t\\tlong val = compute(a, mid);\\n\\t\\t\\tlong valMinus = compute(a, mid - 1);\\n\\t\\t\\tif (val == h) {\\n\\t\\t\\t\\t\\/\\/ print(\\\"From 1\\\");\\n\\t\\t\\t\\tout.append(mid + \\\"\\\\n\\\");\\n\\t\\t\\t\\treturn;\\n\\t\\t\\t}\\n\\t\\t\\tif (val >= h && valMinus < h) {\\n\\t\\t\\t\\tout.append(mid + \\\"\\\\n\\\");\\n\\t\\t\\t\\treturn;\\n\\t\\t\\t}\\n\\t\\t\\tif (val > h) {\\n\\t\\t\\t\\thigh = mid - 1;\\n\\t\\t\\t}\\n\\t\\t\\tif (val < h) {\\n\\t\\t\\t\\tlow = mid + 1;\\n\\t\\t\\t}\\n\\t\\t}\\n\\n\\t}\\n\\tstatic long compute(int[] a, long k) {\\n\\t\\tlong val = 0l;\\n\\t\\tfor (int i = 0 ; i < a.length - 1; i++) {\\n\\t\\t\\tval += Math.min(a[i], k);\\n\\t\\t}\\n\\t\\tval += k;\\n\\t\\treturn val;\\n\\t}\\n\\n\\tpublic static void main (String[] args) throws java.lang.Exception {\\n\\t\\t\\/\\/ your code goes here\\n\\t\\tint t = in.nextInt();\\n\\t\\twhile (t-- != 0) {\\n\\t\\t\\tsolve();\\n\\t\\t}\\n\\t\\tSystem.out.print(out);\\n\\t}\\n\\tpublic static void print(T s) {\\n\\t\\tSystem.out.print(s);\\n\\t}\\n\\tpublic static void println(T s) {\\n\\t\\tSystem.out.println(s);\\n\\t}\\n\\tpublic static void print(int s) {\\n\\t\\tSystem.out.print(s);\\n\\t}\\n\\tpublic static void println(int s) {\\n\\t\\tSystem.out.println(s);\\n\\t}\\n\\n\\tpublic static void print(int[] a) {\\n\\t\\tint k = 0;\\n\\t\\tfor (int i : a) {\\n\\t\\t\\tprint(k++ +\\\":\\\" + i + \\\" \\\");\\n\\t\\t}\\n\\t\\tprintln(\\\"\\\");\\n\\t}\\n\\tpublic static int[] array(int n) {\\n\\t\\tint[] a = new int[n];\\n\\t\\tfor (int i = 0; i < n; i++) {\\n\\t\\t\\ta[i] = in.nextInt();\\n\\t\\t}\\n\\t\\treturn a;\\n\\t}\\n\\tpublic static int[] array1(int n) {\\n\\t\\tint[] a = new int[n + 1];\\n\\t\\tfor (int i = 1; i <= n; i++) {\\n\\t\\t\\ta[i] = in.nextInt();\\n\\t\\t}\\n\\t\\treturn a;\\n\\t}\\n\\n\\n\\tstatic FastReader in = new FastReader();\\n\\tstatic StringBuffer out = new StringBuffer();\\n\\tstatic final int MAX = Integer.MAX_VALUE;\\n\\tstatic final int MIN = Integer.MIN_VALUE;\\n\\tstatic int mod = 1000000007;\\n}\\nclass FastReader {\\n\\tBufferedReader br;\\n\\tStringTokenizer st;\\n\\n\\tpublic FastReader() {\\n\\t\\tbr = new BufferedReader(\\n\\t\\t new...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"This is the easy version of the problem. The only difference between the two versions is the constraint on n. You can make hacks only if all versions of the problem are solved.\\n\\nA forest is an undirected graph without cycles (not necessarily connected).\\n\\nMocha and Diana are friends in Zhijiang, both of them have a forest with nodes numbered from 1 to n, and they would like to add edges to their forests such that: \\n\\n * After adding edges, both of their graphs are still forests. \\n * They add the same edges. That is, if an edge (u, v) is added to Mocha's forest, then an edge (u, v) is added to Diana's forest, and vice versa. \\n\\n\\n\\nMocha and Diana want to know the maximum number of edges they can add, and which edges to add.\\n\\nInput\\n\\nThe first line contains three integers n, m_1 and m_2 (1 \u2264 n \u2264 1000, 0 \u2264 m_1, m_2 < n) \u2014 the number of nodes and the number of initial edges in Mocha's forest and Diana's forest.\\n\\nEach of the next m_1 lines contains two integers u and v (1 \u2264 u, v \u2264 n, u \u2260 v) \u2014 the edges in Mocha's forest.\\n\\nEach of the next m_2 lines contains two integers u and v (1 \u2264 u, v \u2264 n, u \u2260 v) \u2014 the edges in Diana's forest.\\n\\nOutput\\n\\nThe first line contains only one integer h, the maximum number of edges Mocha and Diana can add (in each forest).\\n\\nEach of the next h lines contains two integers u and v (1 \u2264 u, v \u2264 n, u \u2260 v) \u2014 the edge you add each time.\\n\\nIf there are multiple correct answers, you can print any one of them.\\n\\nExamples\\n\\nInput\\n\\n\\n3 2 2\\n1 2\\n2 3\\n1 2\\n1 3\\n\\n\\nOutput\\n\\n\\n0\\n\\n\\nInput\\n\\n\\n5 3 2\\n5 4\\n2 1\\n4 3\\n4 3\\n1 4\\n\\n\\nOutput\\n\\n\\n1\\n2 4\\n\\n\\nInput\\n\\n\\n8 1 2\\n1 7\\n2 6\\n1 5\\n\\n\\nOutput\\n\\n\\n5\\n5 2\\n2 3\\n3 4\\n4 7\\n6 8\\n\\nNote\\n\\nIn the first example, we cannot add any edge.\\n\\nIn the second example, the initial forests are as follows.\\n\\n\\n\\nWe can add an edge (2, 4).\\n\\n\\nThe above is tricky. Write me a correct solution in JAVA.\",\"targets\":\"import java.io.OutputStream;\\nimport java.io.IOException;\\nimport java.io.InputStream;\\nimport java.io.OutputStream;\\nimport java.io.PrintWriter;\\nimport java.io.BufferedWriter;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.util.ArrayList;\\nimport java.util.Objects;\\nimport java.util.StringTokenizer;\\nimport java.io.Writer;\\nimport java.io.OutputStreamWriter;\\nimport java.io.BufferedReader;\\nimport java.io.InputStream;\\n\\n\\/**\\n * Built using CHelper plug-in\\n * Actual solution is at the top\\n *\\/\\npublic class Main {\\n public static void main(String[] args) {\\n InputStream inputStream = System.in;\\n OutputStream outputStream = System.out;\\n InputReader in = new InputReader(inputStream);\\n OutputWriter out = new OutputWriter(outputStream);\\n D1MochaAndDianaEasyVersion solver = new D1MochaAndDianaEasyVersion();\\n solver.solve(1, in, out);\\n out.close();\\n }\\n\\n static class D1MochaAndDianaEasyVersion {\\n public void solve(int testNumber, InputReader in, OutputWriter out) {\\n int n = in.nextInt(), m1 = in.nextInt(), m2 = in.nextInt();\\n UnionFind g1 = new UnionFind(n), g2 = new UnionFind(n);\\n for (int i = 0; i < m1; i++) {\\n g1.unify(in.nextInt() - 1, in.nextInt() - 1);\\n }\\n for (int i = 0; i < m2; i++) {\\n g2.unify(in.nextInt() - 1, in.nextInt() - 1);\\n }\\n ArrayList list = new ArrayList<>();\\n for (int i = 0; i < n; i++) {\\n for (int j = i + 1; j < n; j++) {\\n if (!g1.connected(i, j) && !g2.connected(i, j)) {\\n list.add(new D1MochaAndDianaEasyVersion.Pair(i + 1, j + 1));\\n g1.unify(i, j);\\n g2.unify(i, j);\\n }\\n }\\n }\\n out.println(list.size());\\n for (D1MochaAndDianaEasyVersion.Pair p : list) out.println(p.a + \\\" \\\" + p.b);\\n }\\n\\n static...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Baby Badawy's first words were \\\"AND 0 SUM BIG\\\", so he decided to solve the following problem. Given two integers n and k, count the number of arrays of length n such that:\\n\\n * all its elements are integers between 0 and 2^k-1 (inclusive); \\n * the [bitwise AND](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#AND) of all its elements is 0; \\n * the sum of its elements is as large as possible. \\n\\n\\n\\nSince the answer can be very large, print its remainder when divided by 10^9+7.\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 10) \u2014 the number of test cases you need to solve.\\n\\nEach test case consists of a line containing two integers n and k (1 \u2264 n \u2264 10^{5}, 1 \u2264 k \u2264 20).\\n\\nOutput\\n\\nFor each test case, print the number of arrays satisfying the conditions. Since the answer can be very large, print its remainder when divided by 10^9+7.\\n\\nExample\\n\\nInput\\n\\n\\n2\\n2 2\\n100000 20\\n\\n\\nOutput\\n\\n\\n4\\n226732710\\n\\nNote\\n\\nIn the first example, the 4 arrays are:\\n\\n * [3,0], \\n * [0,3], \\n * [1,2], \\n * [2,1]. \\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\n#define rep(i,a,n) for (int i=a;in;i--)\\n#define repi(it,v) for (auto it=(v).begin();it!=(v).end();it++)\\n#define revi(it,v) for (auto it=(v).rbegin();it!=(v).rend();it++)\\n#define pii pair\\n#define fr first\\n#define sc second\\n#define mpr make_pair\\n#define all(v) (v).begin(),(v).end()\\n#define init(a,i) memset(a,i,sizeof(a))\\n#define vi vector \\n#define vc vector \\n#define pb push_back\\n#define ppb pop_back\\n#define si set \\n#define in insert\\n#define endl \\\"\\\\n\\\"\\n\\n#define L 1000000007 \\/\\/10e9\\n#define mod 100007 \\/\\/10e5\\n\\n#define io ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);\\n#define int long long\\n\\nusing namespace std;\\nsigned main()\\n{\\n io;\\n int T = 1;\\n cin >> T;\\n\\n while (T--)\\n {\\n int n,k;\\n cin>>n>>k;\\n int ans=1;\\n rep(i,0,k)\\n {\\n ans*=n;\\n ans%=L;\\n }\\n cout< map;\\n public static void add(int x,int y,int z)\\n {\\n List list;\\n String s=\\\"\\\"+x+\\\" \\\"+y;\\n if(map.containsKey(s))\\n {\\n list=map.get(s);\\n list.add(z);\\n map.put(s,list);\\n }\\n else {\\n list=new LinkedList<>();\\n list.add(z);\\n map.put(s, list);\\n }\\n }\\n public static void main(String args[])throws IOException{\\n FastReader in=new FastReader(System.in);\\n StringBuilder sb=new StringBuilder();\\n int i,j;\\n int n=in.nextInt();\\n int x,y,z,pre;\\n int freq[]=new int[n+1];\\n Integer ind[]=new Integer[n+1];\\n int ans[]=new int[n+1];\\n for(i=0;i<=n;i++)\\n ind[i]=i;\\n map=new HashMap<>();\\n List list;\\n String s;\\n for(i=0;iInteger.compare(freq[a],freq[b]));\\n y=ind[3];\\n s=\\\"\\\"+ind[1]+\\\" \\\"+ind[3];\\n x=ind[1];\\n if(map.containsKey(s))\\n {\\n ans[1]=ind[1];\\n ans[2]=ind[3];\\n }\\n else\\n {\\n ans[1]=ind[1];\\n ans[2]=ind[4];\\n s=\\\"\\\"+ind[1]+\\\" \\\"+ind[4];\\n y=ind[4];\\n }\\n list=map.get(s);\\n ans[3]=(int)list.get(0);\\n z=ans[3];\\n \\/\\/System.out.println(s);\\n \\/\\/System.out.println(Arrays.toString(ans));\\n for(i=4;i<=n;i++)\\n {\\n s=\\\"\\\"+y+\\\" \\\"+z;\\n \\/\\/System.out.println(s);\\n ...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Some number of people (this number is even) have stood in a circle. The people stand in the circle evenly. They are numbered clockwise starting from a person with the number 1. Each person is looking through the circle's center at the opposite person.\\n\\n A sample of a circle of 6 persons. The orange arrows indicate who is looking at whom.\\n\\nYou don't know the exact number of people standing in the circle (but this number is even, no doubt). It is known that the person with the number a is looking at the person with the number b (and vice versa, of course). What is the number associated with a person being looked at by the person with the number c? If, for the specified a, b, and c, no such circle exists, output -1.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of one line containing three distinct integers a, b, c (1 \u2264 a,b,c \u2264 10^8).\\n\\nOutput\\n\\nFor each test case output in a separate line a single integer d \u2014 the number of the person being looked at by the person with the number c in a circle such that the person with the number a is looking at the person with the number b. If there are multiple solutions, print any of them. Output -1 if there's no circle meeting the given conditions.\\n\\nExample\\n\\nInput\\n\\n\\n7\\n6 2 4\\n2 3 1\\n2 4 10\\n5 3 4\\n1 3 2\\n2 5 4\\n4 3 2\\n\\n\\nOutput\\n\\n\\n8\\n-1\\n-1\\n-1\\n4\\n1\\n-1\\n\\nNote\\n\\nIn the first test case, there's a desired circle of 8 people. The person with the number 6 will look at the person with the number 2 and the person with the number 8 will look at the person with the number 4.\\n\\nIn the second test case, there's no circle meeting the conditions. If the person with the number 2 is looking at the person with the number 3, the circle consists of 2 people because these persons are neighbors. But, in this case, they must have the numbers 1 and 2, but it doesn't meet the problem's conditions.\\n\\nIn the third test case, the only circle with the persons with the numbers 2 and 4 looking at each other consists of 4...\",\"targets\":\"#include \\n#pragma GCC optimize(\\\"unroll-loops\\\")\\n#pragma GCC optimize(\\\"Ofast,no-stack-protector\\\")\\n#pragma GCC target(\\\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,fma\\\")\\n#pragma GCC target(\\\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native\\\")\\n#pragma GCC optimization(\\\"O3\\\")\\n#pragma GCC optimization(\\\"unroll-loops\\\")\\nusing namespace std;\\nint t, a, b, c;\\nvoid ILoveYasashiSenseiForever() {\\n if (a > b) swap(a, b);\\n int all = (b - a) * 2;\\n if (all < max(a, b))\\n cout << \\\"-1\\\\n\\\";\\n else if (c > all)\\n cout << \\\"-1\\\\n\\\";\\n else if (c == all \\/ 2) {\\n cout << all << \\\"\\\\n\\\";\\n } else if (c < all \\/ 2) {\\n cout << c - a + b << \\\"\\\\n\\\";\\n } else\\n cout << c - b + a << \\\"\\\\n\\\";\\n}\\nint main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(0);\\n cout.tie(0);\\n if (fopen(\\\"A\\\"\\n \\\".inp\\\",\\n \\\"r\\\")) {\\n freopen(\\n \\\"A\\\"\\n \\\".inp\\\",\\n \\\"r\\\", stdin);\\n freopen(\\n \\\"A\\\"\\n \\\".out\\\",\\n \\\"w\\\", stdout);\\n }\\n cin >> t;\\n while (t--) {\\n cin >> a >> b >> c;\\n ILoveYasashiSenseiForever();\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"In this task Anna and Maria play the following game. Initially they have a checkered piece of paper with a painted n \u00d7 m rectangle (only the border, no filling). Anna and Maria move in turns and Anna starts. During each move one should paint inside the last-painted rectangle a new lesser rectangle (along the grid lines). The new rectangle should have no common points with the previous one. Note that when we paint a rectangle, we always paint only the border, the rectangles aren't filled.\\n\\nNobody wins the game \u2014 Anna and Maria simply play until they have done k moves in total. Count the number of different ways to play this game.\\n\\nInput\\n\\nThe first and only line contains three integers: n, m, k (1 \u2264 n, m, k \u2264 1000).\\n\\nOutput\\n\\nPrint the single number \u2014 the number of the ways to play the game. As this number can be very big, print the value modulo 1000000007 (109 + 7).\\n\\nExamples\\n\\nInput\\n\\n3 3 1\\n\\n\\nOutput\\n\\n1\\n\\n\\nInput\\n\\n4 4 1\\n\\n\\nOutput\\n\\n9\\n\\n\\nInput\\n\\n6 7 2\\n\\n\\nOutput\\n\\n75\\n\\nNote\\n\\nTwo ways to play the game are considered different if the final pictures are different. In other words, if one way contains a rectangle that is not contained in the other way.\\n\\nIn the first sample Anna, who performs her first and only move, has only one possible action plan \u2014 insert a 1 \u00d7 1 square inside the given 3 \u00d7 3 square.\\n\\nIn the second sample Anna has as much as 9 variants: 4 ways to paint a 1 \u00d7 1 square, 2 ways to insert a 1 \u00d7 2 rectangle vertically, 2 more ways to insert it horizontally and one more way is to insert a 2 \u00d7 2 square.\\\":\",\"targets\":\"#include \\nusing namespace std;\\nconst long long MOD = 1000000000 + 7;\\nlong long n, m, k;\\nlong long F[1009][1009];\\nvoid init() {\\n for (int i = 1; i <= 1000; i++)\\n for (int j = 1; j <= 1000; j++) F[i][j] = 0LL;\\n for (int i = 1; i <= 1000; i++) F[i][0] = 1LL;\\n F[3][1] = 1;\\n for (int i = 4; i <= 1000; i++)\\n for (int j = 1; j <= 1000; j++)\\n F[i][j] =\\n (F[i - 2][j - 1] + F[i - 1][j] + F[i - 1][j] - F[i - 2][j] + MOD) %\\n MOD;\\n}\\nint main() {\\n cin >> n >> m >> k;\\n init();\\n cout << (F[n][k] * F[m][k]) % MOD << \\\"\\\\n\\\";\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Polycarp likes squares and cubes of positive integers. Here is the beginning of the sequence of numbers he likes: 1, 4, 8, 9, ....\\n\\nFor a given number n, count the number of integers from 1 to n that Polycarp likes. In other words, find the number of such x that x is a square of a positive integer number or a cube of a positive integer number (or both a square and a cube simultaneously).\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 20) \u2014 the number of test cases.\\n\\nThen t lines contain the test cases, one per line. Each of the lines contains one integer n (1 \u2264 n \u2264 10^9).\\n\\nOutput\\n\\nFor each test case, print the answer you are looking for \u2014 the number of integers from 1 to n that Polycarp likes.\\n\\nExample\\n\\nInput\\n\\n\\n6\\n10\\n1\\n25\\n1000000000\\n999999999\\n500000000\\n\\n\\nOutput\\n\\n\\n4\\n1\\n6\\n32591\\n32590\\n23125\\n#incl\",\"targets\":\"ude \\nusing namespace std;\\nint countSC(int N) {\\n int res = (int)sqrt(N) + (int)cbrt(N) - (int)(sqrt(cbrt(N)));\\n return res;\\n}\\nint main() {\\n int t;\\n cin >> t;\\n while (t--) {\\n int n;\\n cin >> n;\\n cout << countSC(n) << endl;\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"As you may know, MemSQL has American offices in both San Francisco and Seattle. Being a manager in the company, you travel a lot between the two cities, always by plane.\\n\\nYou prefer flying from Seattle to San Francisco than in the other direction, because it's warmer in San Francisco. You are so busy that you don't remember the number of flights you have made in either direction. However, for each of the last n days you know whether you were in San Francisco office or in Seattle office. You always fly at nights, so you never were at both offices on the same day. Given this information, determine if you flew more times from Seattle to San Francisco during the last n days, or not.\\n\\nInput\\n\\nThe first line of input contains single integer n (2 \u2264 n \u2264 100) \u2014 the number of days.\\n\\nThe second line contains a string of length n consisting of only capital 'S' and 'F' letters. If the i-th letter is 'S', then you were in Seattle office on that day. Otherwise you were in San Francisco. The days are given in chronological order, i.e. today is the last day in this sequence.\\n\\nOutput\\n\\nPrint \\\"YES\\\" if you flew more times from Seattle to San Francisco, and \\\"NO\\\" otherwise.\\n\\nYou can print each letter in any case (upper or lower).\\n\\nExamples\\n\\nInput\\n\\n4\\nFSSF\\n\\n\\nOutput\\n\\nNO\\n\\n\\nInput\\n\\n2\\nSF\\n\\n\\nOutput\\n\\nYES\\n\\n\\nInput\\n\\n10\\nFFFFFFFFFF\\n\\n\\nOutput\\n\\nNO\\n\\n\\nInput\\n\\n10\\nSSFFSFFSFF\\n\\n\\nOutput\\n\\nYES\\n\\nNote\\n\\nIn the first example you were initially at San Francisco, then flew to Seattle, were there for two days and returned to San Francisco. You made one flight in each direction, so the answer is \\\"NO\\\".\\n\\nIn the second example you just flew from Seattle to San Francisco, so the answer is \\\"YES\\\".\\n\\nIn the third example you stayed the whole period in San Francisco, so the answer is \\\"NO\\\".\\n\\nIn the fourth example if you replace 'S' with ones, and 'F' with zeros, you'll get the first few digits of \u03c0 in binary representation. Not very useful information though.\\nUsing python3 can you solve the prior task?\",\"targets\":\"a=int(input())\\na=input()\\nif a[0]==\\\"S\\\" and a[-1]==\\\"F\\\":\\n print(\\\"YES\\\")\\nelse:\\n print(\\\"NO\\\")\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in JAVA?\\nYou are given an array consisting of all integers from [l, r] inclusive. For example, if l = 2 and r = 5, the array would be [2, 3, 4, 5]. What's the minimum number of elements you can delete to make the [bitwise AND](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#AND) of the array non-zero?\\n\\nA bitwise AND is a binary operation that takes two equal-length binary representations and performs the AND operation on each pair of the corresponding bits.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Then t cases follow.\\n\\nThe first line of each test case contains two integers l and r (1 \u2264 l \u2264 r \u2264 2 \u22c5 10^5) \u2014 the description of the array.\\n\\nOutput\\n\\nFor each test case, output a single integer \u2014 the answer to the problem.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n1 2\\n2 8\\n4 5\\n1 5\\n100000 200000\\n\\n\\nOutput\\n\\n\\n1\\n3\\n0\\n2\\n31072\\n\\nNote\\n\\nIn the first test case, the array is [1, 2]. Currently, the bitwise AND is 0, as 1\\\\ \\\\& \\\\ 2 = 0. However, after deleting 1 (or 2), the array becomes [2] (or [1]), and the bitwise AND becomes 2 (or 1). This can be proven to be the optimal, so the answer is 1.\\n\\nIn the second test case, the array is [2, 3, 4, 5, 6, 7, 8]. Currently, the bitwise AND is 0. However, after deleting 4, 5, and 8, the array becomes [2, 3, 6, 7], and the bitwise AND becomes 2. This can be proven to be the optimal, so the answer is 3. Note that there may be other ways to delete 3 elements.\",\"targets\":\"import java.io.IOException;\\nimport java.io.BufferedReader;\\nimport java.io.InputStreamReader;\\nimport java.io.PrintWriter;\\nimport java.util.Arrays;\\nimport java.util.ArrayList;\\nimport java.util.Collections;\\nimport java.lang.Math;\\npublic class AndItsNon_Zero\\n{\\n\\tpublic static void main(String args[]) throws IOException\\n\\t{\\n\\t\\tBufferedReader br = new BufferedReader(new InputStreamReader(System.in));\\n\\t\\tPrintWriter out = new PrintWriter(System.out);\\n\\t\\tint t = Integer.parseInt(br.readLine());\\n\\t\\twhile(t-->0)\\n\\t\\t{\\n\\t\\t\\tString input[] = br.readLine().split(\\\" \\\");\\n\\t\\t\\tint in = Integer.parseInt(input[0]);\\n\\t\\t\\tint r = Integer.parseInt(input[1]);\\n\\t\\t\\tif(in ==r){out.println(0);continue;}\\n\\t\\t\\tString inb = Integer.toBinaryString(in);\\n\\t\\t\\tString rb = Integer.toBinaryString(r);\\n\\t\\t\\tint lin = inb.length();\\n\\t\\t\\tint lr = rb.length();\\n\\t\\t\\tint result[] = new int[lr];\\n\\t\\t\\tint diff = r - in + 1;\\n\\t\\t\\tint temp = 0, temp2 = 0;\\n\\t\\t\\tfor(int i = 0; irem)\\n\\t\\t\\t\\t{\\n\\t\\t\\t\\t\\t\\/\\/if(Math.pow(2,j+1)>r)\\n\\t\\t\\t\\t\\t\\t\\/\\/result[j] = diff;\\n\\t\\t\\t\\t\\tif(Math.pow(2,j)+in-rem>r)\\n\\t\\t\\t\\t\\t\\tresult[j] = diff;\\n\\t\\t\\t\\t\\telse\\n\\t\\t\\t\\t\\t{\\n\\t\\t\\t\\t\\t\\ttemp = (diff - ((int) Math.pow(2,j) -rem))\\/((int)Math.pow(2,j+1));\\n\\t\\t\\t\\t\\t\\ttemp = temp*(int)Math.pow(2,j);\\n\\t\\t\\t\\t\\t\\ttemp2 = (diff - ((int) Math.pow(2,j) -rem))%((int)Math.pow(2,j+1));\\n\\t\\t\\t\\t\\t\\tif(temp2>Math.pow(2,j))\\n\\t\\t\\t\\t\\t\\t\\ttemp = temp + temp2-(int)Math.pow(2,j);\\n\\t\\t\\t\\t\\t\\tresult[j] = temp+(int)Math.pow(2,j) - rem;\\n\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t}\\n\\t\\t\\t\\telse\\n\\t\\t\\t\\t{\\n\\t\\t\\t\\t\\tif(rem == (int) Math.pow(2,j))\\n\\t\\t\\t\\t\\t{\\n\\t\\t\\t\\t\\t\\ttemp = (diff)\\/((int)Math.pow(2,j+1));\\n\\t\\t\\t\\t\\t\\ttemp = temp*(int)Math.pow(2,j);\\n\\t\\t\\t\\t\\t\\ttemp2 = (diff)%((int)Math.pow(2,j+1));\\n\\t\\t\\t\\t\\t\\tif(temp2>Math.pow(2,j))\\n\\t\\t\\t\\t\\t\\t\\ttemp = temp + temp2 - (int)Math.pow(2,j);\\n\\t\\t\\t\\t\\t\\tresult[j] = temp;\\n\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t\\telse\\n\\t\\t\\t\\t\\t{\\n\\t\\t\\t\\t\\t\\t\\/\\/if(Math.pow(2,j+1)+Math.pow(2,j)>r)\\n\\t\\t\\t\\t\\t\\t\\t\\/\\/result[j] = 0;\\n\\t\\t\\t\\t\\t\\tif(in+Math.pow(2,j+1)-rem>r)\\n\\t\\t\\t\\t\\t\\t\\tresult[j] = 0;\\n\\t\\t\\t\\t\\t\\telse\\n\\t\\t\\t\\t\\t\\t{\\n\\t\\t\\t\\t\\t\\t\\ttemp = (diff - ((int)Math.pow(2,j+1)-rem))\\/((int)Math.pow(2,j+1));\\n\\t\\t\\t\\t\\t\\t\\ttemp =...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"2^k teams participate in a playoff tournament. The tournament consists of 2^k - 1 games. They are held as follows: first of all, the teams are split into pairs: team 1 plays against team 2, team 3 plays against team 4 (exactly in this order), and so on (so, 2^{k-1} games are played in that phase). When a team loses a game, it is eliminated, and each game results in elimination of one team (there are no ties). After that, only 2^{k-1} teams remain. If only one team remains, it is declared the champion; otherwise, 2^{k-2} games are played: in the first one of them, the winner of the game \\\"1 vs 2\\\" plays against the winner of the game \\\"3 vs 4\\\", then the winner of the game \\\"5 vs 6\\\" plays against the winner of the game \\\"7 vs 8\\\", and so on. This process repeats until only one team remains.\\n\\nAfter the tournament ends, the teams are assigned places according to the tournament phase when they were eliminated. In particular:\\n\\n * the winner of the tournament gets place 1; \\n * the team eliminated in the finals gets place 2; \\n * both teams eliminated in the semifinals get place 3; \\n * all teams eliminated in the quarterfinals get place 5; \\n * all teams eliminated in the 1\\/8 finals get place 9, and so on. \\n\\n\\n\\nFor example, this picture describes one of the possible ways the tournament can go with k = 3, and the resulting places of the teams:\\n\\n\\n\\nAfter a tournament which was conducted by the aforementioned rules ended, its results were encoded in the following way. Let p_i be the place of the i-th team in the tournament. The hash value of the tournament h is calculated as h = (\u2211 _{i=1}^{2^k} i \u22c5 A^{p_i}) mod 998244353, where A is some given integer.\\n\\nUnfortunately, due to a system crash, almost all tournament-related data was lost. The only pieces of data that remain are the values of k, A and h. You are asked to restore the resulting placing of the teams in the tournament, if it is possible at all.\\n\\nInput\\n\\nThe only line contains three integers k, A and h (1 \u2264 k \u2264 5; 100 \u2264 A \u2264 10^8; 0 \u2264 h \u2264 998244352).\\n\\nOutput\\n\\nIf...\\nSolve the task in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nconst int mod = 998244353;\\nint k, A, h, m;\\nint a[1000] = {}, b[161616] = {}, cnt, f[10100], d[151515] = {},\\n ans[111111] = {};\\nunordered_map mp;\\nint fpw(int x, int k, int p) {\\n int ret = 1;\\n while (k) {\\n if (k & 1) ret = 1ll * ret * x % p;\\n x = 1ll * x * x % p;\\n k >>= 1;\\n }\\n return ret;\\n}\\nint add(int x, int y) { return (x += y) >= mod ? x - mod : x; }\\nint Sum[1000100];\\nint solve(vector &c, int len) {\\n int sum = 0;\\n for (int i = 1; i <= 2 * len; i++) {\\n if (i & 1)\\n sum = add(sum, 1ll * i * f[c[(i + 1) \\/ 2]] % mod);\\n else\\n sum = add(sum, 1ll * i * f[a[k]] % mod);\\n }\\n if (!mp[add(sum, mod - h)]) return 0;\\n int st = mp[add(sum, mod - h)] - 1;\\n for (int i = 0; i < cnt; i++) {\\n if (st >> i & 1) {\\n Sum[d[i]]++;\\n }\\n }\\n for (int i = 1; i <= len; i++) ans[i * 2 - 1] = c[i], ans[i * 2] = a[k];\\n for (int i = 1; i <= len; i++) {\\n if (Sum[c[i]]) {\\n swap(ans[i * 2 - 1], ans[i * 2]);\\n Sum[c[i]]--;\\n }\\n }\\n return 1;\\n}\\nint check(vector &c) {\\n for (int i = k - 1; i >= 0; i--) {\\n int p = (1 << (k - i));\\n if (i == 0) p = (1 << (k - 1));\\n if (c.size() - 1 < p) return 1;\\n for (int l = 1, r = p; r < c.size(); l = r + 1, r += p) {\\n int cnt = 0;\\n for (int j = l; j <= r; j++) {\\n if (c[j] == a[i]) {\\n cnt++;\\n }\\n }\\n if (cnt != 1) return 0;\\n }\\n }\\n return 1;\\n}\\nvoid dfs(vector &siz, vector &c, int pos) {\\n if (!check(c)) return;\\n if (pos == m + 1) {\\n if (solve(c, m)) {\\n for (int i = 1; i <= 2 * m; i++) {\\n printf(\\\"%d \\\", ans[i]);\\n }\\n exit(0);\\n } else\\n return;\\n }\\n for (int i = 0; i <= k - 1; i++) {\\n if (siz[i]) {\\n siz[i]--;\\n c.push_back(a[i]);\\n dfs(siz, c, pos + 1);\\n c.pop_back();\\n siz[i]++;\\n }\\n }\\n}\\nvector siz;\\nint main() {\\n mp.rehash((1 << 16) + 5);\\n cin >> k >> A >> h;\\n siz.resize(k + 1);\\n m = (1 << (k - 1));\\n if (k == 0) {\\n if (h == A) {\\n puts(\\\"1\\\");\\n }...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Alice likes word \\\"nineteen\\\" very much. She has a string s and wants the string to contain as many such words as possible. For that reason she can rearrange the letters of the string.\\n\\nFor example, if she has string \\\"xiineteenppnnnewtnee\\\", she can get string \\\"xnineteenppnineteenw\\\", containing (the occurrences marked) two such words. More formally, word \\\"nineteen\\\" occurs in the string the number of times you can read it starting from some letter of the string. Of course, you shouldn't skip letters.\\n\\nHelp her to find the maximum number of \\\"nineteen\\\"s that she can get in her string.\\n\\nInput\\n\\nThe first line contains a non-empty string s, consisting only of lowercase English letters. The length of string s doesn't exceed 100.\\n\\nOutput\\n\\nPrint a single integer \u2014 the maximum number of \\\"nineteen\\\"s that she can get in her string.\\n\\nExamples\\n\\nInput\\n\\nnniinneetteeeenn\\n\\n\\nOutput\\n\\n2\\n\\nInput\\n\\nnneteenabcnneteenabcnneteenabcnneteenabcnneteenabcii\\n\\n\\nOutput\\n\\n2\\n\\nInput\\n\\nnineteenineteen\\n\\n\\nOutput\\n\\n2\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nint cnt[333];\\nstring s;\\nint main() {\\n cin >> s;\\n for (auto c : s) ++cnt[c];\\n cout << min({(cnt['n'] - 1) \\/ 2, cnt['i'], cnt['e'] \\/ 3, cnt['t']});\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Alice and Bob play the following game. Alice has a set S of disjoint ranges of integers, initially containing only one range [1, n]. In one turn, Alice picks a range [l, r] from the set S and asks Bob to pick a number in the range. Bob chooses a number d (l \u2264 d \u2264 r). Then Alice removes [l, r] from S and puts into the set S the range [l, d - 1] (if l \u2264 d - 1) and the range [d + 1, r] (if d + 1 \u2264 r). The game ends when the set S is empty. We can show that the number of turns in each game is exactly n.\\n\\nAfter playing the game, Alice remembers all the ranges [l, r] she picked from the set S, but Bob does not remember any of the numbers that he picked. But Bob is smart, and he knows he can find out his numbers d from Alice's ranges, and so he asks you for help with your programming skill.\\n\\nGiven the list of ranges that Alice has picked ([l, r]), for each range, help Bob find the number d that Bob has picked.\\n\\nWe can show that there is always a unique way for Bob to choose his number for a list of valid ranges picked by Alice.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 1000). Description of the test cases follows.\\n\\nThe first line of each test case contains a single integer n (1 \u2264 n \u2264 1000).\\n\\nEach of the next n lines contains two integers l and r (1 \u2264 l \u2264 r \u2264 n), denoting the range [l, r] that Alice picked at some point.\\n\\nNote that the ranges are given in no particular order.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 1000, and the ranges for each test case are from a valid game.\\n\\nOutput\\n\\nFor each test case print n lines. Each line should contain three integers l, r, and d, denoting that for Alice's range [l, r] Bob picked the number d.\\n\\nYou can print the lines in any order. We can show that the answer is unique.\\n\\nIt is not required to print a new line after each test case. The new lines in the output of the example are for readability only. \\n\\nExample\\n\\nInput\\n\\n\\n4\\n1\\n1 1\\n3\\n1 3\\n2 3\\n2 2\\n6\\n1 1\\n3 5\\n4 4\\n3 6\\n4 5\\n1 6\\n5\\n1 5\\n1 2\\n4 5\\n2...\\nSolve the task in JAVA.\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.io.PrintWriter;\\nimport java.text.DecimalFormat;\\nimport java.util.*;\\n\\n\\/\\/import sun.nio.fs.RegistryFileTypeDetector;\\n\\n\\n \\npublic class B {\\n\\tstatic int mod= 1000000007;\\n\\tstatic class Node{\\n\\t\\tint l,r;\\n\\t\\tint len;\\n\\t\\tNode(int l,int r){\\n\\t\\t\\tthis.l=l;\\n\\t\\t\\tthis.r=r;\\n\\t\\t\\tthis.len= r-l+1;\\n\\t\\t}\\n\\t}\\n\\tpublic static void main(String[] args) throws Exception {\\n\\t\\tPrintWriter out=new PrintWriter(System.out);\\n\\t\\tFastScanner fs=new FastScanner();\\n\\t\\tint t=fs.nextInt();\\n\\t\\t\\n\\t\\touter:while(t-->0) {\\n\\t\\t\\tint n=fs.nextInt();\\n\\t\\t\\tTreeSet set=new TreeSet<>();\\n\\t\\t\\tfor(int i=1;i<=n;i++) set.add(i);\\n\\t\\t\\tNode arr[]=new Node[n];\\n\\t\\t\\tfor(int i=0;i() {\\n\\t\\t\\t\\tpublic int compare(Node a,Node b) {\\n\\t\\t\\t\\t\\tif(a.len==b.len) {\\n\\t\\t\\t\\t\\t\\treturn a.l-b.l;\\n\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t\\treturn a.len-b.len;\\n\\t\\t\\t\\t}\\n\\t\\t\\t});\\n\\t\\t\\tfor(int i=0;i>1;\\n\\t\\t}\\n\\t\\treturn res;\\n\\t}\\n\\tstatic int gcd(int a,int b) {\\n\\t\\tif(b==0) return a;\\n\\t\\treturn gcd(b,a%b);\\n\\t}\\n\\tstatic long nck(int n,int k) {\\n\\t\\tif(k>n) return 0;\\n\\t\\tlong res=1;\\n\\t\\tres*=fact(n);\\n\\t\\tres%=mod;\\n\\t\\tres*=modInv(fact(k));\\n\\t\\tres%=mod;\\n\\t\\tres*=modInv(fact(n-k)); \\n\\t\\tres%=mod;\\n\\t\\treturn res;\\n\\t}\\n\\tstatic long fact(long n) {\\n\\/\\/\\t\\treturn fact[(int)n];\\n\\t\\tlong res=1;\\n\\t\\tfor(int i=2;i<=n;i++) {\\n\\t\\t\\tres*=i;\\n\\t\\t\\tres%=mod;\\n\\t\\t}\\n\\t\\treturn res;\\n\\t}\\n\\t\\n\\tstatic long modInv(long n) {\\n\\t\\treturn pow(n,mod-2);\\n\\t}\\n\\t\\n\\tstatic void sort(int[] a) {\\n\\t\\t\\/\\/suffle\\n\\t\\tint n=a.length;\\n\\t\\tRandom r=new Random();\\n\\t\\tfor (int i=0; i\\nusing namespace std;\\nlong long add(long long x, long long y) {\\n long long res = x + y;\\n return (res >= 1000000007 ? res - 1000000007 : res);\\n}\\nlong long mul(long long x, long long y) {\\n long long res = x * y;\\n return (res >= 1000000007 ? res % 1000000007 : res);\\n}\\nlong long sub(long long x, long long y) {\\n long long res = x - y;\\n return (res < 0 ? res + 1000000007 : res);\\n}\\nlong long power(long long x, long long y) {\\n long long res = 1;\\n x %= 1000000007;\\n while (y) {\\n if (y & 1) res = mul(res, x);\\n y >>= 1;\\n x = mul(x, x);\\n }\\n return res;\\n}\\nlong long mod_inv(long long x) { return power(x, 1000000007 - 2); }\\nlong long floorSqrt(long long x) {\\n if (x == 0 || x == 1) return x;\\n unsigned long long start = 1, end = x, ans;\\n while (start <= end) {\\n unsigned long long mid = start + (end - start) \\/ 2;\\n if (mid * mid == x) return mid;\\n if (mid * mid < x) {\\n start = mid + 1;\\n ans = mid;\\n } else\\n end = mid - 1;\\n }\\n return ans;\\n}\\nstring tobinary(long long n, long long length) {\\n string s;\\n for (long long i = 0; i < length; i++) {\\n if (n & 1)\\n s.push_back('1');\\n else\\n s.push_back('0');\\n n = n >> 1;\\n }\\n reverse(s.begin(), s.end());\\n return s;\\n}\\nvoid solve() {\\n int n, s;\\n cin >> n >> s;\\n cout << (s) \\/ (n \\/ 2 + 1) << endl;\\n return;\\n}\\nint main() {\\n ios::sync_with_stdio(0);\\n cin.tie(0);\\n int t, i = 1;\\n ;\\n cin >> t;\\n while (t--) {\\n solve();\\n ++i;\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nPolycarp watched TV-show where k jury members one by one rated a participant by adding him a certain number of points (may be negative, i. e. points were subtracted). Initially the participant had some score, and each the marks were one by one added to his score. It is known that the i-th jury member gave ai points.\\n\\nPolycarp does not remember how many points the participant had before this k marks were given, but he remembers that among the scores announced after each of the k judges rated the participant there were n (n \u2264 k) values b1, b2, ..., bn (it is guaranteed that all values bj are distinct). It is possible that Polycarp remembers not all of the scores announced, i. e. n < k. Note that the initial score wasn't announced.\\n\\nYour task is to determine the number of options for the score the participant could have before the judges rated the participant.\\n\\nInput\\n\\nThe first line contains two integers k and n (1 \u2264 n \u2264 k \u2264 2 000) \u2014 the number of jury members and the number of scores Polycarp remembers.\\n\\nThe second line contains k integers a1, a2, ..., ak ( - 2 000 \u2264 ai \u2264 2 000) \u2014 jury's marks in chronological order.\\n\\nThe third line contains n distinct integers b1, b2, ..., bn ( - 4 000 000 \u2264 bj \u2264 4 000 000) \u2014 the values of points Polycarp remembers. Note that these values are not necessarily given in chronological order.\\n\\nOutput\\n\\nPrint the number of options for the score the participant could have before the judges rated the participant. If Polycarp messes something up and there is no options, print \\\"0\\\" (without quotes).\\n\\nExamples\\n\\nInput\\n\\n4 1\\n-5 5 0 20\\n10\\n\\n\\nOutput\\n\\n3\\n\\n\\nInput\\n\\n2 2\\n-2000 -2000\\n3998000 4000000\\n\\n\\nOutput\\n\\n1\\n\\nNote\\n\\nThe answer for the first example is 3 because initially the participant could have - 10, 10 or 15 points.\\n\\nIn the second example there is only one correct initial score equaling to 4 002 000.\",\"targets\":\"#include \\nusing namespace std;\\nusing ll = long long;\\nusing db = double;\\nusing ld = long double;\\nusing uint = unsigned int;\\nusing ull = unsigned long long;\\nusing pii = pair;\\nusing pll = pair;\\nusing tiii = tuple;\\nusing tlll = tuple;\\nbitset<8000002> e, u;\\nbool exists(int i) { return e[i + 4000000]; }\\nbool used(int i) { return u[i + 4000000]; }\\nvoid setexist(int i) { e[i + 4000000] = true; }\\nvoid setused(int i) { u[i + 4000000] = true; }\\nvoid resetused() { u.reset(); }\\nint main() {\\n cin.tie(nullptr);\\n cout.tie(nullptr);\\n ios_base::sync_with_stdio(false);\\n int n, k;\\n cin >> k >> n;\\n vector a(k), s(k), b(n);\\n for (int i = 0; i < k; i++) {\\n cin >> a[i];\\n if (i == 0) {\\n s[i] = a[i];\\n } else {\\n s[i] = s[i - 1] + a[i];\\n }\\n }\\n for (int i = 0; i < n; i++) {\\n cin >> b[i];\\n setexist(b[i]);\\n }\\n unordered_set set;\\n for (int i = 0; i < k; i++) {\\n int init = b[0] - s[i];\\n int c = init;\\n int s = 0;\\n for (int j = 0; j < k; j++) {\\n c += a[j];\\n if (exists(c) && !used(c)) {\\n s++;\\n setused(c);\\n }\\n }\\n if (s == n) {\\n set.emplace(init);\\n }\\n resetused();\\n }\\n cout << set.size();\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A rectangle with its opposite corners in (0, 0) and (w, h) and sides parallel to the axes is drawn on a plane.\\n\\nYou are given a list of lattice points such that each point lies on a side of a rectangle but not in its corner. Also, there are at least two points on every side of a rectangle.\\n\\nYour task is to choose three points in such a way that: \\n\\n * exactly two of them belong to the same side of a rectangle; \\n * the area of a triangle formed by them is maximum possible. \\n\\n\\n\\nPrint the doubled area of this triangle. It can be shown that the doubled area of any triangle formed by lattice points is always an integer.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of testcases.\\n\\nThe first line of each testcase contains two integers w and h (3 \u2264 w, h \u2264 10^6) \u2014 the coordinates of the corner of a rectangle.\\n\\nThe next two lines contain the description of the points on two horizontal sides. First, an integer k (2 \u2264 k \u2264 2 \u22c5 10^5) \u2014 the number of points. Then, k integers x_1 < x_2 < ... < x_k (0 < x_i < w) \u2014 the x coordinates of the points in the ascending order. The y coordinate for the first line is 0 and for the second line is h.\\n\\nThe next two lines contain the description of the points on two vertical sides. First, an integer k (2 \u2264 k \u2264 2 \u22c5 10^5) \u2014 the number of points. Then, k integers y_1 < y_2 < ... < y_k (0 < y_i < h) \u2014 the y coordinates of the points in the ascending order. The x coordinate for the first line is 0 and for the second line is w.\\n\\nThe total number of points on all sides in all testcases doesn't exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each testcase print a single integer \u2014 the doubled maximum area of a triangle formed by such three points that exactly two of them belong to the same side.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n5 8\\n2 1 2\\n3 2 3 4\\n3 1 4 6\\n2 4 5\\n10 7\\n2 3 9\\n2 1 7\\n3 1 3 4\\n3 4 5 6\\n11 5\\n3 1 6 8\\n3 3 6 8\\n3 1 3 4\\n2 2 4\\n\\n\\nOutput\\n\\n\\n25\\n42\\n35\\n\\nNote\\n\\nThe points in the first testcase of the example: \\n\\n * (1, 0), (2, 0); \\n * (2, 8), (3, 8), (4, 8); \\n * (0, 1), (0, 4), (0, 6); \\n * (5, 4), (5,...\\nimpor\",\"targets\":\"t java.util.*;\\nimport java.io.*;\\n\\npublic class A {\\n public static void main(String[] args) throws IOException {\\n Scanner sc = new Scanner(System.in);\\n PrintWriter pw = new PrintWriter(System.out);\\n int t = sc.nextInt();\\n while (t-- > 0) {\\n long w = sc.nextInt();\\n long h = sc.nextInt();\\n long ans = 0;\\n for (int j = 0; j < 2; j++) {\\n int k = sc.nextInt();\\n Long[] in = new Long[k];\\n for (int i = 0; i < k; i++) {\\n in[i] = sc.nextLong();\\n }\\n Arrays.sort(in);\\n ans = Math.max((in[k - 1] - in[0]) * h, ans);\\n }\\n for (int j = 0; j < 2; j++) {\\n int k = sc.nextInt();\\n Long[] in = new Long[k];\\n for (int i = 0; i < k; i++) {\\n in[i] = sc.nextLong();\\n }\\n Arrays.sort(in);\\n ans = Math.max((in[k - 1] - in[0]) * w, ans);\\n }\\n pw.println(ans);\\n }\\n pw.close();\\n }\\n\\n static class Scanner {\\n BufferedReader br;\\n StringTokenizer st;\\n\\n public Scanner(InputStream s) {\\n br = new BufferedReader(new InputStreamReader(s));\\n }\\n\\n public Scanner(FileReader f) {\\n br = new BufferedReader(f);\\n }\\n\\n public String next() throws IOException {\\n while (st == null || !st.hasMoreTokens())\\n st = new StringTokenizer(br.readLine());\\n return st.nextToken();\\n }\\n\\n public int nextInt() throws IOException {\\n return Integer.parseInt(next());\\n }\\n\\n public long nextLong() throws IOException {\\n return Long.parseLong(next());\\n }\\n\\n public double nextDouble() throws IOException {\\n return Double.parseDouble(next());\\n }\\n\\n public int[] nextIntArr(int n) throws IOException {\\n int[] arr = new int[n];\\n for (int i...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in JAVA?\\nA robot cleaner is placed on the floor of a rectangle room, surrounded by walls. The floor consists of n rows and m columns. The rows of the floor are numbered from 1 to n from top to bottom, and columns of the floor are numbered from 1 to m from left to right. The cell on the intersection of the r-th row and the c-th column is denoted as (r,c). The initial position of the robot is (r_b, c_b).\\n\\nIn one second, the robot moves by dr rows and dc columns, that is, after one second, the robot moves from the cell (r, c) to (r + dr, c + dc). Initially dr = 1, dc = 1. If there is a vertical wall (the left or the right walls) in the movement direction, dc is reflected before the movement, so the new value of dc is -dc. And if there is a horizontal wall (the upper or lower walls), dr is reflected before the movement, so the new value of dr is -dr.\\n\\nEach second (including the moment before the robot starts moving), the robot cleans every cell lying in the same row or the same column as its position. There is only one dirty cell at (r_d, c_d). The job of the robot is to clean that dirty cell.\\n\\n Illustration for the first example. The blue arc is the robot. The red star is the target dirty cell. Each second the robot cleans a row and a column, denoted by yellow stripes.\\n\\nGiven the floor size n and m, the robot's initial position (r_b, c_b) and the dirty cell's position (r_d, c_d), find the time for the robot to do its job.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10^4). Description of the test cases follows.\\n\\nA test case consists of only one line, containing six integers n, m, r_b, c_b, r_d, and c_d (1 \u2264 n, m \u2264 100, 1 \u2264 r_b, r_d \u2264 n, 1 \u2264 c_b, c_d \u2264 m) \u2014 the sizes of the room, the initial position of the robot and the position of the dirt cell.\\n\\nOutput\\n\\nFor each test case, print an integer \u2014 the time for the robot to clean the dirty cell. We can show that the robot always cleans the dirty cell eventually.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n10 10 6 1 2 8\\n10 10 9 9 1...\",\"targets\":\"import java.util.Scanner;\\n\\npublic class RobotCleaner {\\n\\n\\tpublic static void main(String[] args) {\\n\\t\\tScanner in = new Scanner(System.in);\\n\\n\\t\\tint t = in.nextInt();\\n\\t\\twhile (t-- > 0) {\\n\\t\\t\\tint n = in.nextInt();\\n\\t\\t\\tint m = in.nextInt();\\n\\t\\t\\tint ri = in.nextInt();\\n\\t\\t\\tint rj = in.nextInt();\\n\\t\\t\\tint di = in.nextInt();\\n\\t\\t\\tint dj = in.nextInt();\\n\\t\\t\\tint time = 0;\\n\\t\\t\\tint rInc = 1;\\n\\t\\t\\tint cInc = 1;\\n\\t\\t\\twhile (di != ri && dj != rj) {\\n\\t\\t\\t\\tif (ri + rInc > n)\\n\\t\\t\\t\\t\\trInc = -1;\\n\\t\\t\\t\\telse if (ri - rInc < 1)\\n\\t\\t\\t\\t\\trInc = 1;\\n\\n\\t\\t\\t\\tif (rj + cInc > m)\\n\\t\\t\\t\\t\\tcInc = -1;\\n\\t\\t\\t\\telse if (rj - cInc < 1)\\n\\t\\t\\t\\t\\tcInc = 1;\\n\\n\\t\\t\\t\\tri += rInc;\\n\\t\\t\\t\\trj += cInc;\\n\\t\\t\\t\\ttime++;\\n\\t\\t\\t}\\n\\n\\t\\t\\tSystem.out.println(time);\\n\\t\\t}\\n\\t}\\n\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"\\n\\nMatryoshka is a wooden doll in the shape of a female figure and is a typical Russian folk craft. Matryoshka has a nested structure in which smaller dolls are contained inside a large doll, and is composed of multiple dolls of different sizes. In order to have such a nested structure, the body of each doll has a tubular structure that can be divided into upper and lower parts. Matryoshka dolls are handmade by craftsmen, so each doll is unique and extremely valuable in the world.\\n\\nBrothers Ichiro and Jiro loved to play with matryoshka dolls, and each had a pair of matryoshka dolls. Ichiro's matryoshka is made up of n dolls, and Jiro's matryoshka is made up of m dolls.\\n\\nOne day, curious Ichiro wondered if he could combine the dolls contained in these two pairs of matryoshka dolls to create a new matryoshka doll containing more dolls. In other words, I tried to make a pair of matryoshka dolls consisting of k dolls using n + m dolls. If k can be made larger than the larger of n and m, Ichiro's purpose will be achieved.\\n\\nThe two brothers got along well and wondered how to combine the dolls to maximize the value of k. But for the two younger ones, the problem is so difficult that you, older, decided to program to help your brothers.\\n\\nCreate a program that inputs the information of the matryoshka dolls of Ichiro and Jiro and outputs the number k of the dolls that the new matryoshka contains. No doll of the same size exists. Also, if we consider a doll to be a cylinder with a height h and a radius r, a doll with a height h and a radius r can contain a doll with a height x radius y that satisfies x \\n#include \\n#include \\nusing namespace std;\\n\\ntypedef pair P;\\nconst int MAX = 201;\\n\\nint main(){\\n int n;\\n\\n while(cin >> n ,n){\\n vector

v;\\n\\n int x,y;\\n for(int i = 0 ; i < n ; i++){\\n cin >> x >> y;\\n v.push_back(P(x,y));\\n }\\n int m;\\n cin >> m;\\n for(int i = 0 ; i < m ; i++){\\n cin >> x >> y;\\n v.push_back(P(x,y));\\n }\\n\\n sort(v.begin(),v.end());\\n int dp[MAX] = {0};\\n int ans = 0;\\n\\n for(int i = 0 ; i < n+m ; i++){\\n dp[i] = 1;\\n for(int j = 0 ; j < i ; j++){\\n\\tif(v[j].first < v[i].first && v[j].second < v[i].second){\\n\\t dp[i] = max(dp[i],dp[j]+1);\\n\\t}\\n }\\n ans = max(ans,dp[i]);\\n }\\n\\n cout << ans << endl;\\n }\\n\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Petya has got an interesting flower. Petya is a busy person, so he sometimes forgets to water it. You are given n days from Petya's live and you have to determine what happened with his flower in the end.\\n\\nThe flower grows as follows: \\n\\n * If the flower isn't watered for two days in a row, it dies. \\n * If the flower is watered in the i-th day, it grows by 1 centimeter. \\n * If the flower is watered in the i-th and in the (i-1)-th day (i > 1), then it grows by 5 centimeters instead of 1. \\n * If the flower is not watered in the i-th day, it does not grow. \\n\\n\\n\\nAt the beginning of the 1-st day the flower is 1 centimeter tall. What is its height after n days?\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 100). Description of the test cases follows.\\n\\nThe first line of each test case contains the only integer n (1 \u2264 n \u2264 100).\\n\\nThe second line of each test case contains n integers a_1, a_2, ..., a_n (a_i = 0 or a_i = 1). If a_i = 1, the flower is watered in the i-th day, otherwise it is not watered.\\n\\nOutput\\n\\nFor each test case print a single integer k \u2014 the flower's height after n days, or -1, if the flower dies.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n3\\n1 0 1\\n3\\n0 1 1\\n4\\n1 0 0 1\\n1\\n0\\n\\n\\nOutput\\n\\n\\n3\\n7\\n-1\\n1\\nUsing java can you solve the prior task?\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.util.ArrayList;\\nimport java.util.Collections;\\nimport java.util.StringTokenizer;\\n\\n\\npublic class Test{\\n\\n\\tstatic int flower(int n,int[] arr) {\\n\\t\\tint k = 0;\\n\\t\\tif(arr[0] == 0) {\\n\\t\\t\\tk = 1;\\n\\t\\t}else {\\n\\t\\t\\tk = 2;\\n\\t\\t}\\n\\t\\tfor(int i=1;i l = new ArrayList<>();\\n\\t for(int i:a) l.add(i);\\n\\t Collections.sort(l);\\n\\t for(int i=0;is[n-1]:\\n\\tprint(\\\"DOWN\\\")\\nelif n==1:\\n\\tprint(k)\\nelse:\\n print(\\\"UP\\\")\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given an array a of n integers, and another integer k such that 2k \u2264 n.\\n\\nYou have to perform exactly k operations with this array. In one operation, you have to choose two elements of the array (let them be a_i and a_j; they can be equal or different, but their positions in the array must not be the same), remove them from the array, and add \u230a (a_i)\\/(a_j) \u230b to your score, where \u230a x\\/y \u230b is the maximum integer not exceeding x\\/y.\\n\\nInitially, your score is 0. After you perform exactly k operations, you add all the remaining elements of the array to the score.\\n\\nCalculate the minimum possible score you can get.\\n\\nInput\\n\\nThe first line of the input contains one integer t (1 \u2264 t \u2264 500) \u2014 the number of test cases.\\n\\nEach test case consists of two lines. The first line contains two integers n and k (1 \u2264 n \u2264 100; 0 \u2264 k \u2264 \u230a n\\/2 \u230b).\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 2 \u22c5 10^5).\\n\\nOutput\\n\\nPrint one integer \u2014 the minimum possible score you can get.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n7 3\\n1 1 1 2 1 3 1\\n5 1\\n5 5 5 5 5\\n4 2\\n1 3 3 7\\n2 0\\n4 2\\n9 2\\n1 10 10 1 10 2 7 10 3\\n\\n\\nOutput\\n\\n\\n2\\n16\\n0\\n6\\n16\\n\\nNote\\n\\nLet's consider the example test.\\n\\nIn the first test case, one way to obtain a score of 2 is the following one:\\n\\n 1. choose a_7 = 1 and a_4 = 2 for the operation; the score becomes 0 + \u230a 1\\/2 \u230b = 0, the array becomes [1, 1, 1, 1, 3]; \\n 2. choose a_1 = 1 and a_5 = 3 for the operation; the score becomes 0 + \u230a 1\\/3 \u230b = 0, the array becomes [1, 1, 1]; \\n 3. choose a_1 = 1 and a_2 = 1 for the operation; the score becomes 0 + \u230a 1\\/1 \u230b = 1, the array becomes [1]; \\n 4. add the remaining element 1 to the score, so the resulting score is 2. \\n\\n\\n\\nIn the second test case, no matter which operations you choose, the resulting score is 16.\\n\\nIn the third test case, one way to obtain a score of 0 is the following one:\\n\\n 1. choose a_1 = 1 and a_2 = 3 for the operation; the score becomes 0 + \u230a 1\\/3 \u230b = 0, the array becomes [3, 7]; \\n 2. choose a_1 = 3 and a_2 = 7 for the operation; the score becomes 0 + \u230a 3\\/7 \u230b = 0, the array becomes...\",\"targets\":\"#include \\nusing namespace std;\\nbool check(vector A, vector B, int n) {\\n for (int i = 0; i < n; i++) {\\n if (A[i] != B[i]) {\\n return 0;\\n }\\n }\\n return 1;\\n}\\nint main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n cout.tie(NULL);\\n int t;\\n cin >> t;\\n while (t--) {\\n int n, k;\\n cin >> n >> k;\\n vector A;\\n for (int i = 0; i < n; i++) {\\n int a;\\n cin >> a;\\n A.push_back(a);\\n }\\n sort(A.begin(), A.end());\\n int ans = 0;\\n for (int i = 0; i < n - (2 * k); i++) {\\n ans += A[i];\\n }\\n map B;\\n for (int i = n - (2 * k); i < n; i++) {\\n B[A[i]]++;\\n }\\n priority_queue > C;\\n map::iterator it;\\n for (it = B.begin(); it != B.end(); it++) {\\n C.push({it->second, it->first});\\n }\\n int a, b, c, d;\\n while (C.size() > 1) {\\n a = C.top().first;\\n b = C.top().second;\\n C.pop();\\n c = C.top().first;\\n d = C.top().second;\\n C.pop();\\n a--;\\n c--;\\n if (a != 0) {\\n C.push({a, b});\\n }\\n if (c != 0) {\\n C.push({c, d});\\n }\\n }\\n if (C.size() == 1) {\\n ans += (C.top().first \\/ 2);\\n }\\n cout << ans << endl;\\n }\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given two integers n and m. Find the \\\\operatorname{MEX} of the sequence n \u2295 0, n \u2295 1, \u2026, n \u2295 m. Here, \u2295 is the [bitwise XOR operator](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#XOR).\\n\\n\\\\operatorname{MEX} of the sequence of non-negative integers is the smallest non-negative integer that doesn't appear in this sequence. For example, \\\\operatorname{MEX}(0, 1, 2, 4) = 3, and \\\\operatorname{MEX}(1, 2021) = 0. \\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 30 000) \u2014 the number of test cases.\\n\\nThe first and only line of each test case contains two integers n and m (0 \u2264 n, m \u2264 10^9).\\n\\nOutput\\n\\nFor each test case, print a single integer \u2014 the answer to the problem.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n3 5\\n4 6\\n3 2\\n69 696\\n123456 654321\\n\\n\\nOutput\\n\\n\\n4\\n3\\n0\\n640\\n530866\\n\\nNote\\n\\nIn the first test case, the sequence is 3 \u2295 0, 3 \u2295 1, 3 \u2295 2, 3 \u2295 3, 3 \u2295 4, 3 \u2295 5, or 3, 2, 1, 0, 7, 6. The smallest non-negative integer which isn't present in the sequence i. e. the \\\\operatorname{MEX} of the sequence is 4.\\n\\nIn the second test case, the sequence is 4 \u2295 0, 4 \u2295 1, 4 \u2295 2, 4 \u2295 3, 4 \u2295 4, 4 \u2295 5, 4 \u2295 6, or 4, 5, 6, 7, 0, 1, 2. The smallest non-negative integer which isn't present in the sequence i. e. the \\\\operatorname{MEX} of the sequence is 3.\\n\\nIn the third test case, the sequence is 3 \u2295 0, 3 \u2295 1, 3 \u2295 2, or 3, 2, 1. The smallest non-negative integer which isn't present in the sequence i. e. the \\\\operatorname{MEX} of the sequence is 0.\\n#incl\",\"targets\":\"ude \\nconst unsigned int MOD = 1000000007;\\nconst long double u = 1e+9;\\nusing namespace std;\\nint main() {\\n int t;\\n cin >> t;\\n while (t--) {\\n int n, m;\\n cin >> n >> m;\\n int p = m + 1;\\n string n1 = \\\"\\\";\\n string m1 = \\\"\\\";\\n int z = 1;\\n int w = 1 << 30;\\n while (z < w) {\\n int d = z & n;\\n if (d == z) {\\n n1 = \\\"1\\\" + n1;\\n } else {\\n n1 = \\\"0\\\" + n1;\\n }\\n z <<= 1;\\n }\\n z = 1;\\n while (z < w) {\\n int d = z & p;\\n if (d == z) {\\n m1 = \\\"1\\\" + m1;\\n } else {\\n m1 = \\\"0\\\" + m1;\\n }\\n z <<= 1;\\n }\\n string h = \\\"\\\";\\n z = 0;\\n for (int i = 0; i < n1.size(); i++) {\\n if (z == 1) {\\n h += \\\"0\\\";\\n continue;\\n }\\n if (n1[i] == m1[i]) {\\n h += \\\"0\\\";\\n continue;\\n }\\n if (n1[i] > m1[i]) {\\n h += \\\"0\\\";\\n z = 1;\\n continue;\\n }\\n if (n1[i] < m1[i]) {\\n h += \\\"1\\\";\\n }\\n }\\n int j = 0;\\n reverse(h.begin(), h.end());\\n for (int i = 0; i < h.size(); i++) {\\n j += (h[i] - '0') * pow(2, i);\\n }\\n cout << j << endl;\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in JAVA?\\nA string is called square if it is some string written twice in a row. For example, the strings \\\"aa\\\", \\\"abcabc\\\", \\\"abab\\\" and \\\"baabaa\\\" are square. But the strings \\\"aaa\\\", \\\"abaaab\\\" and \\\"abcdabc\\\" are not square.\\n\\nFor a given string s determine if it is square.\\n\\nInput\\n\\nThe first line of input data contains an integer t (1 \u2264 t \u2264 100) \u2014the number of test cases.\\n\\nThis is followed by t lines, each containing a description of one test case. The given strings consist only of lowercase Latin letters and have lengths between 1 and 100 inclusive.\\n\\nOutput\\n\\nFor each test case, output on a separate line:\\n\\n * YES if the string in the corresponding test case is square, \\n * NO otherwise. \\n\\n\\n\\nYou can output YES and NO in any case (for example, strings yEs, yes, Yes and YES will be recognized as a positive response).\\n\\nExample\\n\\nInput\\n\\n\\n10\\na\\naa\\naaa\\naaaa\\nabab\\nabcabc\\nabacaba\\nxxyy\\nxyyx\\nxyxy\\n\\n\\nOutput\\n\\n\\nNO\\nYES\\nNO\\nYES\\nYES\\nYES\\nNO\\nNO\\nNO\\nYES\",\"targets\":\"import java.util.*;\\n\\npublic class LongestString {\\n public static void main(String[] args) {\\n Scanner scanner = new Scanner(System.in);\\n long cases = scanner.nextLong();\\n scanner.nextLine();\\n while (cases-- > 0) {\\n String l = scanner.nextLine();\\n Boolean flaf = true;\\n char[] k = l.toCharArray();\\n if (k.length % 2 == 0) {\\n int halfLength = k.length \\/ 2;\\n for (int i = 0; i < k.length \\/ 2; i++) {\\n if (k[i] != k[halfLength + i]) {\\n flaf = false;\\n break;\\n }\\n }\\n } else {\\n flaf = false;\\n }\\n System.out.println(flaf ? \\\"YES\\\" : \\\"NO\\\");\\n }\\n }\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"After a hard day Vitaly got very hungry and he wants to eat his favorite potato pie. But it's not that simple. Vitaly is in the first room of the house with n room located in a line and numbered starting from one from left to right. You can go from the first room to the second room, from the second room to the third room and so on \u2014 you can go from the (n - 1)-th room to the n-th room. Thus, you can go to room x only from room x - 1.\\n\\nThe potato pie is located in the n-th room and Vitaly needs to go there. \\n\\nEach pair of consecutive rooms has a door between them. In order to go to room x from room x - 1, you need to open the door between the rooms with the corresponding key. \\n\\nIn total the house has several types of doors (represented by uppercase Latin letters) and several types of keys (represented by lowercase Latin letters). The key of type t can open the door of type T if and only if t and T are the same letter, written in different cases. For example, key f can open door F.\\n\\nEach of the first n - 1 rooms contains exactly one key of some type that Vitaly can use to get to next rooms. Once the door is open with some key, Vitaly won't get the key from the keyhole but he will immediately run into the next room. In other words, each key can open no more than one door.\\n\\nVitaly realizes that he may end up in some room without the key that opens the door to the next room. Before the start his run for the potato pie Vitaly can buy any number of keys of any type that is guaranteed to get to room n.\\n\\nGiven the plan of the house, Vitaly wants to know what is the minimum number of keys he needs to buy to surely get to the room n, which has a delicious potato pie. Write a program that will help Vitaly find out this number.\\n\\nInput\\n\\nThe first line of the input contains a positive integer n (2 \u2264 n \u2264 105) \u2014 the number of rooms in the house.\\n\\nThe second line of the input contains string s of length 2\u00b7n - 2. Let's number the elements of the string from left to right, starting from one. \\n\\nThe odd positions in the given...\\nThe above is tricky. Write me a correct solution in PYTHON3.\",\"targets\":\"n=int(input())\\ns=input()\\ns=list(s)\\nk=[0]*26\\ncount=0\\nfor i in range(0,(len(s)\\/\\/2)):\\n p=s[i*2]\\n q=s[i*2+1]\\n k[ord(p)-97]+=1\\n if k[ord(q)-65]>0:\\n k[ord(q)-65]-=1\\n else:\\n count+=1\\nprint(count)\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"JAVA solution for \\\"The problem statement looms below, filling you with determination.\\n\\nConsider a grid in which some cells are empty and some cells are filled. Call a cell in this grid exitable if, starting at that cell, you can exit the grid by moving up and left through only empty cells. This includes the cell itself, so all filled in cells are not exitable. Note that you can exit the grid from any leftmost empty cell (cell in the first column) by going left, and from any topmost empty cell (cell in the first row) by going up.\\n\\nLet's call a grid determinable if, given only which cells are exitable, we can exactly determine which cells are filled in and which aren't.\\n\\nYou are given a grid a of dimensions n \u00d7 m , i. e. a grid with n rows and m columns. You need to answer q queries (1 \u2264 q \u2264 2 \u22c5 10^5). Each query gives two integers x_1, x_2 (1 \u2264 x_1 \u2264 x_2 \u2264 m) and asks whether the subgrid of a consisting of the columns x_1, x_1 + 1, \u2026, x_2 - 1, x_2 is determinable.\\n\\nInput\\n\\nThe first line contains two integers n, m (1 \u2264 n, m \u2264 10^6, nm \u2264 10^6) \u2014 the dimensions of the grid a.\\n\\nn lines follow. The y-th line contains m characters, the x-th of which is 'X' if the cell on the intersection of the the y-th row and x-th column is filled and \\\".\\\" if it is empty.\\n\\nThe next line contains a single integer q (1 \u2264 q \u2264 2 \u22c5 10^5) \u2014 the number of queries.\\n\\nq lines follow. Each line contains two integers x_1 and x_2 (1 \u2264 x_1 \u2264 x_2 \u2264 m), representing a query asking whether the subgrid of a containing the columns x_1, x_1 + 1, \u2026, x_2 - 1, x_2 is determinable.\\n\\nOutput\\n\\nFor each query, output one line containing \\\"YES\\\" if the subgrid specified by the query is determinable and \\\"NO\\\" otherwise. The output is case insensitive (so \\\"yEs\\\" and \\\"No\\\" will also be accepted).\\n\\nExample\\n\\nInput\\n\\n\\n4 5\\n..XXX\\n...X.\\n...X.\\n...X.\\n5\\n1 3\\n3 3\\n4 5\\n5 5\\n1 5\\n\\n\\nOutput\\n\\n\\nYES\\nYES\\nNO\\nYES\\nNO\\n\\nNote\\n\\nFor each query of the example, the corresponding subgrid is displayed twice below: first in its input format, then with each cell marked as \\\"E\\\" if it is exitable and \\\"N\\\" otherwise.\\n\\nFor the...\\\":\",\"targets\":\"import java.io.*;\\n\\nimport java.util.*;\\n\\/*\\n\\n4 5\\nXXXXX\\nX....\\nX....\\nX....\\n5\\n1 3\\n3 3\\n4 5\\n5 5\\n1 5\\n\\n*\\/\\n\\n \\n public class C2{\\n\\tstatic FastReader sc=null;\\n\\t\\n\\tpublic static void main(String[] args) {\\n\\t\\tsc=new FastReader();\\n\\t\\tPrintWriter out=new PrintWriter(System.out);\\n\\t\\t\\n\\t\\t\\/\\/all . have to reach the end\\n\\t\\t\\n\\t\\t\\/\\/if there is a . that cannot reach the end then bad\\n\\t\\t\\n\\t\\tint n=sc.nextInt(),m=sc.nextInt();\\n\\t\\tchar a[][]=new char[n][m];\\n\\t\\tfor(int i=0;i cols=new TreeSet<>();\\n\\t\\tcols.add(m+1);\\n\\t\\t\\n\\t\\tfor(int i=0;i0) {\\n\\t\\t\\tint c1=sc.nextInt()-1,c2=sc.nextInt()-1;\\n\\t\\t\\tif(c2==c1) {\\n\\t\\t\\t\\tout.println(\\\"YES\\\");\\n\\t\\t\\t\\tcontinue;\\n\\t\\t\\t}\\n\\t\\t\\t\\n\\t\\t\\tint val=cols.ceiling(c1);\\n\\t\\t\\tboolean bad=(val>=c1 && val+1<=c2);\\n\\t\\t\\tout.println(bad?\\\"NO\\\":\\\"YES\\\");\\n\\t\\t}\\n\\t\\tout.close();\\n\\t\\t\\n\\t\\t\\n\\t}\\n\\tstatic boolean bad(int i,int j,char a[][]) {\\n\\t\\tif(i==0 || j==0)return false;\\n\\t\\t\\n\\t\\tif(a[i-1][j]=='X' && a[i][j-1]=='X')return true;\\n\\t\\t\\n\\t\\treturn false;\\n\\t}\\n\\t\\n\\t\\n\\tstatic int[] ruffleSort(int a[]) {\\n\\t\\tArrayList al=new ArrayList<>();\\n\\t\\tfor(int i:a)al.add(i);\\n\\t\\tCollections.sort(al);\\n\\t\\tfor(int i=0;i\\nusing namespace std;\\nvoid f(string s,char m,int n){\\n if(!n)cout<>n;\\n f(\\\"a\\\",'b',n-1);\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"It is a simplified version of problem F2. The difference between them is the constraints (F1: k \u2264 2, F2: k \u2264 10).\\n\\nYou are given an integer n. Find the minimum integer x such that x \u2265 n and the number x is k-beautiful.\\n\\nA number is called k-beautiful if its decimal representation having no leading zeroes contains no more than k different digits. E.g. if k = 2, the numbers 3434443, 55550, 777 and 21 are k-beautiful whereas the numbers 120, 445435 and 998244353 are not.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of one line containing two integers n and k (1 \u2264 n \u2264 10^9, 1 \u2264 k \u2264 2).\\n\\nOutput\\n\\nFor each test case output on a separate line x \u2014 the minimum k-beautiful integer such that x \u2265 n.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n1 1\\n221 2\\n177890 2\\n998244353 1\\n\\n\\nOutput\\n\\n\\n1\\n221\\n181111\\n999999999\\nSolve the task in PYTHON3.\",\"targets\":\"def upList(s, i):\\n left = s[:i]\\n right = s[i:]\\n left = list(str(int(''.join(left)) + 1))\\n return left + right\\n\\ndef jg(x, val):\\n y = set(i for i in x if i >= val)\\n if len(y) == 0:\\n return None\\n return min(y)\\n\\n\\nfor _ in range(int(input())):\\n n, k = map(int, input().split())\\n s = list(str(n))\\n\\n i = len(s) - 1\\n while i >= 0:\\n cMax = set()\\n j = 0\\n while len(cMax) < k and j < len(s):\\n cMax.add(s[j])\\n j += 1\\n if j == len(s):\\n break\\n\\n if s[i] not in cMax:\\n z = jg(cMax, s[i])\\n if z == None:\\n s = upList(s, i)\\n for var in range(i, len(s)):\\n s[var] = '0'\\n i = len(s) - 1\\n else:\\n s[i] = z\\n for var in range(i + 1, len(s)):\\n s[var] = min(cMax)\\n i -= 1\\n else:\\n i -= 1\\n \\n print(''.join(s))\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Given n, find any array a_1, a_2, \u2026, a_n of integers such that all of the following conditions hold: \\n\\n * 1 \u2264 a_i \u2264 10^9 for every i from 1 to n.\\n\\n * a_1 < a_2 < \u2026 \\nusing namespace std;\\nint main() {\\n int n, num;\\n cin >> n;\\n for (int i = 0; i < n; i++) {\\n cin >> num;\\n int cnt = 1;\\n for (int j = 0; j < num; j++) {\\n cnt++;\\n cout << cnt << \\\" \\\";\\n }\\n cout << endl;\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"There are n reindeer at the North Pole, all battling for the highest spot on the \\\"Top Reindeer\\\" leaderboard on the front page of CodeNorses (a popular competitive reindeer gaming website). Interestingly, the \\\"Top Reindeer\\\" title is just a measure of upvotes and has nothing to do with their skill level in the reindeer games, but they still give it the utmost importance.\\n\\nCurrently, the i-th reindeer has a score of a_i. You would like to influence the leaderboard with some operations. In an operation, you can choose a reindeer, and either increase or decrease his score by 1 unit. Negative scores are allowed.\\n\\nYou have m requirements for the resulting scores. Each requirement is given by an ordered pair (u, v), meaning that after all operations, the score of reindeer u must be less than or equal to the score of reindeer v.\\n\\nYour task is to perform the minimum number of operations so that all requirements will be satisfied.\\n\\nInput\\n\\nThe first line contains two integers n and m (2\u2264 n\u2264 1000; 1\u2264 m\u2264 1000) \u2014 the number of reindeer and requirements, respectively.\\n\\nThe second line contains n integers a_1,\u2026, a_n (1\u2264 a_i\u2264 10^9), where a_i is the current score of reindeer i.\\n\\nThe next m lines describe the requirements.\\n\\nThe i-th of these lines contains two integers u_i and v_i (1\u2264 u_i, v_i\u2264 n; u_i\u2260 v_i) \u2014 the two reindeer of the i-th requirement.\\n\\nOutput\\n\\nPrint n integers b_1,\u2026, b_n (-10^{15}\u2264 b_i\u2264 10^{15}), where b_i is the score of the i-th reindeer after all operations.\\n\\nIf there are multiple solutions achieving the minimum number of operations, you may output any.\\n\\nWe can prove that there is always an optimal solution such that |b_i|\u2264 10^{15} for all i.\\n\\nExamples\\n\\nInput\\n\\n\\n7 6\\n3 1 4 9 2 5 6\\n1 2\\n2 3\\n3 4\\n4 5\\n5 6\\n6 7\\n\\n\\nOutput\\n\\n\\n1 1 4 4 4 5 6 \\n\\n\\nInput\\n\\n\\n4 6\\n6 5 8 2\\n3 1\\n4 1\\n3 2\\n1 2\\n2 3\\n3 1\\n\\n\\nOutput\\n\\n\\n6 6 6 2 \\n\\n\\nInput\\n\\n\\n10 18\\n214 204 195 182 180 176 176 172 169 167\\n1 2\\n3 2\\n4 2\\n5 2\\n6 2\\n7 2\\n8 2\\n9 2\\n10 2\\n6 1\\n6 2\\n6 3\\n6 4\\n6 5\\n6 7\\n6 8\\n6 9\\n6 10\\n\\n\\nOutput\\n\\n\\n204 204 195 182 180 167 176 172 169 167 \\nSolve the task in CPP.\",\"targets\":\"#include \\nusing namespace std;\\ntemplate \\nvoid cmax(T& x, T y) {\\n if (x < y) x = y;\\n}\\ntemplate \\nvoid cmin(T& x, T y) {\\n if (x > y) x = y;\\n}\\nconst int N = 10005, INF = 1e9;\\nint n, m, s, t, num = 1, a[N], d[N], h[N], cur[N], dis[N], vis[N];\\nstruct E {\\n int x, t, w, c;\\n} e[2 * N];\\nvoid add(int s, int t, int w, int c) { e[++num] = {h[s], t, w, c}, h[s] = num; }\\nbool spfa() {\\n for (int i = (0); i <= (n + 1); i++) cur[i] = h[i], dis[i] = INF;\\n queue q;\\n q.push(s), dis[s] = 0, vis[s] = 1;\\n while (!q.empty()) {\\n int u = q.front();\\n q.pop(), vis[u] = 0;\\n for (int i = h[u]; i; i = e[i].x)\\n if (e[i].w && dis[e[i].t] > dis[u] + e[i].c) {\\n dis[e[i].t] = dis[u] + e[i].c;\\n if (!vis[e[i].t]) q.push(e[i].t), vis[e[i].t] = 1;\\n }\\n }\\n return dis[t] < 0;\\n}\\nint dfs(int u, int lim) {\\n if (u == t) return lim;\\n vis[u] = 1;\\n int res = 0;\\n for (int& i = cur[u]; i && lim; i = e[i].x)\\n if (!vis[e[i].t] && dis[e[i].t] == dis[u] + e[i].c) {\\n int tmp = dfs(e[i].t, min(lim, e[i].w));\\n res += tmp, lim -= tmp, e[i].w -= tmp, e[i ^ 1].w += tmp;\\n if (lim == 0) break;\\n }\\n vis[u] = 0;\\n return res;\\n}\\nint main() {\\n scanf(\\\"%d%d\\\", &n, &m), s = 0, t = n + 1;\\n for (int i = (1); i <= (n); i++) {\\n scanf(\\\"%d\\\", &a[i]);\\n add(s, i, 1, 0), add(i, s, 0, 0);\\n add(i, t, 1, 0), add(t, i, 0, 0);\\n }\\n for (int i = (1); i <= (m); i++) {\\n int x, y;\\n scanf(\\\"%d%d\\\", &x, &y);\\n add(x, y, INF, a[y] - a[x]), add(y, x, 0, a[x] - a[y]);\\n }\\n while (spfa()) {\\n dfs(s, INF);\\n }\\n for (int i = (0); i <= (n + 1); i++) d[i] = -INF;\\n d[0] = 0;\\n for (int i = (1); i <= (n + 1); i++)\\n for (int j = (0); j <= (n + 1); j++)\\n if (d[j] != -INF)\\n for (int k = h[j]; k; k = e[k].x)\\n if (e[k].w) cmax(d[e[k].t], d[j] - e[k].c);\\n for (int i = (1); i <= (n); i++) printf(\\\"%d \\\", a[i] + d[i]);\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Monocarp is the coach of the Berland State University programming teams. He decided to compose a problemset for a training session for his teams.\\n\\nMonocarp has n problems that none of his students have seen yet. The i-th problem has a topic a_i (an integer from 1 to n) and a difficulty b_i (an integer from 1 to n). All problems are different, that is, there are no two tasks that have the same topic and difficulty at the same time.\\n\\nMonocarp decided to select exactly 3 problems from n problems for the problemset. The problems should satisfy at least one of two conditions (possibly, both):\\n\\n * the topics of all three selected problems are different; \\n * the difficulties of all three selected problems are different. \\n\\n\\n\\nYour task is to determine the number of ways to select three problems for the problemset.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 50000) \u2014 the number of testcases.\\n\\nThe first line of each testcase contains an integer n (3 \u2264 n \u2264 2 \u22c5 10^5) \u2014 the number of problems that Monocarp have.\\n\\nIn the i-th of the following n lines, there are two integers a_i and b_i (1 \u2264 a_i, b_i \u2264 n) \u2014 the topic and the difficulty of the i-th problem.\\n\\nIt is guaranteed that there are no two problems that have the same topic and difficulty at the same time.\\n\\nThe sum of n over all testcases doesn't exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nPrint the number of ways to select three training problems that meet either of the requirements described in the statement.\\n\\nExample\\n\\nInput\\n\\n\\n2\\n4\\n2 4\\n3 4\\n2 1\\n1 3\\n5\\n1 5\\n2 4\\n3 3\\n4 2\\n5 1\\n\\n\\nOutput\\n\\n\\n3\\n10\\n\\nNote\\n\\nIn the first example, you can take the following sets of three problems:\\n\\n * problems 1, 2, 4; \\n * problems 1, 3, 4; \\n * problems 2, 3, 4. \\n\\n\\n\\nThus, the number of ways is equal to three.\\nimpor\",\"targets\":\"t java.io.OutputStream;\\nimport java.io.IOException;\\nimport java.io.InputStream;\\nimport java.io.OutputStream;\\nimport java.io.PrintWriter;\\nimport java.io.BufferedWriter;\\nimport java.io.Writer;\\nimport java.io.OutputStreamWriter;\\nimport java.util.InputMismatchException;\\nimport java.io.IOException;\\nimport java.io.InputStream;\\n\\n\\/**\\n * Built using CHelper plug-in\\n * Actual solution is at the top\\n *\\/\\npublic class Main {\\n public static void main(String[] args) {\\n InputStream inputStream = System.in;\\n OutputStream outputStream = System.out;\\n InputReader in = new InputReader(inputStream);\\n OutputWriter out = new OutputWriter(outputStream);\\n DTrainingSession solver = new DTrainingSession();\\n int testCount = Integer.parseInt(in.next());\\n for (int i = 1; i <= testCount; i++)\\n solver.solve(i, in, out);\\n out.close();\\n }\\n\\n static class DTrainingSession {\\n int n;\\n P[] ps;\\n\\n public void solve(int testNumber, InputReader in, OutputWriter out) {\\n n = in.nextInt();\\n int[] cnt1 = new int[n + 5];\\n int[] cnt2 = new int[n + 5];\\n ps = new P[n];\\n for (int i = 0; i < n; i++) {\\n ps[i] = new P(in.nextInt(), in.nextInt());\\n cnt1[ps[i].a]++;\\n cnt2[ps[i].b]++;\\n }\\n\\/\\/ Arrays.sort(ps, Comparator.comparingInt(x -> x.a));\\n long tmp = 0;\\n for (int i = 0; i < n; i++) {\\n long c1 = cnt1[ps[i].a];\\n long c2 = cnt2[ps[i].b] - 1;\\n tmp += (c1 - 1) * c2;\\n }\\n long sum = 1;\\n for (int i = 0; i < 3; i++) {\\n sum *= (n - i);\\n }\\n sum \\/= 6;\\n out.println(sum - tmp);\\n }\\n\\n class P {\\n int a;\\n int b;\\n\\n public P(int a, int b) {\\n this.a = a;\\n this.b = b;\\n }\\n\\n }\\n\\n }\\n\\n static class InputReader {\\n private...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in JAVA?\\nDmitry has an array of n non-negative integers a_1, a_2, ..., a_n.\\n\\nIn one operation, Dmitry can choose any index j (1 \u2264 j \u2264 n) and increase the value of the element a_j by 1. He can choose the same index j multiple times.\\n\\nFor each i from 0 to n, determine whether Dmitry can make the MEX of the array equal to exactly i. If it is possible, then determine the minimum number of operations to do it.\\n\\nThe MEX of the array is equal to the minimum non-negative integer that is not in the array. For example, the MEX of the array [3, 1, 0] is equal to 2, and the array [3, 3, 1, 4] is equal to 0.\\n\\nInput\\n\\nThe first line of input data contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases in the input. \\n\\nThe descriptions of the test cases follow.\\n\\nThe first line of the description of each test case contains a single integer n (1 \u2264 n \u2264 2 \u22c5 10^5) \u2014 the length of the array a.\\n\\nThe second line of the description of each test case contains n integers a_1, a_2, ..., a_n (0 \u2264 a_i \u2264 n) \u2014 elements of the array a.\\n\\nIt is guaranteed that the sum of the values n over all test cases in the test does not exceed 2\u22c510^5.\\n\\nOutput\\n\\nFor each test case, output n + 1 integer \u2014 i-th number is equal to the minimum number of operations for which you can make the array MEX equal to i (0 \u2264 i \u2264 n), or -1 if this cannot be done.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n3\\n0 1 3\\n7\\n0 1 2 3 4 3 2\\n4\\n3 0 0 0\\n7\\n4 6 2 3 5 0 5\\n5\\n4 0 1 0 4\\n\\n\\nOutput\\n\\n\\n1 1 0 -1 \\n1 1 2 2 1 0 2 6 \\n3 0 1 4 3 \\n1 0 -1 -1 -1 -1 -1 -1 \\n2 1 0 2 -1 -1 \\n\\nNote\\n\\nIn the first set of example inputs, n=3:\\n\\n * to get MEX=0, it is enough to perform one increment: a_1++; \\n * to get MEX=1, it is enough to perform one increment: a_2++; \\n * MEX=2 for a given array, so there is no need to perform increments; \\n * it is impossible to get MEX=3 by performing increments.\",\"targets\":\"import java.util.*;\\nimport java.io.*;\\npublic class E1619{\\n\\tstatic FastScanner fs = null;\\n\\tpublic static void main(String[] args) {\\n\\t\\tfs = new FastScanner();\\n\\t\\tPrintWriter out = new PrintWriter(System.out);\\n\\t\\tint t = fs.nextInt();\\n\\t\\twhile (t-->0) {\\n\\t\\t\\tint n = fs.nextInt();\\n\\t\\t\\tint a[] = new int[n+1];\\n\\t\\t\\tfor(int i=0;i pq = new PriorityQueue<>();\\n\\t\\t\\tfor(int i=0;i<=n;i++){\\n\\t\\t\\t\\tif(a[i]==0){\\n\\t\\t\\t\\t\\tout.print(used+\\\" \\\");\\n\\t\\t\\t\\t\\tex-=1;\\n\\t\\t\\t\\t\\tif(ex>=0){\\n\\t\\t\\t\\t\\tPair p2 = pq.remove();\\n\\t\\t\\t\\t\\tint value = p2.value;\\n\\t\\t\\t\\t\\tint index = p2.index;\\n\\t\\t\\t\\t\\tused+=(long)(i-value);\\n\\t\\t\\t\\t\\tindex-=1;\\n\\t\\t\\t\\t\\tif(index>0){\\n\\t\\t\\t\\t\\t\\tpq.add(new Pair(value,index));\\n\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t}\\n\\t\\t\\t\\telse{\\n\\t\\t\\t\\t\\tex+=(a[i]);\\n\\t\\t\\t\\t\\tout.print((a[i]+used)+\\\" \\\");\\n\\t\\t\\t\\t\\tex-=1;\\n\\t\\t\\t\\t\\tif(a[i]>1)\\n\\t\\t\\t\\t\\tpq.add(new Pair(i,a[i]-1));\\n\\t\\t\\t\\t}\\n\\t\\t\\t\\tif(ex==-1){\\n\\t\\t\\t\\t\\tid = i;\\n\\t\\t\\t\\t\\tbreak;\\n\\t\\t\\t\\t}\\n\\t\\t\\t}\\n\\t\\t\\tif(id!=-1){\\n\\t\\t\\t\\tfor(int i=id+1;i<=n;i++){\\n\\t\\t\\t\\t\\tout.print(\\\"-1\\\"+\\\" \\\");\\n\\t\\t\\t\\t}\\n\\t\\t\\t}\\n\\t\\t\\tout.println();\\n\\t\\t}\\n\\t\\tout.close();\\n\\t}\\n\\tstatic class Pair implements Comparable {\\n \\tInteger value;\\n \\tInteger index;\\n\\n \\tpublic Pair(Integer value, Integer index) {\\n \\tthis.value = value;\\n \\tthis.index = index;\\n \\t}\\n\\n \\tpublic int compareTo(Pair o) {\\n \\treturn (-value + o.value);\\n \\t}\\n\\t}\\n\\tstatic void sort(int[] a) {\\n\\t\\tArrayList l=new ArrayList<>();\\n\\t\\tfor (int i:a) l.add(i);\\n\\t\\tCollections.sort(l);\\n\\t\\tfor (int i=0; i a_{i+1}, the values of a_i and a_{i+1} are exchanged. Otherwise, the permutation doesn't change.\\n\\nThe algorithm consists of iterations, numbered with consecutive integers starting with 1. On the i-th iteration, the algorithm does the following: \\n\\n * if i is odd, call f(1), f(3), \u2026, f(n - 2); \\n * if i is even, call f(2), f(4), \u2026, f(n - 1). \\n\\n\\n\\nIt can be proven that after a finite number of iterations the permutation will be sorted in increasing order.\\n\\nAfter how many iterations will this happen for the first time?\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 100). Description of the test cases follows.\\n\\nThe first line of each test case contains a single integer n (3 \u2264 n \u2264 999; n is odd) \u2014 the length of the permutation.\\n\\nThe second line contains n distinct integers a_1, a_2, \u2026, a_n (1 \u2264 a_i \u2264 n) \u2014 the permutation itself. \\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 999.\\n\\nOutput\\n\\nFor each test case print the number of iterations after which the permutation will become sorted in increasing order for the first time.\\n\\nIf the given permutation is already sorted, print 0.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3\\n3 2 1\\n7\\n4 5 7 1 3 2 6\\n5\\n1 2 3 4 5\\n\\n\\nOutput\\n\\n\\n3\\n5\\n0\\n\\nNote\\n\\nIn the first test case, the permutation will be changing as follows: \\n\\n * after the 1-st iteration: [2, 3, 1]; \\n * after the 2-nd iteration: [2, 1, 3]; \\n * after the 3-rd iteration: [1, 2, 3]. \\n\\n\\n\\nIn the second test case, the permutation will be changing as follows: \\n\\n * after the 1-st iteration: [4, 5, 1, 7, 2, 3, 6]; \\n * after the 2-nd iteration: [4, 1, 5, 2, 7, 3, 6]; \\n * after the 3-rd iteration: [1, 4, 2, 5, 3, 7, 6]; \\n * after the 4-th...\\nSolve the task in PYTHON3.\",\"targets\":\"import math \\nfrom collections import Counter, defaultdict\\nimport sys\\n# resource.setrlimit(resource.RLIMIT_STACK, (2**29,-1))\\n# sys.setrecursionlimit(10**6)\\n\\n\\\"\\\"\\\"\\n# Template Designed By: Shivshanker Singh\\n# Note: If you find this template useful and want to use it then please don't just copy paste it \\n you can take ideas from this and make your own.\\n because if you copy paste as it is then there are high chances that both of us will be plagiarized\\n (because most of code will be same for small problems).\\n So to avoid this please dont copy paste.\\n\\\"\\\"\\\"\\n\\nmod = 10**9 + 7\\ninput = sys.stdin.readline\\nreadInt = lambda : int(input().strip())\\nreadfloat = lambda : float(input().strip())\\nreadStr = lambda : input().strip()\\nintList = lambda : list(map(int, input().strip().split()))\\nintMap = lambda : map(int, input().strip().split())\\nfloatList = lambda : list(map(float, input().strip().split()))\\nfloatMap = lambda : map(float, input().strip().split())\\nstrList = lambda : list(input().strip().split())\\n\\n\\ndef print(*args, end='\\\\n', sep=' '):\\n for i in args:\\n sys.stdout.write(str(i))\\n sys.stdout.write(sep)\\n sys.stdout.write(end)\\n\\n\\ndef solve():\\n brr = sorted(arr)\\n res = 0\\n while True:\\n if arr == brr:\\n return res\\n for i in range(res%2, n-1, 2):\\n if arr[i] > arr[i+1]:\\n arr[i], arr[i+1] = arr[i+1], arr[i]\\n res += 1\\n \\n# if __name__ == '__main__':\\nfor _ in range(readInt()):\\n n = readInt()\\n arr = intList()\\n \\n print(solve())\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given an array of integers a of length n. The elements of the array can be either different or the same. \\n\\nEach element of the array is colored either blue or red. There are no unpainted elements in the array. One of the two operations described below can be applied to an array in a single step:\\n\\n * either you can select any blue element and decrease its value by 1; \\n * or you can select any red element and increase its value by 1. \\n\\n\\n\\nSituations in which there are no elements of some color at all are also possible. For example, if the whole array is colored blue or red, one of the operations becomes unavailable.\\n\\nDetermine whether it is possible to make 0 or more steps such that the resulting array is a permutation of numbers from 1 to n?\\n\\nIn other words, check whether there exists a sequence of steps (possibly empty) such that after applying it, the array a contains in some order all numbers from 1 to n (inclusive), each exactly once.\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 10^4) \u2014 the number of input data sets in the test.\\n\\nThe description of each set of input data consists of three lines. The first line contains an integer n (1 \u2264 n \u2264 2 \u22c5 10^5) \u2014 the length of the original array a. The second line contains n integers a_1, a_2, ..., a_n (-10^9 \u2264 a_i \u2264 10^9) \u2014 the array elements themselves.\\n\\nThe third line has length n and consists exclusively of the letters 'B' and\\/or 'R': ith character is 'B' if a_i is colored blue, and is 'R' if colored red.\\n\\nIt is guaranteed that the sum of n over all input sets does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nPrint t lines, each of which contains the answer to the corresponding test case of the input. Print YES as an answer if the corresponding array can be transformed into a permutation, and NO otherwise.\\n\\nYou can print the answer in any case (for example, the strings yEs, yes, Yes, and YES will be recognized as a positive answer).\\n\\nExample\\n\\nInput\\n\\n\\n8\\n4\\n1 2 5 2\\nBRBR\\n2\\n1 1\\nBB\\n5\\n3 1 4 2 5\\nRBRRB\\n5\\n3 1 3 1 3\\nRBRRB\\n5\\n5 1 5 1 5\\nRBRRB\\n4\\n2 2 2 2\\nBRBR\\n2\\n1 -2\\nBR\\n4\\n-2...\\nUsing python3 can you solve the prior task?\",\"targets\":\"for t in range(int(input())):\\n n= int(input())\\n lis = list(map(int, input().split()))\\n s=input()\\n red=[]\\n blue=[]\\n for i in range(n):\\n if s[i] == \\\"R\\\":\\n red.append(lis[i])\\n else:\\n blue.append(lis[i])\\n red.sort()\\n blue.sort()\\n r_pointer=b_pointer=0\\n val=1\\n flag=0\\n #print(red,blue,n)\\n while (r_pointer= val:\\n b_pointer+=1\\n elif r_pointer\\nusing namespace std;\\ntypedef long long ll;\\ntypedef vector VI;\\ntypedef pair pii;\\nnamespace IO{\\n templateinline void read(T &x){\\n x=0;ll f=1;char ch=getchar();\\n while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}\\n while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}\\n x=x*f;\\n }\\n}\\nusing namespace IO;\\nll N;\\nlong double L;\\nconst int maxn=5000;\\nlong double T[maxn];\\n\\n#define pi 3.14159265358979323846\\nint main()\\n{\\n cin>>N>>L;\\n for(int i=1;i<=N;i++)\\n cin>>T[i];\\n long double rx=0.0,ry=0.0;\\n for(int i=1;i<=N;i++)\\n for(int j=i+1;j<=N;j++)\\n {\\n rx+=(N-2*j+2*i)*cos((long double)2*pi*(T[j]+T[i])\\/(long double )(2.0*L));\\n ry+=(N-2*j+2*i)*sin((long double)2*pi*(T[j]+T[i])\\/(long double)(2.0*L));\\n }\\n cout<n || cw>n) {\\n\\t\\t\\t\\tSystem.out.println(0);\\n\\t\\t\\t\\treturn;\\n\\t\\t\\t}\\n\\t\\t\\t\\n\\t\\t\\tif((wl==1&&wr==1) || (bl==1&&br==1))emp=0;\\n\\t\\t\\t\\n\\t\\t\\tlong ans = nCrModPFermat(n+n-cw-cb, n-cw, MOD);\\n\\t\\t\\t\\n\\t\\t\\tif(f1==1) {\\n\\t\\t\\t\\tSystem.out.println(ans);\\n\\t\\t\\t}else {\\n\\t\\t\\t\\tSystem.out.println(((ans-cc)%MOD+emp)%MOD);\\n\\t\\t\\t}\\n\\t\\tout.close();\\n\\t}\\n\\t\\n\\t\\n\\t\\/* Iterative Function to calculate\\n (x^y)%p in O(log y) *\\/\\n static long power(long x, int y, int p)\\n {\\n \\n \\/\\/ Initialize result\\n long res = 1;\\n \\n \\/\\/ Update x if it is more than or\\n \\/\\/ equal to p\\n x = x % p;\\n \\n while (y > 0) {\\n \\n \\/\\/ If y is odd, multiply x\\n \\/\\/ with result\\n if (y % 2 == 1)\\n res = (res * x) % p;\\n \\n \\/\\/ y must be even now\\n y = y >> 1; \\/\\/ y = y\\/2\\n x = (x * x) % p;\\n }\\n \\n return res;\\n }\\n \\n \\/\\/ Returns n^(-1) mod p\\n static long modInverse(long n, int p)\\n {\\n return power(n, p - 2, p);\\n }\\n \\n \\/\\/ Returns nCr % p using Fermat's\\n \\/\\/ little theorem.\\n static long...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"PYTHON3 solution for \\\"A binary string is a string that consists of characters 0 and 1. A bi-table is a table that has exactly two rows of equal length, each being a binary string.\\n\\nLet \\\\operatorname{MEX} of a bi-table be the smallest digit among 0, 1, or 2 that does not occur in the bi-table. For example, \\\\operatorname{MEX} for \\\\begin{bmatrix} 0011\\\\\\\\\\\\ 1010 \\\\end{bmatrix} is 2, because 0 and 1 occur in the bi-table at least once. \\\\operatorname{MEX} for \\\\begin{bmatrix} 111\\\\\\\\\\\\ 111 \\\\end{bmatrix} is 0, because 0 and 2 do not occur in the bi-table, and 0 < 2.\\n\\nYou are given a bi-table with n columns. You should cut it into any number of bi-tables (each consisting of consecutive columns) so that each column is in exactly one bi-table. It is possible to cut the bi-table into a single bi-table \u2014 the whole bi-table.\\n\\nWhat is the maximal sum of \\\\operatorname{MEX} of all resulting bi-tables can be?\\n\\nInput\\n\\nThe input consists of multiple test cases. The first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Description of the test cases follows.\\n\\nThe first line of the description of each test case contains a single integer n (1 \u2264 n \u2264 10^5) \u2014 the number of columns in the bi-table.\\n\\nEach of the next two lines contains a binary string of length n \u2014 the rows of the bi-table.\\n\\nIt's guaranteed that the sum of n over all test cases does not exceed 10^5.\\n\\nOutput\\n\\nFor each test case print a single integer \u2014 the maximal sum of \\\\operatorname{MEX} of all bi-tables that it is possible to get by cutting the given bi-table optimally.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n7\\n0101000\\n1101100\\n5\\n01100\\n10101\\n2\\n01\\n01\\n6\\n000000\\n111111\\n\\n\\nOutput\\n\\n\\n8\\n8\\n2\\n12\\n\\nNote\\n\\nIn the first test case you can cut the bi-table as follows:\\n\\n * \\\\begin{bmatrix} 0\\\\\\\\\\\\ 1 \\\\end{bmatrix}, its \\\\operatorname{MEX} is 2.\\n * \\\\begin{bmatrix} 10\\\\\\\\\\\\ 10 \\\\end{bmatrix}, its \\\\operatorname{MEX} is 2.\\n * \\\\begin{bmatrix} 1\\\\\\\\\\\\ 1 \\\\end{bmatrix}, its \\\\operatorname{MEX} is 0.\\n * \\\\begin{bmatrix} 0\\\\\\\\\\\\ 1 \\\\end{bmatrix}, its \\\\operatorname{MEX} is 2.\\n * \\\\begin{bmatrix} 0\\\\\\\\\\\\ 0 \\\\end{bmatrix}, its...\\\":\",\"targets\":\"TESTS = int(input())\\n\\nfor t in range(TESTS):\\n\\tsize = int(input())\\n\\tA = [int(x) for x in input()]\\n\\tB = [int(x) for x in input()]\\n\\t\\n\\tmex = 0\\n\\tprevious = -1\\n\\tfor i in range(size):\\n\\t\\ta, b = A[i], B[i]\\n\\t\\tif a != b:\\n\\t\\t\\tmex += 2\\n\\t\\t\\tprevious = -1\\n\\t\\t\\tcontinue\\n\\t\\tif a+b == 0:\\n\\t\\t\\tmex += 1\\n\\t\\t\\tif previous == 1:\\n\\t\\t\\t\\tmex += 1\\n\\t\\t\\t\\tprevious = -1\\n\\t\\t\\telse:\\n\\t\\t\\t\\tprevious = 0\\n\\t\\tif a+b == 2:\\n\\t\\t\\tif previous == 0:\\n\\t\\t\\t\\tmex += 1\\n\\t\\t\\t\\tprevious = -1\\n\\t\\t\\telse:\\n\\t\\t\\t\\tprevious = 1\\n\\tprint(mex)\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nMishka has got n empty boxes. For every i (1 \u2264 i \u2264 n), i-th box is a cube with side length ai.\\n\\nMishka can put a box i into another box j if the following conditions are met:\\n\\n * i-th box is not put into another box; \\n * j-th box doesn't contain any other boxes; \\n * box i is smaller than box j (ai < aj). \\n\\n\\n\\nMishka can put boxes into each other an arbitrary number of times. He wants to minimize the number of visible boxes. A box is called visible iff it is not put into some another box.\\n\\nHelp Mishka to determine the minimum possible number of visible boxes!\\n\\nInput\\n\\nThe first line contains one integer n (1 \u2264 n \u2264 5000) \u2014 the number of boxes Mishka has got.\\n\\nThe second line contains n integers a1, a2, ..., an (1 \u2264 ai \u2264 109), where ai is the side length of i-th box.\\n\\nOutput\\n\\nPrint the minimum possible number of visible boxes.\\n\\nExamples\\n\\nInput\\n\\n3\\n1 2 3\\n\\n\\nOutput\\n\\n1\\n\\n\\nInput\\n\\n4\\n4 2 4 3\\n\\n\\nOutput\\n\\n2\\n\\nNote\\n\\nIn the first example it is possible to put box 1 into box 2, and 2 into 3.\\n\\nIn the second example Mishka can put box 2 into box 3, and box 4 into box 1.\",\"targets\":\"#include \\nusing namespace std;\\nint n, a[5005];\\nint check[5005];\\nint main() {\\n cin >> n;\\n for (int i = 1; i <= n; ++i) {\\n cin >> a[i];\\n }\\n sort(a + 1, a + n + 1);\\n memset(check, false, sizeof check);\\n int d = 0;\\n for (int i = 1; i <= n; ++i) {\\n if (!check[i]) {\\n ++d;\\n check[i] = true;\\n int x = a[i];\\n for (int j = i + 1; j <= n; ++j) {\\n if (a[j] > x && !check[j]) {\\n check[j] = true;\\n x = a[j];\\n }\\n }\\n }\\n }\\n cout << d;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nInstructors of Some Informatics School make students go to bed.\\n\\nThe house contains n rooms, in each room exactly b students were supposed to sleep. However, at the time of curfew it happened that many students are not located in their assigned rooms. The rooms are arranged in a row and numbered from 1 to n. Initially, in i-th room there are ai students. All students are currently somewhere in the house, therefore a1 + a2 + ... + an = nb. Also 2 instructors live in this house.\\n\\nThe process of curfew enforcement is the following. One instructor starts near room 1 and moves toward room n, while the second instructor starts near room n and moves toward room 1. After processing current room, each instructor moves on to the next one. Both instructors enter rooms and move simultaneously, if n is odd, then only the first instructor processes the middle room. When all rooms are processed, the process ends.\\n\\nWhen an instructor processes a room, she counts the number of students in the room, then turns off the light, and locks the room. Also, if the number of students inside the processed room is not equal to b, the instructor writes down the number of this room into her notebook (and turns off the light, and locks the room). Instructors are in a hurry (to prepare the study plan for the next day), so they don't care about who is in the room, but only about the number of students.\\n\\nWhile instructors are inside the rooms, students can run between rooms that are not locked and not being processed. A student can run by at most d rooms, that is she can move to a room with number that differs my at most d. Also, after (or instead of) running each student can hide under a bed in a room she is in. In this case the instructor will not count her during the processing. In each room any number of students can hide simultaneously.\\n\\nFormally, here is what's happening:\\n\\n * A curfew is announced, at this point in room i there are ai students. \\n * Each student can run to another room but not further than d rooms away from her initial...\",\"targets\":\"#include \\nusing namespace std;\\nconst int NMAX = 100010;\\nint N, D, B;\\nint V[NMAX], leftSum[NMAX], rightSum[NMAX];\\nint computeLeft(int kStud) {\\n int prefixSum = 0;\\n int answer = 0;\\n for (int i = 1; i <= (N + 1) \\/ 2; ++i) {\\n int right = i + 1ll * D * i <= N ? i + D * i : N;\\n if (leftSum[right] - prefixSum >= B && prefixSum + B <= kStud) {\\n prefixSum += B;\\n } else {\\n ++answer;\\n }\\n }\\n return answer;\\n}\\nint computeRight(int kStud) {\\n int suffixSum = 0;\\n int answer = 0;\\n for (int i = N; i > (N + 1) \\/ 2; --i) {\\n int left = i - 1ll * D * (N - i + 1) >= 1 ? i - D * (N - i + 1) : 1;\\n if (rightSum[left] - suffixSum >= B && suffixSum + B <= kStud) {\\n suffixSum += B;\\n } else {\\n ++answer;\\n }\\n }\\n return answer;\\n}\\nint main() {\\n cin >> N >> D >> B;\\n for (int i = 1; i <= N; ++i) {\\n cin >> V[i];\\n }\\n for (int i = 1; i <= N; ++i) {\\n leftSum[i] = leftSum[i - 1] + V[i];\\n rightSum[N - i + 1] = rightSum[N - i + 2] + V[N - i + 1];\\n }\\n int currAnswer = 0;\\n for (int i = 30; i >= 0; --i) {\\n if (computeLeft(currAnswer | (1 << i)) -\\n computeRight(N * B - (currAnswer | (1 << i))) >=\\n 0) {\\n currAnswer |= 1 << i;\\n }\\n }\\n cout << min(max(computeLeft(currAnswer), computeRight(N * B - currAnswer)),\\n max(computeLeft(currAnswer + 1),\\n computeRight(N * B - currAnswer - 1)))\\n << '\\\\n';\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Consider writing each of the integers from 1 to N \\\\times M in a grid with N rows and M columns, without duplicates. Takahashi thinks it is not fun enough, and he will write the numbers under the following conditions:\\n\\n* The largest among the values in the i-th row (1 \\\\leq i \\\\leq N) is A_i.\\n* The largest among the values in the j-th column (1 \\\\leq j \\\\leq M) is B_j.\\n\\n\\n\\nFor him, find the number of ways to write the numbers under these conditions, modulo 10^9 + 7.\\n\\nConstraints\\n\\n* 1 \\\\leq N \\\\leq 1000\\n* 1 \\\\leq M \\\\leq 1000\\n* 1 \\\\leq A_i \\\\leq N \\\\times M\\n* 1 \\\\leq B_j \\\\leq N \\\\times M\\n* A_i and B_j are integers.\\n\\nInput\\n\\nInput is given from Standard Input in the following format:\\n\\n\\nN M\\nA_1 A_2 ... A_{N}\\nB_1 B_2 ... B_{M}\\n\\n\\nOutput\\n\\nPrint the number of ways to write the numbers under the conditions, modulo 10^9 + 7.\\n\\nExamples\\n\\nInput\\n\\n2 2\\n4 3\\n3 4\\n\\n\\nOutput\\n\\n2\\n\\n\\nInput\\n\\n3 3\\n5 9 7\\n3 6 9\\n\\n\\nOutput\\n\\n0\\n\\n\\nInput\\n\\n2 2\\n4 4\\n4 4\\n\\n\\nOutput\\n\\n0\\n\\n\\nInput\\n\\n14 13\\n158 167 181 147 178 151 179 182 176 169 180 129 175 168\\n181 150 178 179 167 180 176 169 182 177 175 159 173\\n\\n\\nOutput\\n\\n343772227\\nUsing python3 can you solve the prior task?\",\"targets\":\"P=10**9+7\\nN,M=map(int,input().split())\\nX=sorted([int(i) for i in input().split()])\\nY=sorted([int(i) for i in input().split()])\\nA=[i for i in X]\\nB=[i for i in Y]\\nif len(set(A))!=N or len(set(B))!=M:\\n print(0)\\n exit()\\nL=[]\\nx=0\\ny=0\\nD=N*M\\nwhile(len(A)>0 and len(B)>0):\\n if max(A[-1],B[-1])==D:\\n if A[-1]>B[-1]:\\n A.pop()\\n L.append(y)\\n x+=1\\n elif A[-1]0:\\n D=min(Y)-1\\n while(len(A)>0):\\n C=A[-1]+1\\n tmp=x*y-(N*M-D)\\n for i in range(C,D+1)[::-1]:\\n L.append(tmp)\\n tmp-=1\\n D=A.pop()-1\\n x+=1\\n L.append(M)\\nif len(B)>0:\\n D=min(X)-1\\n while(len(B)>0):\\n C=B[-1]+1\\n tmp=x*y-(N*M-D)\\n for i in range(C,D+1)[::-1]:\\n L.append(tmp)\\n tmp-=1\\n D=B.pop()-1\\n y+=1\\n L.append(N)\\nm=min(min(X),min(Y))-1\\nfor i in range(1,m+1):\\n L.append(i)\\nans=1\\nfor i in L:\\n ans*=i\\n ans%=P\\nprint(ans)\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nMisha hacked the Codeforces site. Then he decided to let all the users change their handles. A user can now change his handle any number of times. But each new handle must not be equal to any handle that is already used or that was used at some point.\\n\\nMisha has a list of handle change requests. After completing the requests he wants to understand the relation between the original and the new handles of the users. Help him to do that.\\n\\nInput\\n\\nThe first line contains integer q (1 \u2264 q \u2264 1000), the number of handle change requests.\\n\\nNext q lines contain the descriptions of the requests, one per line.\\n\\nEach query consists of two non-empty strings old and new, separated by a space. The strings consist of lowercase and uppercase Latin letters and digits. Strings old and new are distinct. The lengths of the strings do not exceed 20.\\n\\nThe requests are given chronologically. In other words, by the moment of a query there is a single person with handle old, and handle new is not used and has not been used by anyone.\\n\\nOutput\\n\\nIn the first line output the integer n \u2014 the number of users that changed their handles at least once.\\n\\nIn the next n lines print the mapping between the old and the new handles of the users. Each of them must contain two strings, old and new, separated by a space, meaning that before the user had handle old, and after all the requests are completed, his handle is new. You may output lines in any order.\\n\\nEach user who changes the handle must occur exactly once in this description.\\n\\nExamples\\n\\nInput\\n\\n5\\nMisha ILoveCodeforces\\nVasya Petrov\\nPetrov VasyaPetrov123\\nILoveCodeforces MikeMirzayanov\\nPetya Ivanov\\n\\n\\nOutput\\n\\n3\\nPetya Ivanov\\nMisha MikeMirzayanov\\nVasya VasyaPetrov123\",\"targets\":\"#include \\nusing namespace std;\\nconst int N = 2e5 + 5;\\nint main() {\\n ios_base::sync_with_stdio(0);\\n cin.tie(0);\\n cout.tie(0);\\n int n, str_cnt = 0;\\n cin >> n;\\n vector > vps;\\n map m;\\n for (int i = 0; i < n; ++i) {\\n string str1, str2;\\n cin >> str1 >> str2;\\n if (!m[str1]) {\\n vps.push_back({str1, str2});\\n m[str1] = m[str2] = ++str_cnt;\\n } else {\\n m[str2] = m[str1];\\n vps[m[str1] - 1].second = str2;\\n }\\n }\\n cout << str_cnt << \\\"\\\\n\\\";\\n for (int i = 0; i < str_cnt; ++i)\\n cout << vps[i].first << \\\" \\\" << vps[i].second << \\\"\\\\n\\\";\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"In a certain video game, the player controls a hero characterized by a single integer value: power. The hero will have to beat monsters that are also characterized by a single integer value: armor.\\n\\nOn the current level, the hero is facing n caves. To pass the level, the hero must enter all the caves in some order, each cave exactly once, and exit every cave safe and sound. When the hero enters cave i, he will have to fight k_i monsters in a row: first a monster with armor a_{i, 1}, then a monster with armor a_{i, 2} and so on, finally, a monster with armor a_{i, k_i}.\\n\\nThe hero can beat a monster if and only if the hero's power is strictly greater than the monster's armor. If the hero can't beat the monster he's fighting, the game ends and the player loses. Note that once the hero enters a cave, he can't exit it before he fights all the monsters in it, strictly in the given order.\\n\\nEach time the hero beats a monster, the hero's power increases by 1.\\n\\nFind the smallest possible power the hero must start the level with to be able to enter all the caves in some order and beat all the monsters.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10^5). Description of the test cases follows.\\n\\nThe first line of each test case contains a single integer n (1 \u2264 n \u2264 10^5) \u2014 the number of caves.\\n\\nThe i-th of the next n lines contains an integer k_i (1 \u2264 k_i \u2264 10^5) \u2014 the number of monsters in the i-th cave, followed by k_i integers a_{i, 1}, a_{i, 2}, \u2026, a_{i, k_i} (1 \u2264 a_{i, j} \u2264 10^9) \u2014 armor levels of the monsters in cave i in order the hero has to fight them.\\n\\nIt is guaranteed that the sum of k_i over all test cases does not exceed 10^5.\\n\\nOutput\\n\\nFor each test case print a single integer \u2014 the smallest possible power the hero must start the level with to be able to enter all the caves in some order and beat all the monsters.\\n\\nExample\\n\\nInput\\n\\n\\n2\\n1\\n1 42\\n2\\n3 10 15 8\\n2 12 11\\n\\n\\nOutput\\n\\n\\n43\\n13\\n\\nNote\\n\\nIn the first test case, the hero has to beat a single monster with...\\nimpor\",\"targets\":\"t java.util.*;\\npublic class Test2 {\\n\\tpublic static void main(String[] args) {\\n\\t\\tScanner sc=new Scanner(System.in);\\n\\t\\tint t=sc.nextInt();\\n\\t\\twhile(t-->0) {\\n\\t\\t\\tint n=sc.nextInt();\\n\\t\\t\\tArrayList> arr=new ArrayList<>(n);\\n\\t\\t\\tfor(int i=0;i list=new ArrayList<>(k);\\n\\t\\t\\t\\tfor(int j=0;j al=new ArrayList<>();\\n\\t\\t\\tfor(int i=0;i> map=new HashMap<>();\\n\\t\\t\\tint idx=0;\\n\\t\\t\\tfor(int x:al) {\\n\\t\\t\\t\\tArrayList list=map.getOrDefault(x, new ArrayList<>());\\n\\t\\t\\t\\tlist.add(idx);\\n\\t\\t\\t\\tmap.put(x, list);\\n\\t\\t\\t\\tidx++;\\n\\t\\t\\t}\\n\\t\\t\\t\\n\\t\\t\\tMap index=new HashMap<>();\\n\\t\\t\\tfor(int x:map.keySet())\\n\\t\\t\\t\\tindex.put(x,0);\\n\\t\\t\\t\\n\\t\\t\\tCollections.sort(al);\\n\\t\\t\\tint inc=0;\\n\\t\\t\\tint p=al.get(0);\\n\\t\\t\\tfor(int i=0;i get=map.get(al.get(i));\\n\\t\\t\\t\\tint j=index.get(al.get(i));\\n\\t\\t\\t\\tinc+=arr.get(get.get(j)).size();\\n\\t\\t\\t\\tindex.put(al.get(i), j+1);\\n\\t\\t\\t}\\n\\t\\t\\t\\n\\t\\t\\tint ans=p+1;\\n\\t\\t\\tSystem.out.println(ans);\\n\\t\\t}\\n\\t}\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nMalek has recently found a treasure map. While he was looking for a treasure he found a locked door. There was a string s written on the door consisting of characters '(', ')' and '#'. Below there was a manual on how to open the door. After spending a long time Malek managed to decode the manual and found out that the goal is to replace each '#' with one or more ')' characters so that the final string becomes beautiful. \\n\\nBelow there was also written that a string is called beautiful if for each i (1 \u2264 i \u2264 |s|) there are no more ')' characters than '(' characters among the first i characters of s and also the total number of '(' characters is equal to the total number of ')' characters. \\n\\nHelp Malek open the door by telling him for each '#' character how many ')' characters he must replace it with.\\n\\nInput\\n\\nThe first line of the input contains a string s (1 \u2264 |s| \u2264 105). Each character of this string is one of the characters '(', ')' or '#'. It is guaranteed that s contains at least one '#' character.\\n\\nOutput\\n\\nIf there is no way of replacing '#' characters which leads to a beautiful string print - 1. Otherwise for each character '#' print a separate line containing a positive integer, the number of ')' characters this character must be replaced with.\\n\\nIf there are several possible answers, you may output any of them.\\n\\nExamples\\n\\nInput\\n\\n(((#)((#)\\n\\n\\nOutput\\n\\n1\\n2\\n\\n\\nInput\\n\\n()((#((#(#()\\n\\n\\nOutput\\n\\n2\\n2\\n1\\n\\nInput\\n\\n#\\n\\n\\nOutput\\n\\n-1\\n\\n\\nInput\\n\\n(#)\\n\\n\\nOutput\\n\\n-1\\n\\nNote\\n\\n|s| denotes the length of the string s.\",\"targets\":\"#include \\nusing namespace std;\\nint k1 = 0, k2 = 0;\\nstring s;\\nint main() {\\n getline(cin, s);\\n int l = s.size();\\n if (s[l - 1] == '(') {\\n cout << \\\"-1\\\\n\\\";\\n return 0;\\n }\\n for (int i = 0; i < l; ++i) {\\n if (s[i] == '(')\\n ++k1;\\n else if (s[i] == ')')\\n --k1;\\n else if (s[i] == '#')\\n ++k2;\\n if (k2 > k1) {\\n cout << \\\"-1\\\\n\\\";\\n return 0;\\n }\\n }\\n int kk = 0;\\n int i = l - 1;\\n while (s[i] != '#') {\\n if (s[i] == ')')\\n ++kk;\\n else if (s[i] == '(')\\n --kk;\\n if (kk < 0) {\\n cout << \\\"-1\\\\n\\\";\\n return 0;\\n }\\n --i;\\n }\\n if (k2 > k1)\\n cout << \\\"-1\\\\n\\\";\\n else {\\n for (int i = 1; i < k2; ++i) cout << \\\"1\\\\n\\\";\\n cout << k1 - k2 + 1 << endl;\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"As shown in the following figure, there is a paper consisting of a grid structure where each cell is indicated by (x, y) coordinate system.\\n\\nWe are going to put drops of ink on the paper. A drop comes in three different sizes: Large, Medium, and Small. From the point of fall, the ink sinks into surrounding cells as shown in the figure depending on its size. In the figure, a star denotes the point of fall and a circle denotes the surrounding cells.\\n\\n\\n\\n\\nOriginally, the paper is white that means for each cell the value of density is 0. The value of density is increased by 1 when the ink sinks into the corresponding cells. For example, if we put a drop of Small ink at (1, 2) and a drop of Medium ink at (3, 2), the ink will sink as shown in the following figure (left side):\\n\\n\\n\\n\\nIn the figure, density values of empty cells are 0. The ink sinking into out of the paper should be ignored as shown in the figure (top side). We can put several drops of ink at the same point.\\n\\nYour task is to write a program which reads a sequence of points of fall (x, y) with its size (Small = 1, Medium = 2, Large = 3), and prints the number of cells whose density value is 0. The program must also print the maximum value of density.\\n\\nYou may assume that the paper always consists of 10 \u00d7 10, and 0 \u2264 x < 10, 0 \u2264 y < 10.\\n\\n\\n\\nInput\\n\\n\\nx1,y1,s1\\nx2,y2,s2\\n:\\n:\\n\\n\\n(xi, yi) represents the position of the i-th drop and si denotes its size. The number of drops is less than or equal to 50.\\n\\nOutput\\n\\nPrint the number of cells whose density value is 0 in first line.\\nPrint the maximum value of density in the second line.\\n\\nExample\\n\\nInput\\n\\n2,5,3\\n3,6,1\\n3,4,2\\n4,5,2\\n3,6,3\\n2,4,1\\n\\n\\nOutput\\n\\n77\\n5\\nThe above is tricky. Write me a correct solution in PYTHON3.\",\"targets\":\"board = [[0]*10 for _ in range(10)]\\nwhile True:\\n try:\\n x, y, size = map(int, input().split(','))\\n except:\\n break\\n small = [(-1, 0), (0, -1), (0, 0), (0, 1), (1, 0)]\\n med = [(-1, -1), (-1, 0), (-1, 1),\\n (0, -1), (0, 0), (0, 1),\\n (1, -1), (1, 0), (1, 1)]\\n large = [(-2, 0),\\n (-1, -1), (-1, 0), (-1, 1),\\n (0, -2), (0, -1), (0, 0), (0, 1), (0, 2),\\n (1, -1), (1, 0), (1, 1),\\n (2, 0)]\\n dyx = [small, med, large][size-1]\\n for dy, dx in dyx:\\n ny, nx = y + dy, x + dx\\n if 0 <= nx < 10 and 0 <= ny < 10:\\n board[ny][nx] += 1\\n\\nprint(sum(sum(1 for i in range(10) if row[i] == 0) for row in board))\\nprint(max([max(row) for row in board]))\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"JAVA solution for \\\"Given n, find any array a_1, a_2, \u2026, a_n of integers such that all of the following conditions hold: \\n\\n * 1 \u2264 a_i \u2264 10^9 for every i from 1 to n.\\n\\n * a_1 < a_2 < \u2026 0)\\n {\\n int n=cin.nextInt();\\n for(int i=2;i<=n+1;i++)\\n {\\n System.out.print(i+\\\" \\\");\\n }\\n System.out.println();\\n }\\n\\n\\n\\n }\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n public class ListNode {\\n int val;\\n ListNode next;\\n ListNode(int x) { val = x; }\\n }\\n\\n\\n\\n\\n\\n\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nBachgold problem is very easy to formulate. Given a positive integer n represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1.\\n\\nRecall that integer k is called prime if it is greater than 1 and has exactly two positive integer divisors \u2014 1 and k. \\n\\nInput\\n\\nThe only line of the input contains a single integer n (2 \u2264 n \u2264 100 000).\\n\\nOutput\\n\\nThe first line of the output contains a single integer k \u2014 maximum possible number of primes in representation.\\n\\nThe second line should contain k primes with their sum equal to n. You can print them in any order. If there are several optimal solution, print any of them.\\n\\nExamples\\n\\nInput\\n\\n5\\n\\n\\nOutput\\n\\n2\\n2 3\\n\\n\\nInput\\n\\n6\\n\\n\\nOutput\\n\\n3\\n2 2 2\",\"targets\":\"#include \\nint main() {\\n long n, k = 0;\\n scanf(\\\"%ld\\\", &n);\\n k = n \\/ 2;\\n printf(\\\"%ld\\\\n\\\", k);\\n for (int i = 0; i < k; i++) {\\n if (i == k - 1) {\\n if (n % 2 == 0)\\n printf(\\\"2\\\\n\\\");\\n else\\n printf(\\\"3\\\\n\\\");\\n } else\\n printf(\\\"2 \\\");\\n }\\n getchar();\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"A complete binary tree is a binary tree in which every internal node has two children and all leaves have the same depth. A binary tree in which if last level is not completely filled but all nodes (leaves) are pushed across to the left, is also (nearly) a complete binary tree.\\n\\nA binary heap data structure is an array that can be viewed as a nearly complete binary tree as shown in the following figure.\\n\\n\\n\\n\\nEach node of a nearly complete binary tree corresponds to an element of the array that stores the value in the node. An array $A$ that represents a binary heap has the heap size $H$, the number of elements in the heap, and each element of the binary heap is stored into $A[1...H]$ respectively. The root of the tree is $A[1]$, and given the index $i$ of a node, the indices of its parent $parent(i)$, left child $left(i)$, right child $right(i)$ can be computed simply by $\\\\lfloor i \\/ 2 \\\\rfloor$, $2 \\\\times i$ and $2 \\\\times i + 1$ respectively.\\n\\nWrite a program which reads a binary heap represented by a nearly complete binary tree, and prints properties of nodes of the binary heap in the following format:\\n\\nnode $id$: key = $k$, parent key = $pk$, left key = $lk$, right key = $rk$,\\n\\n$id$, $k$, $pk$, $lk$ and $rk$ represent id (index) of the node, value of the node, value of its parent, value of its left child and value of its right child respectively. Print these properties in this order. If there are no appropriate nodes, print nothing.\\n\\nConstraints\\n\\n* $H \\\\leq 250$\\n* $-2,000,000,000 \\\\leq$ value of a node $\\\\leq 2,000,000,000$\\n\\nInput\\n\\nIn the first line, an integer $H$, the size of the binary heap, is given. In the second line, $H$ integers which correspond to values assigned to nodes of the binary heap are given in order of node id (from $1$ to $H$).\\n\\nOutput\\n\\nPrint the properties of the binary heap in the above format from node $1$ to $H$ in order. Note that, the last character of each line is a single space character.\\n\\nExample\\n\\nInput\\n\\n5\\n7 8 1 2 3\\n\\n\\nOutput\\n\\nnode 1: key = 7, left key = 8, right key = 1,\\nnode...\\\":\",\"targets\":\"#include \\n#include \\nusing namespace std;\\n\\nint main(void){\\n\\tint n;\\n\\tint a[250];\\n\\tcin>>n;\\n\\tfor(int i=0;i>a[i];\\n\\t\\/\\/ make_heap(a,a+n);\\n\\tfor(int i=0;i\\nusing namespace std;\\nconst bool testcase = 1;\\nconst long long int mod1 = 1000000007;\\nconst long long int mod2 = 998244353;\\nvoid solve(long long int& kes) {\\n long long int n;\\n cin >> n;\\n long long int prt = n \\/ 3;\\n long long int x = prt, y = prt;\\n long long int sum = x + 2 * y;\\n if (abs(n - sum) == 1) {\\n x++;\\n } else if (abs(n - sum) == 2) {\\n y++;\\n }\\n cout << x << ' ' << y << '\\\\n';\\n}\\nint main() {\\n ios_base::sync_with_stdio(0);\\n cin.tie(NULL);\\n long long int t = 1;\\n int T_T = 1;\\n if (testcase) {\\n cin >> T_T;\\n }\\n while (T_T--) {\\n solve(t);\\n t++;\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A telephone number is a sequence of exactly 11 digits such that its first digit is 8.\\n\\nVasya and Petya are playing a game. Initially they have a string s of length n (n is odd) consisting of digits. Vasya makes the first move, then players alternate turns. In one move the player must choose a character and erase it from the current string. For example, if the current string 1121, after the player's move it may be 112, 111 or 121. The game ends when the length of string s becomes 11. If the resulting string is a telephone number, Vasya wins, otherwise Petya wins.\\n\\nYou have to determine if Vasya has a winning strategy (that is, if Vasya can win the game no matter which characters Petya chooses during his moves).\\n\\nInput\\n\\nThe first line contains one integer n (13 \u2264 n < 10^5, n is odd) \u2014 the length of string s.\\n\\nThe second line contains the string s (|s| = n) consisting only of decimal digits.\\n\\nOutput\\n\\nIf Vasya has a strategy that guarantees him victory, print YES.\\n\\nOtherwise print NO.\\n\\nExamples\\n\\nInput\\n\\n\\n13\\n8380011223344\\n\\n\\nOutput\\n\\n\\nYES\\n\\n\\nInput\\n\\n\\n15\\n807345619350641\\n\\n\\nOutput\\n\\n\\nNO\\n\\nNote\\n\\nIn the first example Vasya needs to erase the second character. Then Petya cannot erase a character from the remaining string 880011223344 so that it does not become a telephone number.\\n\\nIn the second example after Vasya's turn Petya can erase one character character 8. The resulting string can't be a telephone number, because there is no digit 8 at all.\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nvoid solve() {\\n long long n;\\n cin >> n;\\n string s;\\n cin >> s;\\n int k = 0;\\n for (int i = 0; i < s.size(); i++) {\\n if (k < (n - 11) \\/ 2) {\\n if (s[i] == '8') {\\n k++;\\n s[i] = '+';\\n }\\n } else {\\n break;\\n }\\n }\\n k = 0;\\n for (int i = 0; i < s.size(); i++) {\\n if (k < (n - 11) \\/ 2) {\\n if (s[i] != '8' && s[i] != '+') {\\n k++;\\n s[i] = '+';\\n }\\n } else {\\n break;\\n }\\n }\\n int pos = 0;\\n for (int i = 0; i < s.size(); i++) {\\n if (s[i] != '+') {\\n pos = i;\\n break;\\n }\\n }\\n if (s[pos] == '8') {\\n cout << \\\"YES\\\" << endl;\\n } else {\\n cout << \\\"NO\\\" << endl;\\n }\\n}\\nint main() { solve(); }\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Bachgold problem is very easy to formulate. Given a positive integer n represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1.\\n\\nRecall that integer k is called prime if it is greater than 1 and has exactly two positive integer divisors \u2014 1 and k. \\n\\nInput\\n\\nThe only line of the input contains a single integer n (2 \u2264 n \u2264 100 000).\\n\\nOutput\\n\\nThe first line of the output contains a single integer k \u2014 maximum possible number of primes in representation.\\n\\nThe second line should contain k primes with their sum equal to n. You can print them in any order. If there are several optimal solution, print any of them.\\n\\nExamples\\n\\nInput\\n\\n5\\n\\n\\nOutput\\n\\n2\\n2 3\\n\\n\\nInput\\n\\n6\\n\\n\\nOutput\\n\\n3\\n2 2 2\\nSolve the task in PYTHON3.\",\"targets\":\"n = int(input())\\nvalue = n \\/\\/ 2\\nif n % 2 == 0:\\n\\n\\n ans = '2' * value\\n print(value)\\n for i in ans:\\n\\n print(i, end=' ')\\nelse:\\n multiply = value - 1\\n print(value)\\n\\n another = 2*multiply\\n forthree = value - multiply\\n ans = '2' * multiply + '3' * forthree\\n for i in ans:\\n print(i, end=' ')\",\"language\":\"python\",\"split\":\"train\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A bracket sequence is a string containing only characters \\\"(\\\" and \\\")\\\". A regular bracket sequence is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters \\\"1\\\" and \\\"+\\\" between the original characters of the sequence. For example, bracket sequences \\\"()()\\\" and \\\"(())\\\" are regular (the resulting expressions are: \\\"(1)+(1)\\\" and \\\"((1+1)+1)\\\"), and \\\")(\\\", \\\"(\\\" and \\\")\\\" are not.\\n\\nYou are given an integer n. Your goal is to construct and print exactly n different regular bracket sequences of length 2n.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 50) \u2014 the number of test cases.\\n\\nEach test case consists of one line containing one integer n (1 \u2264 n \u2264 50).\\n\\nOutput\\n\\nFor each test case, print n lines, each containing a regular bracket sequence of length exactly 2n. All bracket sequences you output for a testcase should be different (though they may repeat in different test cases). If there are multiple answers, print any of them. It can be shown that it's always possible.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3\\n1\\n3\\n\\n\\nOutput\\n\\n\\n()()()\\n((()))\\n(()())\\n()\\n((()))\\n(())()\\n()(())\\nUsing python3 can you solve the prior task?\",\"targets\":\"def generateParentheses(openBr, closeBr, n, s = []):\\n global k\\n if k0:\\n k =0\\n n = int(input())\\n generateParentheses(0, 0, n)\\n t-=1\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nChanek Jones is back, helping his long-lost relative Indiana Jones, to find a secret treasure in a maze buried below a desert full of illusions.\\n\\nThe map of the labyrinth forms a tree with n rooms numbered from 1 to n and n - 1 tunnels connecting them such that it is possible to travel between each pair of rooms through several tunnels.\\n\\nThe i-th room (1 \u2264 i \u2264 n) has a_i illusion rate. To go from the x-th room to the y-th room, there must exist a tunnel between x and y, and it takes max(|a_x + a_y|, |a_x - a_y|) energy. |z| denotes the absolute value of z.\\n\\nTo prevent grave robbers, the maze can change the illusion rate of any room in it. Chanek and Indiana would ask q queries.\\n\\nThere are two types of queries to be done:\\n\\n * 1\\\\ u\\\\ c \u2014 The illusion rate of the x-th room is changed to c (1 \u2264 u \u2264 n, 0 \u2264 |c| \u2264 10^9). \\n * 2\\\\ u\\\\ v \u2014 Chanek and Indiana ask you the minimum sum of energy needed to take the secret treasure at room v if they are initially at room u (1 \u2264 u, v \u2264 n). \\n\\n\\n\\nHelp them, so you can get a portion of the treasure!\\n\\nInput\\n\\nThe first line contains two integers n and q (2 \u2264 n \u2264 10^5, 1 \u2264 q \u2264 10^5) \u2014 the number of rooms in the maze and the number of queries.\\n\\nThe second line contains n integers a_1, a_2, \u2026, a_n (0 \u2264 |a_i| \u2264 10^9) \u2014 inital illusion rate of each room.\\n\\nThe i-th of the next n-1 lines contains two integers s_i and t_i (1 \u2264 s_i, t_i \u2264 n), meaning there is a tunnel connecting s_i-th room and t_i-th room. The given edges form a tree.\\n\\nThe next q lines contain the query as described. The given queries are valid.\\n\\nOutput\\n\\nFor each type 2 query, output a line containing an integer \u2014 the minimum sum of energy needed for Chanek and Indiana to take the secret treasure.\\n\\nExample\\n\\nInput\\n\\n\\n6 4\\n10 -9 2 -1 4 -6\\n1 5\\n5 4\\n5 6\\n6 2\\n6 3\\n2 1 2\\n1 1 -3\\n2 1 2\\n2 3 3\\n\\n\\nOutput\\n\\n\\n39\\n32\\n0\\n\\nNote\\n\\n\\n\\nIn the first query, their movement from the 1-st to the 2-nd room is as follows.\\n\\n * 1 \u2192 5 \u2014 takes max(|10 + 4|, |10 - 4|) = 14 energy. \\n * 5 \u2192 6 \u2014 takes max(|4 + (-6)|, |4 - (-6)|) = 10 energy. \\n * 6 \u2192 2 \u2014...\",\"targets\":\"#include \\nusing namespace std;\\nclass Fenwick {\\n vector tree;\\n\\n public:\\n Fenwick() {}\\n Fenwick(int n, long long init) : tree(n + 5, 0) {}\\n void add(int idx, long long val) {\\n for (int i = idx; i < (int)tree.size(); i += i & -i) {\\n tree[i] += val;\\n }\\n }\\n long long get(int idx) {\\n long long ans = 0;\\n for (int i = idx; i > 0; i -= i & -i) {\\n ans += tree[i];\\n }\\n return ans;\\n }\\n long long query(int l, int r) {\\n long long ans = get(r) - get(l - 1);\\n return ans;\\n }\\n void set(int idx, long long val) { add(idx, val - query(idx, idx)); }\\n};\\ntemplate \\nclass HLD {\\n int vertexc;\\n vector *adj;\\n vector subtree_size;\\n DS structure;\\n DS aux;\\n void build_sizes(int vertex, int parent) {\\n subtree_size[vertex] = 1;\\n for (int child : adj[vertex]) {\\n if (child != parent) {\\n build_sizes(child, vertex);\\n subtree_size[vertex] += subtree_size[child];\\n }\\n }\\n }\\n int cur;\\n vector ord;\\n vector chain_root;\\n vector par;\\n void build_hld(int vertex, int parent, int chain_source) {\\n cur++;\\n ord[vertex] = cur;\\n chain_root[vertex] = chain_source;\\n par[vertex] = parent;\\n if (adj[vertex].size() > 1 || (vertex == 1 && adj[vertex].size() == 1)) {\\n int big_child, big_size = -1;\\n for (int child : adj[vertex]) {\\n if ((child != parent) && (subtree_size[child] > big_size)) {\\n big_child = child;\\n big_size = subtree_size[child];\\n }\\n }\\n build_hld(big_child, vertex, chain_source);\\n for (int child : adj[vertex]) {\\n if ((child != parent) && (child != big_child))\\n build_hld(child, vertex, child);\\n }\\n }\\n }\\n\\n public:\\n HLD(int _vertexc) {\\n vertexc = _vertexc;\\n adj = new vector[vertexc + 5];\\n }\\n void add_edge(int u, int v) {\\n adj[u].push_back(v);\\n adj[v].push_back(u);\\n }\\n void build(T initial) {\\n subtree_size = vector(vertexc + 5);\\n ord = vector(vertexc + 5);\\n chain_root =...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"There are n heroes fighting in the arena. Initially, the i-th hero has a_i health points.\\n\\nThe fight in the arena takes place in several rounds. At the beginning of each round, each alive hero deals 1 damage to all other heroes. Hits of all heroes occur simultaneously. Heroes whose health is less than 1 at the end of the round are considered killed.\\n\\nIf exactly 1 hero remains alive after a certain round, then he is declared the winner. Otherwise, there is no winner.\\n\\nYour task is to calculate the number of ways to choose the initial health points for each hero a_i, where 1 \u2264 a_i \u2264 x, so that there is no winner of the fight. The number of ways can be very large, so print it modulo 998244353. Two ways are considered different if at least one hero has a different amount of health. For example, [1, 2, 1] and [2, 1, 1] are different.\\n\\nInput\\n\\nThe only line contains two integers n and x (2 \u2264 n \u2264 500; 1 \u2264 x \u2264 500).\\n\\nOutput\\n\\nPrint one integer \u2014 the number of ways to choose the initial health points for each hero a_i, where 1 \u2264 a_i \u2264 x, so that there is no winner of the fight, taken modulo 998244353. \\n\\nExamples\\n\\nInput\\n\\n\\n2 5\\n\\n\\nOutput\\n\\n\\n5\\n\\n\\nInput\\n\\n\\n3 3\\n\\n\\nOutput\\n\\n\\n15\\n\\n\\nInput\\n\\n\\n5 4\\n\\n\\nOutput\\n\\n\\n1024\\n\\n\\nInput\\n\\n\\n13 37\\n\\n\\nOutput\\n\\n\\n976890680\\nUsing python3 can you solve the prior task?\",\"targets\":\"import sys\\ninput = lambda: sys.stdin.readline().strip()\\n\\n# sys.stdin = open('input.txt', 'r')\\n# sys.stdout = open('output.txt', 'w')\\n\\nfrom functools import lru_cache\\n\\nmod = 998244353\\n\\nmx = 505\\nfac = [1]*mx\\nfor i in range(1, mx):\\n fac[i] = fac[i-1] * i % mod\\nifac = [1]*505\\nifac[-1] = pow(fac[-1], mod-2, mod)\\nfor i in range(mx-2, 0, -1):\\n ifac[i] = (i+1) * ifac[i+1] % mod\\n\\ndef comb(a, b):\\n return fac[a] * ifac[a-b] % mod * ifac[b] % mod\\n\\n@lru_cache(None)\\ndef helper(n, x):\\n if x <= n - 1:\\n return pow(x, n, mod)\\n res = pow(n-1, n, mod)\\n for j in range(2, n+1):\\n res += comb(n, j) * helper(j, x - n + 1) * pow(n-1, n-j, mod)\\n res %= mod\\n return res\\n\\ndef solve():\\n n, x = map(int, input().split())\\n return helper(n, x)\\n\\nprint(solve())\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given an array a of length n.\\n\\nLet's define the eversion operation. Let x = a_n. Then array a is partitioned into two parts: left and right. The left part contains the elements of a that are not greater than x (\u2264 x). The right part contains the elements of a that are strictly greater than x (> x). The order of elements in each part is kept the same as before the operation, i. e. the partition is stable. Then the array is replaced with the concatenation of the left and the right parts.\\n\\nFor example, if the array a is [2, 4, 1, 5, 3], the eversion goes like this: [2, 4, 1, 5, 3] \u2192 [2, 1, 3], [4, 5] \u2192 [2, 1, 3, 4, 5].\\n\\nWe start with the array a and perform eversions on this array. We can prove that after several eversions the array a stops changing. Output the minimum number k such that the array stops changing after k eversions.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 100). Description of the test cases follows.\\n\\nThe first line contains a single integer n (1 \u2264 n \u2264 2 \u22c5 10^5).\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^9).\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case print a single integer k \u2014 the number of eversions after which the array stops changing.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n5\\n2 4 1 5 3\\n5\\n5 3 2 4 1\\n4\\n1 1 1 1\\n\\n\\nOutput\\n\\n\\n1\\n2\\n0\\n\\nNote\\n\\nConsider the fist example.\\n\\n * The first eversion: a = [1, 4, 2, 5, 3], x = 3. [2, 4, 1, 5, 3] \u2192 [2, 1, 3], [4, 5] \u2192 [2, 1, 3, 4, 5]. \\n * The second and following eversions: a = [2, 1, 3, 4, 5], x = 5. [2, 1, 3, 4, 5] \u2192 [2, 1, 3, 4, 5], [] \u2192 [2, 1, 3, 4, 5]. This eversion does not change the array, so the answer is 1. \\n\\n\\n\\nConsider the second example. \\n\\n * The first eversion: a = [5, 3, 2, 4, 1], x = 1. [5, 3, 2, 4, 1] \u2192 [1], [5, 3, 2, 4] \u2192 [1, 5, 3, 2, 4]. \\n * The second eversion: a = [1, 5, 3, 2, 4], x = 4. [1, 5, 3, 2, 4] \u2192 [1, 3, 2, 4], [5] \u2192 [1, 3, 2, 4, 5]. \\n * The third and following eversions: a = [1, 3, 2, 4,...\\nUsing java can you solve the prior task?\",\"targets\":\"import javax.lang.model.type.IntersectionType;\\nimport java.sql.Array;\\nimport java.util.*;\\nimport java.io.*;\\nimport java.util.concurrent.ScheduledExecutorService;\\nimport java.util.concurrent.atomic.AtomicReferenceArray;\\nimport java.util.spi.AbstractResourceBundleProvider;\\n\\/\\/Timus judge id- 323935JJ\\n\\n\\npublic class Main {\\n static class Pair {\\n public final U first;\\n public final V second;\\n\\n public Pair(U first, V second) {\\n this.first = first;\\n this.second = second;\\n }\\n\\n public static Pair of(U a, V b) {\\n return new Pair<>(a, b);\\n }\\n\\n final int a = 2;\\n\\n @Override\\n public int hashCode() {\\n int hash = 5;\\n hash = 17 * hash + this.a;\\n return hash;\\n }\\n\\n @Override\\n public boolean equals(Object obj) {\\n if (obj == null) {\\n return false;\\n }\\n if (getClass() != obj.getClass()) {\\n return false;\\n }\\n final Pair other = (Pair) obj;\\n if (this.a != other.a) {\\n return false;\\n }\\n return true;\\n }\\n }\\n\\n \\/\\/----------------------------------------------------------------------------------------------\\n public static class Node implements Comparable {\\n String s;\\n int x;\\n\\n public Node(String str, int b) {\\n this.s = str;\\n this.x = b;\\n\\n }\\n\\n public int compareTo(Node o) {\\n return this.x - o.x;\\n }\\n }\\n\\n\\n public static int mod = (int) (1e9 + 7);\\n static int ans = Integer.MAX_VALUE;\\n\\n public static void main(String hi[]) throws Exception {\\n FastReader sc = new FastReader();\\n\\n int t =sc.nextInt();\\n while(t-->0)\\n {\\n int n =sc.nextInt();\\n int max=Integer.MIN_VALUE;\\n int[] a = new int[n];\\n for(int i=0;i\\n\\nAfter the first fold operation the sheet has width equal to 4, after the second one the width of the sheet equals to 2.\\n#incl\",\"targets\":\"ude \\nusing namespace std;\\nint n, a[100010];\\nint la, ra;\\nvoid update(int i, int delta) {\\n for (; i < n; i = i | (i + 1)) {\\n a[i] += delta;\\n }\\n}\\nint get(int fr, int to) {\\n int res = 0;\\n for (int i = to; i >= 0; i = (i & (i + 1)) - 1) {\\n res += a[i];\\n }\\n for (int i = fr - 1; i >= 0; i = (i & (i + 1)) - 1) {\\n res -= a[i];\\n }\\n return res;\\n}\\nint main(void) {\\n int q;\\n scanf(\\\"%d%d\\\", &n, &q);\\n for (int i = 0; i < n; ++i) {\\n update(i, 1);\\n }\\n int la = 0;\\n int ra = n;\\n for (int i = 0; i < q; ++i) {\\n int t;\\n scanf(\\\"%d\\\", &t);\\n if (t == 1) {\\n int p, len, mid;\\n scanf(\\\"%d\\\", &p);\\n if (la < ra) {\\n len = ra - la;\\n mid = la + p;\\n } else {\\n len = la - ra;\\n mid = la - p;\\n }\\n if (p > len \\/ 2) {\\n swap(la, ra);\\n p = len - p;\\n }\\n if (la < ra) {\\n for (int i = 0; i < p; ++i) {\\n update(mid + i, get(mid - 1 - i, mid - 1 - i));\\n }\\n } else {\\n for (int i = 0; i < p; ++i) {\\n update(mid - 1 - i, get(mid + i, mid + i));\\n }\\n }\\n la = mid;\\n } else {\\n int l, r;\\n scanf(\\\"%d%d\\\", &l, &r);\\n if (la < ra) {\\n l += la;\\n r += la;\\n } else {\\n l = la - l;\\n r = la - r;\\n swap(l, r);\\n }\\n printf(\\\"%d\\\\n\\\", get(l, r - 1));\\n }\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Lord Omkar would like to have a tree with n nodes (3 \u2264 n \u2264 10^5) and has asked his disciples to construct the tree. However, Lord Omkar has created m (1 \u2264 m < n) restrictions to ensure that the tree will be as heavenly as possible. \\n\\nA tree with n nodes is an connected undirected graph with n nodes and n-1 edges. Note that for any two nodes, there is exactly one simple path between them, where a simple path is a path between two nodes that does not contain any node more than once.\\n\\nHere is an example of a tree: \\n\\n\\n\\nA restriction consists of 3 pairwise distinct integers, a, b, and c (1 \u2264 a,b,c \u2264 n). It signifies that node b cannot lie on the simple path between node a and node c. \\n\\nCan you help Lord Omkar and become his most trusted disciple? You will need to find heavenly trees for multiple sets of restrictions. It can be shown that a heavenly tree will always exist for any set of restrictions under the given constraints.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10^4). Description of the test cases follows.\\n\\nThe first line of each test case contains two integers, n and m (3 \u2264 n \u2264 10^5, 1 \u2264 m < n), representing the size of the tree and the number of restrictions.\\n\\nThe i-th of the next m lines contains three integers a_i, b_i, c_i (1 \u2264 a_i, b_i, c_i \u2264 n, a, b, c are distinct), signifying that node b_i cannot lie on the simple path between nodes a_i and c_i. \\n\\nIt is guaranteed that the sum of n across all test cases will not exceed 10^5.\\n\\nOutput\\n\\nFor each test case, output n-1 lines representing the n-1 edges in the tree. On each line, output two integers u and v (1 \u2264 u, v \u2264 n, u \u2260 v) signifying that there is an edge between nodes u and v. Given edges have to form a tree that satisfies Omkar's restrictions.\\n\\nExample\\n\\nInput\\n\\n\\n2\\n7 4\\n1 2 3\\n3 4 5\\n5 6 7\\n6 5 4\\n5 3\\n1 2 3\\n2 3 4\\n3 4 5\\n\\n\\nOutput\\n\\n\\n1 2\\n1 3\\n3 5\\n3 4\\n2 7\\n7 6\\n5 1\\n1 3\\n3 2\\n2 4\\n\\nNote\\n\\nThe output of the first sample case corresponds to the following tree: \\n\\n For the first restriction,...\",\"targets\":\"import java.util.*;\\nimport java.io.*;\\n \\npublic class SolutionB{\\n static HashSet[] gr;\\n static int[] vis;\\n public static void main(String[] args) throws Exception{\\n Fast sc=new Fast();\\n PrintWriter out=new PrintWriter(System.out);\\n int t=sc.nextInt();\\n \\n while(t-->0){\\n\\n\\n int n=sc.nextInt();\\n int m=sc.nextInt();\\n gr=new HashSet[n+1];\\n vis=new int[n+1];\\n for(int i=0;i<=n;i++){\\n gr[i]=new HashSet<>();\\n \\n }\\n \\n int last=0;\\n vis=new int[n+1];\\n for(int i=0;i al=new ArrayList<>();\\n for(int i=0;i 1), then it grows by 5 centimeters instead of 1. \\n * If the flower is not watered in the i-th day, it does not grow. \\n\\n\\n\\nAt the beginning of the 1-st day the flower is 1 centimeter tall. What is its height after n days?\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 100). Description of the test cases follows.\\n\\nThe first line of each test case contains the only integer n (1 \u2264 n \u2264 100).\\n\\nThe second line of each test case contains n integers a_1, a_2, ..., a_n (a_i = 0 or a_i = 1). If a_i = 1, the flower is watered in the i-th day, otherwise it is not watered.\\n\\nOutput\\n\\nFor each test case print a single integer k \u2014 the flower's height after n days, or -1, if the flower dies.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n3\\n1 0 1\\n3\\n0 1 1\\n4\\n1 0 0 1\\n1\\n0\\n\\n\\nOutput\\n\\n\\n3\\n7\\n-1\\n1\\nSolve the task in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nvoid fun() {\\n long long int co = 0, co1 = 0, co2 = 0, co3 = 0, count = 0, f = 0, f1 = 0,\\n f2 = 0, f3 = 0, flag = 0;\\n long long int i, j, k, l, m, n, a, b, c, d, x, tmp, temp;\\n string s, s1, s2, s3;\\n cin >> n;\\n long long int arr[n + 10];\\n for (i = 0; i < n; i++) {\\n cin >> arr[i];\\n }\\n co = 1;\\n f = 0;\\n for (i = 0; i < n; i++) {\\n if (arr[i] == 0) {\\n f++;\\n co1 = 0;\\n } else if (arr[i] == 1) {\\n co1++;\\n if (co1 > 1)\\n co += 5;\\n else\\n co += 1;\\n f = 0;\\n }\\n if (f == 2) break;\\n }\\n if (f == 2)\\n cout << -1 << endl;\\n else\\n cout << co << endl;\\n}\\nint main() {\\n long long int n;\\n cin >> n;\\n while (n--) fun();\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nAs you know, the most intelligent beings on the Earth are, of course, cows. This conclusion was reached long ago by the Martian aliens, as well as a number of other intelligent civilizations from outer space. \\n\\nSometimes cows gather into cowavans. This seems to be seasonal. But at this time the cows become passive and react poorly to external stimuli. A cowavan is a perfect target for the Martian scientific saucer, it's time for large-scale abductions, or, as the Martians say, raids. Simply put, a cowavan is a set of cows in a row. \\n\\nIf we number all cows in the cowavan with positive integers from 1 to n, then we can formalize the popular model of abduction, known as the (a, b)-Cowavan Raid: first they steal a cow number a, then number a + b, then \u2014 number a + 2\u00b7b, and so on, until the number of an abducted cow exceeds n. During one raid the cows are not renumbered. \\n\\nThe aliens would be happy to place all the cows on board of their hospitable ship, but unfortunately, the amount of cargo space is very, very limited. The researchers, knowing the mass of each cow in the cowavan, made p scenarios of the (a, b)-raid. Now they want to identify the following thing for each scenario individually: what total mass of pure beef will get on board of the ship. All the scenarios are independent, in the process of performing the calculations the cows are not being stolen. \\n\\n\\n\\nInput\\n\\nThe first line contains the only positive integer n (1 \u2264 n \u2264 3\u00b7105) \u2014 the number of cows in the cowavan.\\n\\nThe second number contains n positive integer wi, separated by spaces, where the i-th number describes the mass of the i-th cow in the cowavan (1 \u2264 wi \u2264 109).\\n\\nThe third line contains the only positive integer p \u2014 the number of scenarios of (a, b)-raids (1 \u2264 p \u2264 3\u00b7105).\\n\\nEach following line contains integer parameters a and b of the corresponding scenario (1 \u2264 a, b \u2264 n).\\n\\nOutput\\n\\nPrint for each scenario of the (a, b)-raid the total mass of cows, that can be stolen using only this scenario.\\n\\nPlease, do not use the %lld specificator to...\",\"targets\":\"#include \\nusing namespace std;\\nconst double eps = 1e-9;\\nconst int inf = 2000000000;\\nconst long long infLL = 9000000000000000000;\\ntemplate \\nostream& operator<<(ostream& os, const pair& p) {\\n return os << \\\"(\\\" << p.first << \\\", \\\" << p.second << \\\")\\\";\\n}\\ntemplate \\nostream& operator<<(ostream& os, const vector& v) {\\n os << \\\"{\\\";\\n for (auto it = v.begin(); it != v.end(); ++it) {\\n if (it != v.begin()) os << \\\", \\\";\\n os << *it;\\n }\\n return os << \\\"}\\\";\\n}\\ntemplate \\nostream& operator<<(ostream& os, const set& v) {\\n os << \\\"[\\\";\\n for (auto it = v.begin(); it != v.end(); ++it) {\\n if (it != v.begin()) os << \\\",\\\";\\n os << *it;\\n }\\n return os << \\\"]\\\";\\n}\\ntemplate \\nostream& operator<<(ostream& os, const multiset& v) {\\n os << \\\"[\\\";\\n for (auto it = v.begin(); it != v.end(); ++it) {\\n if (it != v.begin()) os << \\\", \\\";\\n os << *it;\\n }\\n return os << \\\"]\\\";\\n}\\ntemplate \\nostream& operator<<(ostream& os, const map& v) {\\n os << \\\"[\\\";\\n for (auto it = v.begin(); it != v.end(); ++it) {\\n if (it != v.begin()) os << \\\", \\\";\\n os << it->first << \\\" = \\\" << it->second;\\n }\\n return os << \\\"]\\\";\\n}\\nvoid faltu() { cerr << '\\\\n'; }\\ntemplate \\nvoid faltu(T a[], int n) {\\n for (int i = 0; i < n; ++i) cerr << a[i] << ' ';\\n cerr << '\\\\n';\\n}\\ntemplate \\nvoid faltu(T arg, const hello&... rest) {\\n cerr << arg << ' ';\\n faltu(rest...);\\n}\\nconst int mx = 3e5 + 5;\\nint n;\\nlong long w[mx];\\nvector > vec[mx];\\nlong long c;\\nlong long dp[mx];\\nlong long ans[mx];\\nint main() {\\n ios_base::sync_with_stdio(0);\\n cin.tie(0);\\n cout.tie(0);\\n ;\\n cin >> n;\\n for (int i = 1; i <= n; ++i) cin >> w[i];\\n c = sqrt(n);\\n int p;\\n cin >> p;\\n for (int i = 1; i <= p; ++i) {\\n int a, b;\\n cin >> a >> b;\\n vec[b].push_back(make_pair(a, i));\\n }\\n for (int i = 1; i <= n; ++i) {\\n if (vec[i].empty()) continue;\\n if (i <= c) {\\n for (int j = n; j >= 1;...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Let's define S(x) to be the sum of digits of number x written in decimal system. For example, S(5) = 5, S(10) = 1, S(322) = 7.\\n\\nWe will call an integer x interesting if S(x + 1) < S(x). In each test you will be given one integer n. Your task is to calculate the number of integers x such that 1 \u2264 x \u2264 n and x is interesting.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 1000) \u2014 number of test cases.\\n\\nThen t lines follow, the i-th line contains one integer n (1 \u2264 n \u2264 10^9) for the i-th test case.\\n\\nOutput\\n\\nPrint t integers, the i-th should be the answer for the i-th test case.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n1\\n9\\n10\\n34\\n880055535\\n\\n\\nOutput\\n\\n\\n0\\n1\\n1\\n3\\n88005553\\n\\nNote\\n\\nThe first interesting number is equal to 9.\\nUsing python3 can you solve the prior task?\",\"targets\":\"def compute(num):\\n\\tlast = num %10;\\t\\n\\ttotal = int(num\\/10);\\n\\tif(last == 9):\\n\\t\\ttotal +=1;\\n\\treturn total;\\n\\nn = int(input());\\nfor i in range(0,n):\\n\\t\\n\\n\\tx= int(input());\\n\\tprint(compute(x));\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A conglomerate consists of n companies. To make managing easier, their owners have decided to merge all companies into one. By law, it is only possible to merge two companies, so the owners plan to select two companies, merge them into one, and continue doing so until there is only one company left.\\n\\nBut anti-monopoly service forbids to merge companies if they suspect unfriendly absorption. The criterion they use is the difference in maximum salaries between two companies. Merging is allowed only if the maximum salaries are equal.\\n\\nTo fulfill the anti-monopoly requirements, the owners can change salaries in their companies before merging. But the labor union insists on two conditions: it is only allowed to increase salaries, moreover all the employees in one company must get the same increase.\\n\\nSure enough, the owners want to minimize the total increase of all salaries in all companies. Help them find the minimal possible increase that will allow them to merge companies into one.\\n\\nInput\\n\\nThe first line contains a single integer n \u2014 the number of companies in the conglomerate (1 \u2264 n \u2264 2 \u22c5 10^5). Each of the next n lines describes a company. \\n\\nA company description start with an integer m_i \u2014 the number of its employees (1 \u2264 m_i \u2264 2 \u22c5 10^5). Then m_i integers follow: the salaries of the employees. All salaries are positive and do not exceed 10^9. \\n\\nThe total number of employees in all companies does not exceed 2 \u22c5 10^5. \\n\\nOutput\\n\\nOutput a single integer \u2014 the minimal total increase of all employees that allows to merge all companies.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n2 4 3\\n2 2 1\\n3 1 1 1\\n\\n\\nOutput\\n\\n\\n13\\n\\nNote\\n\\nOne of the optimal merging strategies is the following. First increase all salaries in the second company by 2, and merge the first and the second companies. Now the conglomerate consists of two companies with salaries [4, 3, 4, 3] and [1, 1, 1]. To merge them, increase the salaries in the second of those by 3. The total increase is 2 + 2 + 3 + 3 + 3 = 13.\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nint main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n long long n, m, s;\\n cin >> n;\\n long long t = 0, e = 0, ma = 0, mb, i;\\n while (n--) {\\n cin >> m;\\n i = 0;\\n mb = 0;\\n while (i < m) {\\n cin >> s;\\n if (s > mb) mb = s;\\n i++;\\n }\\n if (ma > mb)\\n t += (m * (ma - mb));\\n else {\\n t += (e * (mb - ma));\\n ma = mb;\\n }\\n e += m;\\n }\\n cout << t << endl;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given two integers n and m. Find the \\\\operatorname{MEX} of the sequence n \u2295 0, n \u2295 1, \u2026, n \u2295 m. Here, \u2295 is the [bitwise XOR operator](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#XOR).\\n\\n\\\\operatorname{MEX} of the sequence of non-negative integers is the smallest non-negative integer that doesn't appear in this sequence. For example, \\\\operatorname{MEX}(0, 1, 2, 4) = 3, and \\\\operatorname{MEX}(1, 2021) = 0. \\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 30 000) \u2014 the number of test cases.\\n\\nThe first and only line of each test case contains two integers n and m (0 \u2264 n, m \u2264 10^9).\\n\\nOutput\\n\\nFor each test case, print a single integer \u2014 the answer to the problem.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n3 5\\n4 6\\n3 2\\n69 696\\n123456 654321\\n\\n\\nOutput\\n\\n\\n4\\n3\\n0\\n640\\n530866\\n\\nNote\\n\\nIn the first test case, the sequence is 3 \u2295 0, 3 \u2295 1, 3 \u2295 2, 3 \u2295 3, 3 \u2295 4, 3 \u2295 5, or 3, 2, 1, 0, 7, 6. The smallest non-negative integer which isn't present in the sequence i. e. the \\\\operatorname{MEX} of the sequence is 4.\\n\\nIn the second test case, the sequence is 4 \u2295 0, 4 \u2295 1, 4 \u2295 2, 4 \u2295 3, 4 \u2295 4, 4 \u2295 5, 4 \u2295 6, or 4, 5, 6, 7, 0, 1, 2. The smallest non-negative integer which isn't present in the sequence i. e. the \\\\operatorname{MEX} of the sequence is 3.\\n\\nIn the third test case, the sequence is 3 \u2295 0, 3 \u2295 1, 3 \u2295 2, or 3, 2, 1. The smallest non-negative integer which isn't present in the sequence i. e. the \\\\operatorname{MEX} of the sequence is 0.\\nfrom\",\"targets\":\"os import path\\nimport sys, time\\n# mod = int(1e9 + 7)\\n# import re\\nfrom math import ceil, floor, gcd, log, log2, factorial, sqrt\\nfrom collections import defaultdict, Counter, OrderedDict, deque\\nfrom itertools import combinations, accumulate\\n# from string import ascii_lowercase ,ascii_uppercase\\nfrom bisect import *\\nfrom functools import reduce\\nfrom operator import mul\\n\\nstar = lambda x: print(' '.join(map(str, x)))\\ngrid = lambda r: [lint() for i in range(r)]\\nINF = float('inf')\\nif (path.exists('input.txt')):\\n sys.stdin = open('input.txt', 'r')\\n sys.stdout = open('output.txt', 'w')\\nimport sys\\nfrom sys import stdin, stdout\\nfrom collections import *\\nfrom math import gcd, floor, ceil\\n\\n\\ndef st():\\n return list(stdin.readline().strip())\\n\\n\\ndef inp():\\n return int(stdin.readline())\\n\\n\\ndef inlt():\\n return list(map(int, stdin.readline().split()))\\n\\n\\ndef invr():\\n return map(int, stdin.readline().split())\\n\\n\\n\\n\\n\\ndef solve():\\n n,m = invr()\\n ans = float(\\\"inf\\\")\\n res = 0\\n for i in range(31,-1,-1):\\n if (n & pow(2,i)) and not(m & pow(2,i)):\\n print(min(ans,res))\\n return\\n elif (m & pow(2,i)) and not(n & pow(2,i)):\\n res += pow(2,i)\\n elif not(n & pow(2,i)) and not(m & pow(2,i)):\\n ans = min(ans,pow(2,i)+res)\\n print(ans)\\n return\\n\\nt = 1\\nt = inp()\\nfor _ in range(t):\\n solve()\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Ezzat has an array of n integers (maybe negative). He wants to split it into two non-empty subsequences a and b, such that every element from the array belongs to exactly one subsequence, and the value of f(a) + f(b) is the maximum possible value, where f(x) is the average of the subsequence x. \\n\\nA sequence x is a subsequence of a sequence y if x can be obtained from y by deletion of several (possibly, zero or all) elements.\\n\\nThe average of a subsequence is the sum of the numbers of this subsequence divided by the size of the subsequence.\\n\\nFor example, the average of [1,5,6] is (1+5+6)\\/3 = 12\\/3 = 4, so f([1,5,6]) = 4.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^3)\u2014 the number of test cases. Each test case consists of two lines.\\n\\nThe first line contains a single integer n (2 \u2264 n \u2264 10^5).\\n\\nThe second line contains n integers a_1, a_2, \u2026, a_n (-10^9 \u2264 a_i \u2264 10^9).\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 3\u22c510^5.\\n\\nOutput\\n\\nFor each test case, print a single value \u2014 the maximum value that Ezzat can achieve.\\n\\nYour answer is considered correct if its absolute or relative error does not exceed 10^{-6}.\\n\\nFormally, let your answer be a, and the jury's answer be b. Your answer is accepted if and only if \\\\frac{|a - b|}{max{(1, |b|)}} \u2264 10^{-6}.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n3\\n3 1 2\\n3\\n-7 -6 -6\\n3\\n2 2 2\\n4\\n17 3 5 -3\\n\\n\\nOutput\\n\\n\\n4.500000000\\n-12.500000000\\n4.000000000\\n18.666666667\\n\\nNote\\n\\nIn the first test case, the array is [3, 1, 2]. These are all the possible ways to split this array: \\n\\n * a = [3], b = [1,2], so the value of f(a) + f(b) = 3 + 1.5 = 4.5. \\n * a = [3,1], b = [2], so the value of f(a) + f(b) = 2 + 2 = 4. \\n * a = [3,2], b = [1], so the value of f(a) + f(b) = 2.5 + 1 = 3.5. \\n\\nTherefore, the maximum possible value 4.5.\\n\\nIn the second test case, the array is [-7, -6, -6]. These are all the possible ways to split this array: \\n\\n * a = [-7], b = [-6,-6], so the value of f(a) + f(b) = (-7) + (-6) = -13. \\n * a = [-7,-6], b = [-6], so the value of f(a) + f(b) = (-6.5) + (-6) =...\\\":\",\"targets\":\"#include \\nusing namespace std;\\nint main() {\\n ios_base::sync_with_stdio(0);\\n cin.tie(NULL);\\n int t;\\n cin >> t;\\n while (t--) {\\n int n;\\n cin >> n;\\n long long sum = 0;\\n long long la = INT_MIN;\\n long long x;\\n for (int i = 0; i < n; i++) {\\n cin >> x;\\n sum += x;\\n la = max(la, x);\\n }\\n double ans;\\n ans = double(sum - la);\\n ans \\/= double(n - 1);\\n ans += double(la);\\n cout << fixed << setprecision(7) << ans << endl;\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"There are n block towers in a row, where tower i has a height of a_i. You're part of a building crew, and you want to make the buildings look as nice as possible. In a single day, you can perform the following operation:\\n\\n * Choose two indices i and j (1 \u2264 i, j \u2264 n; i \u2260 j), and move a block from tower i to tower j. This essentially decreases a_i by 1 and increases a_j by 1. \\n\\n\\n\\nYou think the ugliness of the buildings is the height difference between the tallest and shortest buildings. Formally, the ugliness is defined as max(a)-min(a). \\n\\nWhat's the minimum possible ugliness you can achieve, after any number of days?\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases. Then t cases follow.\\n\\nThe first line of each test case contains one integer n (2 \u2264 n \u2264 100) \u2014 the number of buildings.\\n\\nThe second line of each test case contains n space separated integers a_1, a_2, \u2026, a_n (1 \u2264 a_i \u2264 10^7) \u2014 the heights of the buildings.\\n\\nOutput\\n\\nFor each test case, output a single integer \u2014 the minimum possible ugliness of the buildings.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3\\n10 10 10\\n4\\n3 2 1 2\\n5\\n1 2 3 1 5\\n\\n\\nOutput\\n\\n\\n0\\n0\\n1\\n\\nNote\\n\\nIn the first test case, the ugliness is already 0.\\n\\nIn the second test case, you should do one operation, with i = 1 and j = 3. The new heights will now be [2, 2, 2, 2], with an ugliness of 0.\\n\\nIn the third test case, you may do three operations: \\n\\n 1. with i = 3 and j = 1. The new array will now be [2, 2, 2, 1, 5], \\n 2. with i = 5 and j = 4. The new array will now be [2, 2, 2, 2, 4], \\n 3. with i = 5 and j = 3. The new array will now be [2, 2, 3, 2, 3]. \\n\\nThe resulting ugliness is 1. It can be proven that this is the minimum possible ugliness for this test.\\nThe above is tricky. Write me a correct solution in JAVA.\",\"targets\":\"\\/*===============================\\nAuthor : Shadman Shariar ||\\n===============================*\\/\\nimport java.io.*;\\nimport java.util.*;\\n\\/\\/import java.lang.Math.*;\\n\\/\\/import java.math.BigInteger;\\n\\/\\/import java.text.DecimalFormat;\\npublic class Main {\\npublic static Main obj = new Main();\\npublic static int [] dx = {-1, 1, 0, 0, -1, -1, 1, 1};\\npublic static int [] dy = {0, 0, -1, 1, -1, 1, -1, 1};\\npublic static final long mod=(long)(Math.pow(10,9)+7);\\npublic static FastReader fr = new FastReader();\\n\\/\\/public static Scanner input = new Scanner(System.in);\\n\\/\\/public static PrintWriter pw = new PrintWriter(System.out);\\n\\/\\/public static DecimalFormat df = new DecimalFormat(\\\".000\\\");\\n\\/\\/public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));\\npublic static void main (String[]args) throws Exception{Scanner input=new Scanner(System.in);\\n\\/\\/===========================================================================================\\/\\/\\n\\/\\/Vector vc = new Vector();\\n\\/\\/BigInteger bi = new BigInteger(\\\"1000\\\");\\n\\/\\/StringBuilder sb = new StringBuilder();\\n\\/\\/StringBuffer sbf = new StringBuffer();\\n\\/\\/StringTokenizer st = new StringTokenizer(\\\"string\\\",\\\"split\\\");\\n\\/\\/ArrayList al= new ArrayList();\\n\\/\\/LinkedList ll= new LinkedList();\\n\\/\\/Stack stk = new Stack ();\\n\\/\\/Queue q = new LinkedList();\\n\\/\\/ArrayDeque ad = new ArrayDeque();\\n\\/\\/PriorityQueue pq = new PriorityQueue();\\n\\/\\/PriorityQueue pqr = new PriorityQueue(Comparator.reverseOrder());\\n\\/\\/HashSet hs = new HashSet();\\n\\/\\/LinkedHashSet lhs = new LinkedHashSet();\\n\\/\\/TreeSet ts = new TreeSet();\\n\\/\\/TreeSet tsr = new TreeSet(Comparator.reverseOrder());\\n\\/\\/Hashtable ht = new Hashtable();\\n\\/\\/HashMap hm = new HashMap();\\n\\/\\/LinkedHashMap lhm = new...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"A bracket sequence is a string containing only characters \\\"(\\\" and \\\")\\\". A regular bracket sequence is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters \\\"1\\\" and \\\"+\\\" between the original characters of the sequence. For example, bracket sequences \\\"()()\\\" and \\\"(())\\\" are regular (the resulting expressions are: \\\"(1)+(1)\\\" and \\\"((1+1)+1)\\\"), and \\\")(\\\", \\\"(\\\" and \\\")\\\" are not.\\n\\nYou are given an integer n. Your goal is to construct and print exactly n different regular bracket sequences of length 2n.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 50) \u2014 the number of test cases.\\n\\nEach test case consists of one line containing one integer n (1 \u2264 n \u2264 50).\\n\\nOutput\\n\\nFor each test case, print n lines, each containing a regular bracket sequence of length exactly 2n. All bracket sequences you output for a testcase should be different (though they may repeat in different test cases). If there are multiple answers, print any of them. It can be shown that it's always possible.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3\\n1\\n3\\n\\n\\nOutput\\n\\n\\n()()()\\n((()))\\n(()())\\n()\\n((()))\\n(())()\\n()(())\\\":\",\"targets\":\"#include \\nusing namespace std;\\nconst int maxn = 3e6 + 100;\\nconst int INF = 0x7fffffff;\\nconst int mod = 998244353;\\nconst long long mod1 = 998244353;\\nconst long long base = 137;\\nconst double Pi = acos(-1.0);\\nconst int G = 3;\\nint a[maxn];\\nint main() {\\n int t;\\n cin >> t;\\n while (t--) {\\n int n;\\n scanf(\\\"%d\\\", &n);\\n for (int i = 1; i <= n; i++) {\\n for (int j = 1; j <= 2 * n - 2 * i; j++) {\\n a[j] = (j - 1) % 2;\\n }\\n for (int j = 2 * n - 2 * i + 1; j <= 2 * n - i; j++) {\\n a[j] = 0;\\n }\\n for (int j = 2 * n - i + 1; j <= 2 * n; j++) a[j] = 1;\\n for (int j = 1; j <= 2 * n; j++) {\\n if (a[j])\\n printf(\\\")\\\");\\n else\\n printf(\\\"(\\\");\\n }\\n puts(\\\"\\\");\\n }\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A bracket sequence is a string containing only characters \\\"(\\\" and \\\")\\\". A regular bracket sequence is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters \\\"1\\\" and \\\"+\\\" between the original characters of the sequence. For example, bracket sequences \\\"()()\\\" and \\\"(())\\\" are regular (the resulting expressions are: \\\"(1)+(1)\\\" and \\\"((1+1)+1)\\\"), and \\\")(\\\", \\\"(\\\" and \\\")\\\" are not.\\n\\nYou are given an integer n. Your goal is to construct and print exactly n different regular bracket sequences of length 2n.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 50) \u2014 the number of test cases.\\n\\nEach test case consists of one line containing one integer n (1 \u2264 n \u2264 50).\\n\\nOutput\\n\\nFor each test case, print n lines, each containing a regular bracket sequence of length exactly 2n. All bracket sequences you output for a testcase should be different (though they may repeat in different test cases). If there are multiple answers, print any of them. It can be shown that it's always possible.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3\\n1\\n3\\n\\n\\nOutput\\n\\n\\n()()()\\n((()))\\n(()())\\n()\\n((()))\\n(())()\\n()(())\\nUsing java can you solve the prior task?\",\"targets\":\"import java.io.*;\\nimport java.util.*;\\n\\n\\npublic class A {\\n public static void main(String[] args) {\\n MyScanner sc = new MyScanner();\\n out = new PrintWriter(new BufferedOutputStream(System.out));\\n\\n \\/\\/ Start writing your solution here. -------------------------------------\\n\\n \\/*\\n int n = sc.nextInt(); \\/\\/ read input as integer\\n long k = sc.nextLong(); \\/\\/ read input as long\\n double d = sc.nextDouble(); \\/\\/ read input as double\\n String str = sc.next(); \\/\\/ read input as String\\n String s = sc.nextLine(); \\/\\/ read whole line as String\\n\\n int result = 3*n;\\n out.println(result); \\/\\/ print via PrintWriter\\n *\\/\\n\\n \\/\\/ Stop writing your solution here. -------------------------------------\\n\\n int T = sc.nextInt();\\n\\n for(int i=0;i ans = solve(num);\\n for(String word:ans)\\n System.out.println(word);\\n }\\n }\\n\\n private static List solve(int n) {\\n if(n==1)\\n return List.of(\\\"()\\\");\\n\\n List prev = solve(n-1);\\n List ans = new ArrayList<>();\\n for(int i=0;i\\nusing namespace std;\\nconst int N = 52;\\nlong long n, a[N], p, dp[N][N][N], c[N][N];\\nint main() {\\n scanf(\\\"%d\\\", &n);\\n for (int i = 1; i <= n; ++i) scanf(\\\"%d\\\", &a[i]);\\n scanf(\\\"%d\\\", &p);\\n dp[0][0][0] = 1;\\n c[0][0] = 1;\\n for (int i = 0; i <= 50; i++)\\n for (int j = 0; j <= 50; j++) {\\n if (i) c[i][j] += c[i - 1][j];\\n if (i && j) c[i][j] += c[i - 1][j - 1];\\n }\\n for (int i = 1; i <= n; ++i) {\\n scanf(\\\"%d\\\", &a[i]);\\n for (int j = 0; j <= i; ++j) {\\n for (int k = 0; k <= 50; ++k) {\\n if (k - a[i] >= 0)\\n if (j - 1 >= 0) dp[i][j][k] += dp[i - 1][j - 1][k - a[i]];\\n dp[i][j][k] += dp[i - 1][j][k];\\n }\\n }\\n }\\n double ans = 0;\\n for (int i = 0; i <= n; ++i)\\n for (int j = 1; j <= p; ++j) dp[n][i][j] += dp[n][i][j - 1];\\n for (int i = 1; i <= n; ++i) ans += dp[n][i][p] * 1.0 \\/ c[n][i];\\n cout.precision(10);\\n cout << fixed << ans << '\\\\n';\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in JAVA?\\nPaprika loves permutations. She has an array a_1, a_2, ..., a_n. She wants to make the array a permutation of integers 1 to n.\\n\\nIn order to achieve this goal, she can perform operations on the array. In each operation she can choose two integers i (1 \u2264 i \u2264 n) and x (x > 0), then perform a_i := a_i mod x (that is, replace a_i by the remainder of a_i divided by x). In different operations, the chosen i and x can be different.\\n\\nDetermine the minimum number of operations needed to make the array a permutation of integers 1 to n. If it is impossible, output -1.\\n\\nA permutation is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Description of the test cases follows.\\n\\nThe first line of each test case contains an integer n (1 \u2264 n \u2264 10^5).\\n\\nThe second line of each test case contains n integers a_1, a_2, ..., a_n. (1 \u2264 a_i \u2264 10^9).\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, output the minimum number of operations needed to make the array a permutation of integers 1 to n, or -1 if it is impossible.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n2\\n1 7\\n3\\n1 5 4\\n4\\n12345678 87654321 20211218 23571113\\n9\\n1 2 3 4 18 19 5 6 7\\n\\n\\nOutput\\n\\n\\n1\\n-1\\n4\\n2\\n\\nNote\\n\\nFor the first test, the only possible sequence of operations which minimizes the number of operations is: \\n\\n * Choose i=2, x=5. Perform a_2 := a_2 mod 5 = 2. \\n\\n\\n\\nFor the second test, it is impossible to obtain a permutation of integers from 1 to n.\",\"targets\":\"\\/\\/ Problem: C. Paprika and Permutation\\n\\/\\/ Contest: Codeforces - Codeforces Round #761 (Div. 2)\\n\\/\\/ URL: https:\\/\\/codeforces.com\\/contest\\/1617\\/problem\\/C\\n\\/\\/ Memory Limit: 256 MB\\n\\/\\/ Time Limit: 1000 ms\\n\\nimport java.io.*;\\nimport java.util.*;\\n\\nimport static java.lang.Math.max;\\nimport static java.lang.Math.min;\\nimport static java.lang.Math.abs;\\n\\n\\n\\npublic class X1631 {\\n long mod = 1000000007;\\n private void preparation() {\\n\\n }\\n\\n\\n private void clear() {\\n\\n }\\n\\n private void solve() throws Exception {\\n rf();\\n int n = ri();\\n rf();int [] d = readArr(n);\\n boolean [] f = new boolean[n + 1];\\n ArrayList a = new ArrayList<>();\\n for(int i : d){\\n if(i <= n && !f[i]){\\n f[i] = true;\\n }else{\\n a.add(i);\\n }\\n }\\n Collections.sort(a);\\n int idx = 0;\\n for(int i = 1; i <= n; i++){\\n if(!f[i]){\\n if((a.get(idx) - 1) \\/ 2 < i){\\n addAns(-1);\\n return ;\\n }\\n idx++;\\n }\\n }\\n addAns(a.size());\\n\\t\\t\\n }\\n\\n private void run() throws Exception {\\n\\t\\t\\n int T = 1;\\n\\t\\trf();\\n\\t\\tT = ri();\\n\\t\\t\\n\\t\\tpreparation();\\n while (T-- > 0) {\\n solve();\\n if (T != 0) {\\n clear();\\n }\\n }\\n printAns();\\n }\\n\\n public static void main(String[] args) throws Exception {\\n new X1631().run();\\n }\\n\\n StringBuilder sb = new StringBuilder();\\n BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));\\n StringTokenizer strT;\\n\\n\\tprivate void addAns(int a){\\n\\t\\tsb.append(a + \\\"\\\\n\\\");\\n\\t}\\n\\t\\n\\tprivate void addAns(long a){\\n\\t\\tsb.append(a + \\\"\\\\n\\\");\\n\\t}\\n\\t\\n\\tprivate void addAns(String s){\\n\\t\\tsb.append(s + \\\"\\\\n\\\");\\n\\t}\\n\\n private void rf() throws IOException {\\n strT = new StringTokenizer(infile.readLine());\\n }\\n\\n\\n private int ri() {\\n return Integer.parseInt(strT.nextToken());\\n }\\n\\n private long rl() {\\n ...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"n people gathered to hold a jury meeting of the upcoming competition, the i-th member of the jury came up with a_i tasks, which they want to share with each other.\\n\\nFirst, the jury decides on the order which they will follow while describing the tasks. Let that be a permutation p of numbers from 1 to n (an array of size n where each integer from 1 to n occurs exactly once).\\n\\nThen the discussion goes as follows:\\n\\n * If a jury member p_1 has some tasks left to tell, then they tell one task to others. Otherwise, they are skipped. \\n * If a jury member p_2 has some tasks left to tell, then they tell one task to others. Otherwise, they are skipped. \\n * ... \\n * If a jury member p_n has some tasks left to tell, then they tell one task to others. Otherwise, they are skipped. \\n * If there are still members with tasks left, then the process repeats from the start. Otherwise, the discussion ends. \\n\\n\\n\\nA permutation p is nice if none of the jury members tell two or more of their own tasks in a row. \\n\\nCount the number of nice permutations. The answer may be really large, so print it modulo 998 244 353.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases.\\n\\nThe first line of the test case contains a single integer n (2 \u2264 n \u2264 2 \u22c5 10^5) \u2014 number of jury members.\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^9) \u2014 the number of problems that the i-th member of the jury came up with.\\n\\nThe sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, print one integer \u2014 the number of nice permutations, taken modulo 998 244 353.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n2\\n1 2\\n3\\n5 5 5\\n4\\n1 3 3 7\\n6\\n3 4 2 1 3 3\\n\\n\\nOutput\\n\\n\\n1\\n6\\n0\\n540\\n\\nNote\\n\\nExplanation of the first test case from the example:\\n\\nThere are two possible permutations, p = [1, 2] and p = [2, 1]. For p = [1, 2], the process is the following:\\n\\n 1. the first jury member tells a task; \\n 2. the second jury member tells a task; \\n 3. the first jury member doesn't have any tasks left to tell, so they are skipped;...\",\"targets\":\"tst = int(input())\\nfor _ in range(tst):\\n n = int(input())\\n arr = list(map(int,input().split(\\\" \\\")))\\n m = max(arr)\\n c = arr.count(m)\\n k = arr.count(m-1)\\n mod = 998244353\\n \\n ans = 1\\n sub = 1\\n for i in range(1,n+1):\\n ans = ans*i%mod\\n if i!=k+1:\\n sub = sub*i%mod\\n\\n if c >= 2:\\n print(ans%mod)\\n else:\\n print((ans-sub)%mod)\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Consider the set of all nonnegative integers: {0, 1, 2, ...}. Given two integers a and b (1 \u2264 a, b \u2264 10^4). We paint all the numbers in increasing number first we paint 0, then we paint 1, then 2 and so on.\\n\\nEach number is painted white or black. We paint a number i according to the following rules: \\n\\n * if i = 0, it is colored white; \\n * if i \u2265 a and i - a is colored white, i is also colored white; \\n * if i \u2265 b and i - b is colored white, i is also colored white; \\n * if i is still not colored white, it is colored black. \\n\\n\\n\\nIn this way, each nonnegative integer gets one of two colors.\\n\\nFor example, if a=3, b=5, then the colors of the numbers (in the order from 0) are: white (0), black (1), black (2), white (3), black (4), white (5), white (6), black (7), white (8), white (9), ...\\n\\nNote that: \\n\\n * It is possible that there are infinitely many nonnegative integers colored black. For example, if a = 10 and b = 10, then only 0, 10, 20, 30 and any other nonnegative integers that end in 0 when written in base 10 are white. The other integers are colored black. \\n * It is also possible that there are only finitely many nonnegative integers colored black. For example, when a = 1 and b = 10, then there is no nonnegative integer colored black at all. \\n\\n\\n\\nYour task is to determine whether or not the number of nonnegative integers colored black is infinite.\\n\\nIf there are infinitely many nonnegative integers colored black, simply print a line containing \\\"Infinite\\\" (without the quotes). Otherwise, print \\\"Finite\\\" (without the quotes).\\n\\nInput\\n\\nThe first line of input contains a single integer t (1 \u2264 t \u2264 100) \u2014 the number of test cases in the input. Then t lines follow, each line contains two space-separated integers a and b (1 \u2264 a, b \u2264 10^4).\\n\\nOutput\\n\\nFor each test case, print one line containing either \\\"Infinite\\\" or \\\"Finite\\\" (without the quotes). Output is case-insensitive (i.e. \\\"infinite\\\", \\\"inFiNite\\\" or \\\"finiTE\\\" are all valid answers).\\n\\nExample\\n\\nInput\\n\\n\\n4\\n10 10\\n1 10\\n6 9\\n7 3\\n\\n\\nOutput\\n\\n\\nInfinite\\nFinite\\nInfinite\\nFinite\\nUsing python3 can you solve the prior task?\",\"targets\":\"from math import *\\nt = int(input())\\nfor i in range(t):\\n a, b = map(int, input().split())\\n if gcd(a, b) > 1:\\n print('Infinite')\\n else:\\n print('Finite')\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Polycarp doesn't like integers that are divisible by 3 or end with the digit 3 in their decimal representation. Integers that meet both conditions are disliked by Polycarp, too.\\n\\nPolycarp starts to write out the positive (greater than 0) integers which he likes: 1, 2, 4, 5, 7, 8, 10, 11, 14, 16, .... Output the k-th element of this sequence (the elements are numbered from 1).\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 100) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of one line containing one integer k (1 \u2264 k \u2264 1000).\\n\\nOutput\\n\\nFor each test case, output in a separate line one integer x \u2014 the k-th element of the sequence that was written out by Polycarp.\\n\\nExample\\n\\nInput\\n\\n\\n10\\n1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n1000\\n\\n\\nOutput\\n\\n\\n1\\n2\\n4\\n5\\n7\\n8\\n10\\n11\\n14\\n1666\\nSolve the task in PYTHON.\",\"targets\":\"import sys\\ninput = raw_input\\n\\nA = []\\ni = 1\\nwhile len(A) < 1000:\\n if i % 3 != 0 and i % 10 != 3:\\n A.append(i)\\n i += 1\\n\\nt = int(input())\\nfor _ in range(t):\\n k = int(input())\\n print A[k - 1]\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Yelisey has an array a of n integers.\\n\\nIf a has length strictly greater than 1, then Yelisei can apply an operation called minimum extraction to it: \\n\\n 1. First, Yelisei finds the minimal number m in the array. If there are several identical minima, Yelisey can choose any of them. \\n 2. Then the selected minimal element is removed from the array. After that, m is subtracted from each remaining element. \\n\\n\\n\\nThus, after each operation, the length of the array is reduced by 1.\\n\\nFor example, if a = [1, 6, -4, -2, -4], then the minimum element in it is a_3 = -4, which means that after this operation the array will be equal to a=[1 {- (-4)}, 6 {- (-4)}, -2 {- (-4)}, -4 {- (-4)}] = [5, 10, 2, 0].\\n\\nSince Yelisey likes big numbers, he wants the numbers in the array a to be as big as possible.\\n\\nFormally speaking, he wants to make the minimum of the numbers in array a to be maximal possible (i.e. he want to maximize a minimum). To do this, Yelisey can apply the minimum extraction operation to the array as many times as he wants (possibly, zero). Note that the operation cannot be applied to an array of length 1.\\n\\nHelp him find what maximal value can the minimal element of the array have after applying several (possibly, zero) minimum extraction operations to the array.\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases.\\n\\nThe next 2t lines contain descriptions of the test cases.\\n\\nIn the description of each test case, the first line contains an integer n (1 \u2264 n \u2264 2 \u22c5 10^5) \u2014 the original length of the array a. The second line of the description lists n space-separated integers a_i (-10^9 \u2264 a_i \u2264 10^9) \u2014 elements of the array a.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nPrint t lines, each of them containing the answer to the corresponding test case. The answer to the test case is a single integer \u2014 the maximal possible minimum in a, which can be obtained by several applications of the described operation to...\\nSolve the task in CPP.\",\"targets\":\"#include \\nusing namespace std;\\ninline long long int mul(long long int a, long long int b) {\\n return (long long int)((long long)a * b % 1000000007);\\n}\\ninline long long int inv(long long int a) {\\n a %= 1000000007;\\n if (a < 0) a += 1000000007;\\n long long int b = 1000000007, u = 0, v = 1;\\n while (a) {\\n long long int t = b \\/ a;\\n b -= t * a;\\n swap(a, b);\\n u -= t * v;\\n swap(u, v);\\n }\\n assert(b == 1);\\n if (u < 0) u += 1000000007;\\n return u;\\n}\\nvoid solve() {\\n long long int n;\\n cin >> n;\\n long long int arr[n];\\n for (long long int i = 0; i < n; i++) {\\n cin >> arr[i];\\n }\\n sort(arr, arr + n);\\n long long int m = arr[0];\\n for (long long int i = 1; i < n; i++) {\\n m = max(arr[i] - arr[i - 1], m);\\n }\\n if (n == 1) {\\n cout << arr[0] << endl;\\n } else {\\n cout << m << endl;\\n }\\n}\\nsigned main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n cout.tie(NULL);\\n long long int t;\\n cin >> t;\\n while (t--) {\\n solve();\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"'In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of clauses, where a clause is a disjunction of literals' (cited from https:\\/\\/en.wikipedia.org\\/wiki\\/Conjunctive_normal_form)\\n\\nIn the other words, CNF is a formula of type , where & represents a logical \\\"AND\\\" (conjunction), represents a logical \\\"OR\\\" (disjunction), and vij are some boolean variables or their negations. Each statement in brackets is called a clause, and vij are called literals.\\n\\nYou are given a CNF containing variables x1, ..., xm and their negations. We know that each variable occurs in at most two clauses (with negation and without negation in total). Your task is to determine whether this CNF is satisfiable, that is, whether there are such values of variables where the CNF value is true. If CNF is satisfiable, then you also need to determine the values of the variables at which the CNF is true. \\n\\nIt is guaranteed that each variable occurs at most once in each clause.\\n\\nInput\\n\\nThe first line contains integers n and m (1 \u2264 n, m \u2264 2\u00b7105) \u2014 the number of clauses and the number variables, correspondingly.\\n\\nNext n lines contain the descriptions of each clause. The i-th line first contains first number ki (ki \u2265 1) \u2014 the number of literals in the i-th clauses. Then follow space-separated literals vij (1 \u2264 |vij| \u2264 m). A literal that corresponds to vij is x|vij| either with negation, if vij is negative, or without negation otherwise.\\n\\nOutput\\n\\nIf CNF is not satisfiable, print a single line \\\"NO\\\" (without the quotes), otherwise print two strings: string \\\"YES\\\" (without the quotes), and then a string of m numbers zero or one \u2014 the values of variables in satisfying assignment in the order from x1 to xm.\\n\\nExamples\\n\\nInput\\n\\n2 2\\n2 1 -2\\n2 2 -1\\n\\n\\nOutput\\n\\nYES\\n11\\n\\n\\nInput\\n\\n4 3\\n1 1\\n1 2\\n3 -1 -2 3\\n1 -3\\n\\n\\nOutput\\n\\nNO\\n\\n\\nInput\\n\\n5 6\\n2 1 2\\n3 1 -2 3\\n4 -3 5 4 6\\n2 -6 -4\\n1 5\\n\\n\\nOutput\\n\\nYES\\n100010\\n\\nNote\\n\\nIn the first sample test formula is . One of possible answer is x1 = TRUE, x2 = TRUE.\\\":\",\"targets\":\"#include \\nusing namespace std;\\nlong long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); }\\nconst int MAXCLS = 200000;\\nconst int MAXVAR = 200000;\\nconst int MAXN = MAXCLS;\\nconst int MAXM = MAXVAR;\\nint ncls, nvar;\\nint vcnt[MAXVAR];\\nint vcls[MAXVAR][2];\\nint vsgn[MAXVAR][2];\\nint ret[MAXVAR];\\nbool cok[MAXCLS];\\nint n, m;\\nint head[MAXN];\\nint nxt[2 * MAXM], to[2 * MAXM], idx[MAXM];\\nint qhead, qtail, q[MAXN];\\nint cback[MAXN];\\nint dfs(int at, int back) {\\n cback[at] = back;\\n for (int x = head[at]; x != -1; x = nxt[x])\\n if (x != back && !cok[to[x]]) {\\n if (cback[to[x]] != -2) {\\n cback[to[x]] = x ^ 1;\\n return to[x];\\n }\\n int ret = dfs(to[x], x ^ 1);\\n if (ret != -1) return ret;\\n }\\n cback[at] = -2;\\n return -1;\\n}\\nvoid processqueue() {\\n while (qtail < qhead) {\\n int at = q[qtail++];\\n for (int x = head[at]; x != -1; x = nxt[x])\\n if (!cok[to[x]]) {\\n ret[idx[x >> 1]] = x & 1, cok[to[x]] = true, q[qhead++] = to[x];\\n }\\n }\\n}\\nvoid run() {\\n scanf(\\\"%d%d\\\", &ncls, &nvar);\\n for (int i = (0); i < (ncls); ++i) {\\n int ccnt;\\n scanf(\\\"%d\\\", &ccnt);\\n cok[i] = false;\\n cback[i] = -2;\\n for (int j = (0); j < (ccnt); ++j) {\\n int x;\\n scanf(\\\"%d\\\", &x);\\n int val = abs(x) - 1, sgn = x < 0 ? 0 : +1;\\n assert(vcnt[val] <= 2);\\n vcls[val][vcnt[val]] = i;\\n vsgn[val][vcnt[val]] = sgn;\\n ++vcnt[val];\\n }\\n }\\n n = ncls, m = 0;\\n for (int i = (0); i < (n); ++i) head[i] = -1;\\n for (int i = (0); i < (nvar); ++i) {\\n if (vcnt[i] == 0) {\\n ret[i] = 0;\\n continue;\\n }\\n if (vcnt[i] == 1) {\\n cok[vcls[i][0]] = true;\\n ret[i] = vsgn[i][0];\\n continue;\\n }\\n if (vsgn[i][0] == vsgn[i][1]) {\\n cok[vcls[i][0]] = cok[vcls[i][1]] = true;\\n ret[i] = vsgn[i][0];\\n continue;\\n }\\n if (vsgn[i][0] == 0)\\n swap(vsgn[i][0], vsgn[i][1]), swap(vcls[i][0], vcls[i][1]);\\n int a = vcls[i][0], b = vcls[i][1];\\n ret[i] = -1;\\n idx[m >> 1] = i;\\n nxt[m] = head[a];\\n head[a] = m;\\n ...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nThe only difference between this problem and D1 is that you don't have to provide the way to construct the answer in D1, but you have to do it in this problem.\\n\\nThere's a table of n \u00d7 m cells (n rows and m columns). The value of n \u22c5 m is even.\\n\\nA domino is a figure that consists of two cells having a common side. It may be horizontal (one of the cells is to the right of the other) or vertical (one of the cells is above the other).\\n\\nYou need to place nm\\/2 dominoes on the table so that exactly k of them are horizontal and all the other dominoes are vertical. The dominoes cannot overlap and must fill the whole table.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of a single line. The line contains three integers n, m, k (1 \u2264 n,m \u2264 100, 0 \u2264 k \u2264 nm\\/2, n \u22c5 m is even) \u2014 the count of rows, columns and horizontal dominoes, respectively.\\n\\nOutput\\n\\nFor each test case:\\n\\n * print \\\"NO\\\" if it's not possible to place the dominoes on the table in the described way; \\n * otherwise, print \\\"YES\\\" on a separate line, then print n lines so that each of them contains m lowercase letters of the Latin alphabet \u2014 the layout of the dominoes on the table. Each cell of the table must be marked by the letter so that for every two cells having a common side, they are marked by the same letters if and only if they are occupied by the same domino. I.e. both cells of the same domino must be marked with the same letter, but two dominoes that share a side must be marked with different letters. If there are multiple solutions, print any of them. \\n\\nExample\\n\\nInput\\n\\n\\n8\\n4 4 2\\n2 3 0\\n3 2 3\\n1 2 0\\n2 4 2\\n5 2 2\\n2 17 16\\n2 1 1\\n\\n\\nOutput\\n\\n\\nYES\\naccx\\naegx\\nbega\\nbdda\\nYES\\naha\\naha\\nYES\\nzz\\naa\\nzz\\nNO\\nYES\\naaza\\nbbza\\nNO\\nYES\\nbbaabbaabbaabbaay\\nddccddccddccddccy\\nNO\",\"targets\":\"#include \\nusing namespace std;\\nusing ll = long long;\\nusing ld = long double;\\nconst long long INFI = 1e9 + 228;\\nconst ll INFL = 1e18 + 228;\\nconst ld INFLD = 1e18 + 228;\\nconst ld PI = acos(-1);\\nconst long long MAXN = 1e5 + 228;\\nvector > DD = {{-1, 0}, {1, 0}, {0, 1}, {0, -1}};\\nchar ans[105][105];\\nchar get(long long i, long long j, long long i2, long long j2) {\\n set q = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k'};\\n for (auto u : DD) {\\n long long i3 = i + u.first;\\n long long j3 = j + u.second;\\n long long i4 = i2 + u.first;\\n long long j4 = j2 + u.second;\\n if (i3 >= 0 && j3 >= 0 && i3 < 105 && j3 < 105) {\\n q.erase(ans[i3][j3]);\\n }\\n if (i4 >= 0 && j4 >= 0 && i4 < 105 && j4 < 105) {\\n q.erase(ans[i4][j4]);\\n }\\n }\\n return *q.begin();\\n}\\nvoid run() {\\n long long n, m, k;\\n cin >> n >> m >> k;\\n for (long long i = 1; i <= n; ++i) {\\n for (long long j = 1; j <= m; ++j) ans[i][j] = '.';\\n }\\n if (n % 2 != 0) {\\n if (k >= m \\/ 2 && (k - m \\/ 2) % 2 == 0) {\\n cout << \\\"YES\\\" << endl;\\n for (long long j = 1; j <= m; j += 2) {\\n char now = get(1, j, 1, j + 1);\\n ans[1][j] = now;\\n ans[1][j + 1] = now;\\n k--;\\n }\\n for (long long j = 1; j <= m && k > 0; j += 2) {\\n for (long long i = 2; i <= n && k > 0; ++i) {\\n char now = get(i, j, i, j + 1);\\n ans[i][j] = now;\\n ans[i][j + 1] = now;\\n k--;\\n }\\n }\\n } else {\\n cout << \\\"NO\\\" << endl;\\n return;\\n }\\n } else if (m % 2 == 0) {\\n if (k % 2 == 0) {\\n cout << \\\"YES\\\" << endl;\\n for (long long j = 1; j <= m && k > 0; j += 2) {\\n for (long long i = 1; i <= n && k > 0; ++i) {\\n char now = get(i, j, i, j + 1);\\n ans[i][j] = now;\\n ans[i][j + 1] = now;\\n k--;\\n }\\n }\\n } else {\\n cout << \\\"NO\\\" << endl;\\n return;\\n }\\n } else {\\n if (k % 2 == 0 && k <= (m \\/ 2) * n) {\\n cout << \\\"YES\\\" << endl;\\n for (long long j = 1; j <= m...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Alice has a very important message M consisting of some non-negative integers that she wants to keep secret from Eve. Alice knows that the only theoretically secure cipher is one-time pad. Alice generates a random key K of the length equal to the message's length. Alice computes the bitwise xor of each element of the message and the key (, where denotes the [bitwise XOR operation](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#XOR)) and stores this encrypted message A. Alice is smart. Be like Alice.\\n\\nFor example, Alice may have wanted to store a message M = (0, 15, 9, 18). She generated a key K = (16, 7, 6, 3). The encrypted message is thus A = (16, 8, 15, 17).\\n\\nAlice realised that she cannot store the key with the encrypted message. Alice sent her key K to Bob and deleted her own copy. Alice is smart. Really, be like Alice.\\n\\nBob realised that the encrypted message is only secure as long as the key is secret. Bob thus randomly permuted the key before storing it. Bob thinks that this way, even if Eve gets both the encrypted message and the key, she will not be able to read the message. Bob is not smart. Don't be like Bob.\\n\\nIn the above example, Bob may have, for instance, selected a permutation (3, 4, 1, 2) and stored the permuted key P = (6, 3, 16, 7).\\n\\nOne year has passed and Alice wants to decrypt her message. Only now Bob has realised that this is impossible. As he has permuted the key randomly, the message is lost forever. Did we mention that Bob isn't smart?\\n\\nBob wants to salvage at least some information from the message. Since he is not so smart, he asks for your help. You know the encrypted message A and the permuted key P. What is the lexicographically smallest message that could have resulted in the given encrypted text?\\n\\nMore precisely, for given A and P, find the lexicographically smallest message O, for which there exists a permutation \u03c0 such that for every i.\\n\\nNote that the sequence S is lexicographically smaller than the sequence T, if there is an index i such that Si <...\\\":\",\"targets\":\"#include \\nusing namespace std;\\nstruct vertex {\\n int nxt[2], cnt;\\n vertex() {\\n nxt[0] = nxt[1] = -1;\\n cnt = 0;\\n }\\n} t[4000000];\\nint sz = 1;\\nvoid add(string s) {\\n int v = 0;\\n for (int i = 0; i < s.size(); i++) {\\n int c = s[i] - '0';\\n if (t[v].nxt[c] == -1) {\\n t[v].nxt[c] = sz++;\\n }\\n v = t[v].nxt[c];\\n t[v].cnt++;\\n }\\n}\\nvoid erase_e(string s) {\\n int v = 0;\\n for (int i = 0; i < s.size(); i++) {\\n int c = s[i] - '0';\\n v = t[v].nxt[c];\\n t[v].cnt--;\\n }\\n}\\nstring get(int x) {\\n int v = 0;\\n string s = \\\"\\\";\\n for (int i = 30; i >= 0; i--) {\\n if ((x >> i) & 1) {\\n if (t[v].nxt[1] == -1 || t[t[v].nxt[1]].cnt == 0) {\\n v = t[v].nxt[0];\\n s += '0';\\n } else {\\n v = t[v].nxt[1];\\n s += '1';\\n }\\n } else {\\n if (t[v].nxt[0] == -1 || t[t[v].nxt[0]].cnt == 0) {\\n v = t[v].nxt[1];\\n s += '1';\\n } else {\\n v = t[v].nxt[0];\\n s += '0';\\n }\\n }\\n }\\n return s;\\n}\\nlong long n, a[300001], b[300001];\\nint main() {\\n cin >> n;\\n for (int i = 1; i <= n; i++) {\\n cin >> a[i];\\n }\\n for (int j = 1; j <= n; j++) {\\n cin >> b[j];\\n string s;\\n for (int i = 30; i >= 0; i--) {\\n if ((b[j] >> i) & 1) {\\n s += '1';\\n } else {\\n s += '0';\\n }\\n }\\n add(s);\\n }\\n for (int i = 1; i <= n; i++) {\\n string s = get(a[i]);\\n int ans = 0;\\n int step = 0;\\n for (int j = s.size() - 1; j >= 0; j--) {\\n if (s[j] == '1') {\\n ans += (1 << step);\\n }\\n step++;\\n }\\n cout << (a[i] ^ ans) << \\\" \\\";\\n erase_e(s);\\n }\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Chef and his girlfriend are going to have a promenade. They are walking along the straight road which consists of segments placed one by one. Before walking Chef and his girlfriend stay at the beginning of the first segment, they want to achieve the end of the last segment. \\nThere are few problems: \\n\\n At the beginning Chef should choose constant integer - the velocity of mooving. It can't be changed inside one segment. \\n The velocity should be decreased by at least 1 after achieving the end of some segment. \\n There is exactly one shop on each segment. Each shop has an attractiveness. If it's attractiveness is W and Chef and his girlfriend move with velocity V then if V < W girlfriend will run away into the shop and the promenade will become ruined. \\n\\n Chef doesn't want to lose her girl in such a way, but he is an old one, so you should find the minimal possible velocity at the first segment to satisfy all conditions.\\n\u00a0\\n\\n\\nInput\\n\\nThe first line of the input contains an integer T denoting the number of test cases. The description of T test cases follows.\\nThe first line of each test case contains a single integer N denoting the number of segments. The second line contains N space-separated integers W1, W2, ..., WN denoting the attractiveness of shops. \\n\\n\u00a0\\n\\nOutput\\n\\nFor each test case, output a single line containing the minimal possible velocity at the beginning.\\n\\n\u00a0\\n\\nConstraints\\n\\n1 \u2264 T \u2264 10\\n1 \u2264 N \u2264 10^5\\n1 \u2264 Wi \u2264 10^6\\n\\n\u00a0\\n\\nExample\\nInput:\\n\\n2\\n5\\n6 5 4 3 2\\n5\\n3 4 3 1 1\\n\\nOutput:\\n\\n6\\n5\\n\u00a0\\n\\nExplanation\\nExample case 1. \\n If we choose velocity 6, on the first step we have 6 \u2265 6 everything is OK, then we should decrease the velocity to 5 and on the 2nd segment we'll receive 5 \u2265 5, again OK, and so on. \\nExample case 2. \\n If we choose velocity 4, the promanade will be ruined on the 2nd step (we sould decrease our velocity, so the maximal possible will be 3 which is less than 4).\\nThe above is tricky. Write me a correct solution in PYTHON.\",\"targets\":\"cases = int(raw_input())\\n\\nfor _ in xrange(cases):\\n raw_input()\\n attractiveness = map(int, raw_input().split())\\n for i, a in enumerate(attractiveness):\\n attractiveness[i] += i\\n\\n print max(attractiveness)\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Luntik came out for a morning stroll and found an array a of length n. He calculated the sum s of the elements of the array (s= \u2211_{i=1}^{n} a_i). Luntik calls a subsequence of the array a nearly full if the sum of the numbers in that subsequence is equal to s-1.\\n\\nLuntik really wants to know the number of nearly full subsequences of the array a. But he needs to come home so he asks you to solve that problem!\\n\\nA sequence x is a subsequence of a sequence y if x can be obtained from y by deletion of several (possibly, zero or all) elements.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases. The next 2 \u22c5 t lines contain descriptions of test cases. The description of each test case consists of two lines.\\n\\nThe first line of each test case contains a single integer n (1 \u2264 n \u2264 60) \u2014 the length of the array.\\n\\nThe second line contains n integers a_1, a_2, \u2026, a_n (0 \u2264 a_i \u2264 10^9) \u2014 the elements of the array a.\\n\\nOutput\\n\\nFor each test case print the number of nearly full subsequences of the array.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n5\\n1 2 3 4 5\\n2\\n1000 1000\\n2\\n1 0\\n5\\n3 0 2 1 1\\n5\\n2 1 0 3 0\\n\\n\\nOutput\\n\\n\\n1\\n0\\n2\\n4\\n4\\n\\nNote\\n\\nIn the first test case, s=1+2+3+4+5=15, only (2,3,4,5) is a nearly full subsequence among all subsequences, the sum in it is equal to 2+3+4+5=14=15-1.\\n\\nIn the second test case, there are no nearly full subsequences.\\n\\nIn the third test case, s=1+0=1, the nearly full subsequences are (0) and () (the sum of an empty subsequence is 0).\\nUsing python3 can you solve the prior task?\",\"targets\":\"for _ in range(int(input())):\\n n = int(input())\\n A = list(map(int,input().split()))\\n \\n c1 = A.count(1)\\n c0 = A.count(0)\\n ans = c1*(2**c0)\\n print(ans)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"The Winter holiday will be here soon. Mr. Chanek wants to decorate his house's wall with ornaments. The wall can be represented as a binary string a of length n. His favorite nephew has another binary string b of length m (m \u2264 n).\\n\\nMr. Chanek's nephew loves the non-negative integer k. His nephew wants exactly k occurrences of b as substrings in a. \\n\\nHowever, Mr. Chanek does not know the value of k. So, for each k (0 \u2264 k \u2264 n - m + 1), find the minimum number of elements in a that have to be changed such that there are exactly k occurrences of b in a.\\n\\nA string s occurs exactly k times in t if there are exactly k different pairs (p,q) such that we can obtain s by deleting p characters from the beginning and q characters from the end of t.\\n\\nInput\\n\\nThe first line contains two integers n and m (1 \u2264 m \u2264 n \u2264 500) \u2014 size of the binary string a and b respectively.\\n\\nThe second line contains a binary string a of length n.\\n\\nThe third line contains a binary string b of length m.\\n\\nOutput\\n\\nOutput n - m + 2 integers \u2014 the (k+1)-th integer denotes the minimal number of elements in a that have to be changed so there are exactly k occurrences of b as a substring in a.\\n\\nExample\\n\\nInput\\n\\n\\n9 3\\n100101011\\n101\\n\\n\\nOutput\\n\\n\\n1 1 0 1 6 -1 -1 -1\\n\\nNote\\n\\nFor k = 0, to make the string a have no occurrence of 101, you can do one character change as follows.\\n\\n100101011 \u2192 100100011\\n\\nFor k = 1, you can also change a single character.\\n\\n100101011 \u2192 100001011\\n\\nFor k = 2, no changes are needed.\\\":\",\"targets\":\"#include \\n#pragma GCC optimize(\\\"Ofast\\\")\\n#pragma GCC optimization(\\\"unroll-loops, no-stack-protector\\\")\\n#pragma GCC target(\\\"avx,avx2,fma\\\")\\nusing namespace std;\\nmt19937_64 rnd;\\nconst long long maxn = 5e2 + 50;\\nconst long long mod = 1e9 + 7;\\nconst long long base = 1e13;\\nconst long long magic = 2000;\\nstruct aho_corasick {\\n struct tk {\\n long long link;\\n long long nxt[27];\\n long long par;\\n char ch;\\n long long go[27];\\n long long val;\\n long long leaf;\\n tk(long long par = -1, char ch = '0') : par(par), ch(ch) {\\n memset(nxt, -1, sizeof(nxt));\\n memset(go, -1, sizeof(go));\\n val = -1;\\n link = -1;\\n leaf = 0;\\n }\\n };\\n vector vt;\\n void init() {\\n vt.clear();\\n vt.push_back({-1, '0'});\\n }\\n long long add(string s, long long val) {\\n long long nw = 0;\\n for (auto to : s) {\\n if (vt[nw].nxt[to - '0' + 1] == -1) {\\n vt[nw].nxt[to - '0' + 1] = vt.size();\\n vt.push_back({nw, to});\\n }\\n nw = vt[nw].nxt[to - '0' + 1];\\n }\\n vt[nw].leaf = val;\\n return nw;\\n }\\n long long get_val(long long u) {\\n if (u == 0) return 0;\\n if (vt[u].val == -1) {\\n vt[u].val = vt[u].leaf + get_val(get_link(u));\\n }\\n return vt[u].val;\\n }\\n long long go(long long v, long long t) {\\n if (vt[v].go[t] == -1) {\\n if (vt[v].nxt[t] != -1) {\\n vt[v].go[t] = vt[v].nxt[t];\\n } else {\\n if (v == 0)\\n vt[v].go[t] = 0;\\n else\\n vt[v].go[t] = go(get_link(v), t);\\n }\\n }\\n return vt[v].go[t];\\n }\\n long long get_link(long long v) {\\n if (vt[v].link == -1) {\\n if (vt[v].par == 0 || v == 0)\\n vt[v].link = 0;\\n else\\n vt[v].link = go(get_link(vt[v].par), vt[v].ch - '0' + 1);\\n }\\n return vt[v].link;\\n }\\n long long get(string s) {\\n long long nw = 0;\\n long long ans = 0;\\n for (auto to : s) {\\n nw = go(nw, to - 'a' + 1);\\n ans += get_val(nw);\\n }\\n return ans;\\n }\\n} man;\\nlong long dp[2][maxn][maxn];\\nint main() {\\n ios_base::sync_with_stdio(false);\\n ...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"You are given n integers a_1, a_2, \u2026, a_n. Find the maximum value of max(a_l, a_{l + 1}, \u2026, a_r) \u22c5 min(a_l, a_{l + 1}, \u2026, a_r) over all pairs (l, r) of integers for which 1 \u2264 l < r \u2264 n.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10 000) \u2014 the number of test cases.\\n\\nThe first line of each test case contains a single integer n (2 \u2264 n \u2264 10^5).\\n\\nThe second line of each test case contains n integers a_1, a_2, \u2026, a_n (1 \u2264 a_i \u2264 10^6).\\n\\nIt is guaranteed that the sum of n over all test cases doesn't exceed 3 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, print a single integer \u2014 the maximum possible value of the product from the statement.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n3\\n2 4 3\\n4\\n3 2 3 1\\n2\\n69 69\\n6\\n719313 273225 402638 473783 804745 323328\\n\\n\\nOutput\\n\\n\\n12\\n6\\n4761\\n381274500335\\n\\nNote\\n\\nLet f(l, r) = max(a_l, a_{l + 1}, \u2026, a_r) \u22c5 min(a_l, a_{l + 1}, \u2026, a_r).\\n\\nIn the first test case, \\n\\n * f(1, 2) = max(a_1, a_2) \u22c5 min(a_1, a_2) = max(2, 4) \u22c5 min(2, 4) = 4 \u22c5 2 = 8. \\n * f(1, 3) = max(a_1, a_2, a_3) \u22c5 min(a_1, a_2, a_3) = max(2, 4, 3) \u22c5 min(2, 4, 3) = 4 \u22c5 2 = 8. \\n * f(2, 3) = max(a_2, a_3) \u22c5 min(a_2, a_3) = max(4, 3) \u22c5 min(4, 3) = 4 \u22c5 3 = 12. \\n\\n\\n\\nSo the maximum is f(2, 3) = 12.\\n\\nIn the second test case, the maximum is f(1, 2) = f(1, 3) = f(2, 3) = 6.\\\":\",\"targets\":\"#include \\nusing namespace std;\\nint32_t main() {\\n ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);\\n int t;\\n cin >> t;\\n while (t--) {\\n long long n, m = 0, c = 0, ans = 0;\\n cin >> n;\\n long long a[n];\\n for (long long i = 0; i < n; i++) {\\n cin >> a[i];\\n }\\n for (long long i = 0; i < n - 1; i++) {\\n c = a[i] * a[i + 1];\\n if (c > m) {\\n m = c;\\n }\\n }\\n cout << m << endl;\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Consider a simplified penalty phase at the end of a football match.\\n\\nA penalty phase consists of at most 10 kicks, the first team takes the first kick, the second team takes the second kick, then the first team takes the third kick, and so on. The team that scores more goals wins; if both teams score the same number of goals, the game results in a tie (note that it goes against the usual football rules). The penalty phase is stopped if one team has scored more goals than the other team could reach with all of its remaining kicks. For example, if after the 7-th kick the first team has scored 1 goal, and the second team has scored 3 goals, the penalty phase ends \u2014 the first team cannot reach 3 goals.\\n\\nYou know which player will be taking each kick, so you have your predictions for each of the 10 kicks. These predictions are represented by a string s consisting of 10 characters. Each character can either be 1, 0, or ?. This string represents your predictions in the following way:\\n\\n * if s_i is 1, then the i-th kick will definitely score a goal; \\n * if s_i is 0, then the i-th kick definitely won't score a goal; \\n * if s_i is ?, then the i-th kick could go either way. \\n\\n\\n\\nBased on your predictions, you have to calculate the minimum possible number of kicks there can be in the penalty phase (that means, the earliest moment when the penalty phase is stopped, considering all possible ways it could go). Note that the referee doesn't take into account any predictions when deciding to stop the penalty phase \u2014 you may know that some kick will\\/won't be scored, but the referee doesn't.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 1 000) \u2014 the number of test cases.\\n\\nEach test case is represented by one line containing the string s, consisting of exactly 10 characters. Each character is either 1, 0, or ?.\\n\\nOutput\\n\\nFor each test case, print one integer \u2014 the minimum possible number of kicks in the penalty phase.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n1?0???1001\\n1111111111\\n??????????\\n0100000000\\n\\n\\nOutput\\n\\n\\n7\\n10\\n6\\n9\\n\\nNote\\n\\nConsider...\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nsigned main() {\\n ios::sync_with_stdio(false);\\n cin.tie(0);\\n cout.tie(0);\\n long long t;\\n cin >> t;\\n while (t--) {\\n long long ans1 = 10, ans2 = 10;\\n long long g1 = 0, g2 = 0;\\n long long l1 = 5, l2 = 5;\\n string s;\\n cin >> s;\\n for (long long i = 0; i < s.length(); i++) {\\n if (i % 2 == 0 && s[i] == '1') {\\n g1++;\\n }\\n if (i % 2 == 0) {\\n l1--;\\n } else if (i % 2 == 1 && s[i] != '0') {\\n g2++;\\n }\\n if ((g2 - g1) > l1) {\\n ans1 = i + 1;\\n break;\\n }\\n }\\n g1 = 0;\\n g2 = 0;\\n for (long long i = 0; i < s.length(); i++) {\\n if (i % 2 == 1 && s[i] == '1') {\\n g1++;\\n } else if (i % 2 == 0 && s[i] != '0') {\\n g2++;\\n }\\n if (i % 2 == 1) {\\n l2--;\\n }\\n if ((g2 - g1) > l2) {\\n ans2 = i + 1;\\n break;\\n }\\n }\\n cout << min(ans1, ans2) << \\\"\\\\n\\\";\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A binary string is a string that consists of characters 0 and 1. A bi-table is a table that has exactly two rows of equal length, each being a binary string.\\n\\nLet \\\\operatorname{MEX} of a bi-table be the smallest digit among 0, 1, or 2 that does not occur in the bi-table. For example, \\\\operatorname{MEX} for \\\\begin{bmatrix} 0011\\\\\\\\\\\\ 1010 \\\\end{bmatrix} is 2, because 0 and 1 occur in the bi-table at least once. \\\\operatorname{MEX} for \\\\begin{bmatrix} 111\\\\\\\\\\\\ 111 \\\\end{bmatrix} is 0, because 0 and 2 do not occur in the bi-table, and 0 < 2.\\n\\nYou are given a bi-table with n columns. You should cut it into any number of bi-tables (each consisting of consecutive columns) so that each column is in exactly one bi-table. It is possible to cut the bi-table into a single bi-table \u2014 the whole bi-table.\\n\\nWhat is the maximal sum of \\\\operatorname{MEX} of all resulting bi-tables can be?\\n\\nInput\\n\\nThe input consists of multiple test cases. The first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Description of the test cases follows.\\n\\nThe first line of the description of each test case contains a single integer n (1 \u2264 n \u2264 10^5) \u2014 the number of columns in the bi-table.\\n\\nEach of the next two lines contains a binary string of length n \u2014 the rows of the bi-table.\\n\\nIt's guaranteed that the sum of n over all test cases does not exceed 10^5.\\n\\nOutput\\n\\nFor each test case print a single integer \u2014 the maximal sum of \\\\operatorname{MEX} of all bi-tables that it is possible to get by cutting the given bi-table optimally.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n7\\n0101000\\n1101100\\n5\\n01100\\n10101\\n2\\n01\\n01\\n6\\n000000\\n111111\\n\\n\\nOutput\\n\\n\\n8\\n8\\n2\\n12\\n\\nNote\\n\\nIn the first test case you can cut the bi-table as follows:\\n\\n * \\\\begin{bmatrix} 0\\\\\\\\\\\\ 1 \\\\end{bmatrix}, its \\\\operatorname{MEX} is 2.\\n * \\\\begin{bmatrix} 10\\\\\\\\\\\\ 10 \\\\end{bmatrix}, its \\\\operatorname{MEX} is 2.\\n * \\\\begin{bmatrix} 1\\\\\\\\\\\\ 1 \\\\end{bmatrix}, its \\\\operatorname{MEX} is 0.\\n * \\\\begin{bmatrix} 0\\\\\\\\\\\\ 1 \\\\end{bmatrix}, its \\\\operatorname{MEX} is 2.\\n * \\\\begin{bmatrix} 0\\\\\\\\\\\\ 0 \\\\end{bmatrix}, its...\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nlong long getGcd(long long a, long long b) {\\n if (a == 0) return b;\\n return getGcd(b % a, a);\\n}\\nlong long getLcm(long long a, long long b) { return (a \\/ getGcd(a, b)) * b; }\\nint main() {\\n ios::sync_with_stdio(0);\\n cin.tie(0);\\n int t;\\n cin >> t;\\n while (t--) {\\n int n;\\n cin >> n;\\n string s1, s2;\\n cin >> s1;\\n cin >> s2;\\n vector mex;\\n for (int i = 0; i < n; i++) {\\n if (s1[i] == s2[i]) {\\n if (s1[i] == '0')\\n mex.push_back(1);\\n else\\n mex.push_back(0);\\n } else\\n mex.push_back(2);\\n }\\n int ans = 0;\\n int last = -1;\\n for (int i = 0; i < n; i++) {\\n if (mex[i] == 2) {\\n ans += 2;\\n last = 2;\\n } else if (mex[i] == 1) {\\n if (last == 0) {\\n ans += 2;\\n last = 2;\\n } else {\\n ans += 1;\\n last = 1;\\n }\\n } else {\\n if (last == 1) {\\n ans += 1;\\n last = 2;\\n } else {\\n last = 0;\\n }\\n }\\n }\\n cout << ans << \\\"\\\\n\\\";\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A new agent called Killjoy invented a virus COVID-2069 that infects accounts on Codeforces. Each account has a rating, described by an integer (it can possibly be negative or very large).\\n\\nKilljoy's account is already infected and has a rating equal to x. Its rating is constant. There are n accounts except hers, numbered from 1 to n. The i-th account's initial rating is a_i. Any infected account (initially the only infected account is Killjoy's) instantly infects any uninfected account if their ratings are equal. This can happen at the beginning (before any rating changes) and after each contest. If an account is infected, it can not be healed.\\n\\nContests are regularly held on Codeforces. In each contest, any of these n accounts (including infected ones) can participate. Killjoy can't participate. After each contest ratings are changed this way: each participant's rating is changed by an integer, but the sum of all changes must be equal to zero. New ratings can be any integer.\\n\\nFind out the minimal number of contests needed to infect all accounts. You can choose which accounts will participate in each contest and how the ratings will change.\\n\\nIt can be proven that all accounts can be infected in some finite number of contests.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 100) \u2014 the number of test cases. The next 2t lines contain the descriptions of all test cases.\\n\\nThe first line of each test case contains two integers n and x (2 \u2264 n \u2264 10^3, -4000 \u2264 x \u2264 4000) \u2014 the number of accounts on Codeforces and the rating of Killjoy's account.\\n\\nThe second line of each test case contains n integers a_1, a_2, ..., a_n (-4000 \u2264 a_i \u2264 4000) \u2014 the ratings of other accounts.\\n\\nOutput\\n\\nFor each test case output the minimal number of contests needed to infect all accounts.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n2 69\\n68 70\\n6 4\\n4 4 4 4 4 4\\n9 38\\n-21 83 50 -59 -77 15 -71 -78 20\\n\\n\\nOutput\\n\\n\\n1\\n0\\n2\\n\\nNote\\n\\nIn the first test case it's possible to make all ratings equal to 69. First account's rating will increase by 1, and second account's...\\nSolve the task in PYTHON3.\",\"targets\":\"# Author: S Mahesh Raju\\n# Username: maheshraju2020\\n# Date: 19\\/09\\/2020\\nfrom sys import stdin, stdout, setrecursionlimit\\nimport heapq\\nfrom math import gcd, ceil, sqrt\\nfrom collections import Counter, deque\\nfrom bisect import bisect_left, bisect_right\\nfrom itertools import combinations, permutations\\nii1 = lambda: int(stdin.readline().strip())\\nis1 = lambda: stdin.readline().strip()\\niia = lambda: list(map(int, stdin.readline().strip().split()))\\nisa = lambda: stdin.readline().strip().split()\\nsetrecursionlimit(100000)\\nmod = 1000000007\\n\\ntc = ii1()\\nfor _ in range(tc):\\n n, x = iia()\\n arr = iia()\\n tot = 0\\n temp = []\\n for i in arr:\\n tot += x - i\\n if set(arr) == set([x]):\\n print(0)\\n elif tot == 0:\\n print(1)\\n elif tot != 0 and x in arr:\\n print(1)\\n else:\\n print(2)\",\"language\":\"python\",\"split\":\"train\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"The Olympic Games have just started and Federico is eager to watch the marathon race.\\n\\nThere will be n athletes, numbered from 1 to n, competing in the marathon, and all of them have taken part in 5 important marathons, numbered from 1 to 5, in the past. For each 1\u2264 i\u2264 n and 1\u2264 j\u2264 5, Federico remembers that athlete i ranked r_{i,j}-th in marathon j (e.g., r_{2,4}=3 means that athlete 2 was third in marathon 4).\\n\\nFederico considers athlete x superior to athlete y if athlete x ranked better than athlete y in at least 3 past marathons, i.e., r_{x,j}= 3:\\n hypothetical_winner = ranking[i]\\n ans = i + 1\\n\\n i += 1\\n \\n flag = False\\n\\n for i in range(n):\\n if i + 1 != ans:\\n cnt = 0\\n for j in range(5):\\n if ranking[i][j] < hypothetical_winner[j]:\\n cnt += 1\\n\\n if cnt >= 3:\\n flag = True\\n break\\n\\n print(-1 if flag else ans)\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Casimir has a string s which consists of capital Latin letters 'A', 'B', and 'C' only. Each turn he can choose to do one of the two following actions:\\n\\n * he can either erase exactly one letter 'A' and exactly one letter 'B' from arbitrary places of the string (these letters don't have to be adjacent); \\n * or he can erase exactly one letter 'B' and exactly one letter 'C' from arbitrary places in the string (these letters don't have to be adjacent). \\n\\n\\n\\nTherefore, each turn the length of the string is decreased exactly by 2. All turns are independent so for each turn, Casimir can choose any of two possible actions.\\n\\nFor example, with s = \\\"ABCABC\\\" he can obtain a string s = \\\"ACBC\\\" in one turn (by erasing the first occurrence of 'B' and the second occurrence of 'A'). There are also many other options for a turn aside from this particular example.\\n\\nFor a given string s determine whether there is a sequence of actions leading to an empty string. In other words, Casimir's goal is to erase all letters from the string. Is there a way to do this?\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases.\\n\\nEach test case is described by one string s, for which you need to determine if it can be fully erased by some sequence of turns. The string s consists of capital letters 'A', 'B', 'C' and has a length from 1 to 50 letters, inclusive.\\n\\nOutput\\n\\nPrint t lines, each line containing the answer to the corresponding test case. The answer to a test case should be YES if there is a way to fully erase the corresponding string and NO otherwise.\\n\\nYou may print every letter in any case you want (so, for example, the strings yEs, yes, Yes, and YES will all be recognized as positive answers).\\n\\nExample\\n\\nInput\\n\\n\\n6\\nABACAB\\nABBA\\nAC\\nABC\\nCABCBB\\nBCBCBCBCBCBCBCBC\\n\\n\\nOutput\\n\\n\\nNO\\nYES\\nNO\\nNO\\nYES\\nYES\\n#incl\",\"targets\":\"ude \\nusing namespace std;\\nint main() {\\n int t;\\n cin >> t;\\n for (int i = 0; i < t; i++) {\\n int a = 0, b = 0, c = 0;\\n string s;\\n cin >> s;\\n for (int i = 0; i < s.length(); i++) {\\n if (s[i] == 'A')\\n a++;\\n else if (s[i] == 'B')\\n b++;\\n else if (s[i] == 'C')\\n c++;\\n }\\n if (a + c == b)\\n cout << \\\"Yes\\\";\\n else\\n cout << \\\"No\\\";\\n cout << endl;\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"AtCoDeer the deer found two rectangles lying on the table, each with height 1 and width W. If we consider the surface of the desk as a two-dimensional plane, the first rectangle covers the vertical range of [0,1] and the horizontal range of [a,a+W], and the second rectangle covers the vertical range of [1,2] and the horizontal range of [b,b+W], as shown in the following figure:\\n\\n\\n\\nAtCoDeer will move the second rectangle horizontally so that it connects with the first rectangle. Find the minimum distance it needs to be moved.\\n\\nConstraints\\n\\n* All input values are integers.\\n* 1\u2264W\u226410^5\\n* 1\u2264a,b\u226410^5\\n\\nInput\\n\\nThe input is given from Standard Input in the following format:\\n\\n\\nW a b\\n\\n\\nOutput\\n\\nPrint the minimum distance the second rectangle needs to be moved.\\n\\nExamples\\n\\nInput\\n\\n3 2 6\\n\\n\\nOutput\\n\\n1\\n\\n\\nInput\\n\\n3 1 3\\n\\n\\nOutput\\n\\n0\\n\\n\\nInput\\n\\n5 10 1\\n\\n\\nOutput\\n\\n4\\nimpor\",\"targets\":\"t java.util.Scanner;\\n\\npublic class Main{\\n\\n\\tpublic static void main(String[] args) {\\n\\t\\tScanner sc = new Scanner(System.in);\\n\\t\\tint W = sc.nextInt();\\n\\t\\tint a = sc.nextInt();\\n\\t\\tint b = sc.nextInt();\\n\\t\\t\\n\\t\\tif(Math.abs(a - b) <= W){\\n\\t\\t\\tSystem.out.println(\\\"0\\\");\\n\\t\\t}else{\\n\\t\\t\\tSystem.out.println(Math.abs(a - b) - W);\\n\\t\\t}\\n\\t\\t\\n\\n\\t}\\n\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nAn infinitely long railway has a train consisting of n cars, numbered from 1 to n (the numbers of all the cars are distinct) and positioned in arbitrary order. David Blaine wants to sort the railway cars in the order of increasing numbers. In one move he can make one of the cars disappear from its place and teleport it either to the beginning of the train, or to the end of the train, at his desire. What is the minimum number of actions David Blaine needs to perform in order to sort the train?\\n\\nInput\\n\\nThe first line of the input contains integer n (1 \u2264 n \u2264 100 000) \u2014 the number of cars in the train. \\n\\nThe second line contains n integers pi (1 \u2264 pi \u2264 n, pi \u2260 pj if i \u2260 j) \u2014 the sequence of the numbers of the cars in the train.\\n\\nOutput\\n\\nPrint a single integer \u2014 the minimum number of actions needed to sort the railway cars.\\n\\nExamples\\n\\nInput\\n\\n5\\n4 1 2 5 3\\n\\n\\nOutput\\n\\n2\\n\\n\\nInput\\n\\n4\\n4 1 3 2\\n\\n\\nOutput\\n\\n2\\n\\nNote\\n\\nIn the first sample you need first to teleport the 4-th car, and then the 5-th car to the end of the train.\",\"targets\":\"#include \\nusing namespace std;\\nconst int N = 100500;\\nint t[N * 3], a[N], d[N], pos[N];\\nint get_max(int l, int r) {\\n int res = 0;\\n while (l <= r) {\\n if (l % 2 == 1) {\\n res = max(t[l], res);\\n }\\n if (r % 2 == 0) {\\n res = max(t[r], res);\\n }\\n l = (l + 1) \\/ 2;\\n r = (r - 1) \\/ 2;\\n }\\n return res;\\n}\\nvoid upd(int p) {\\n while (p) {\\n p \\/= 2;\\n t[p] = max(t[p * 2], t[p * 2 + 1]);\\n }\\n}\\nint main() {\\n srand(time(NULL));\\n int n;\\n cin >> n;\\n int sz = 1;\\n while (sz <= n) {\\n sz *= 2;\\n }\\n for (int i = 1; i <= n; i++) {\\n cin >> a[i];\\n pos[a[i]] = i;\\n }\\n int mx = 0;\\n for (int i = 1; i <= n; i++) {\\n d[i] = d[pos[a[i] - 1]] + 1;\\n mx = max(mx, d[i]);\\n }\\n cout << n - mx;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of n high school students numbered from 1 to n. Initially, each student i is on position i. Each student i is characterized by two numbers \u2014 a_i and b_i. Dissatisfaction of the person i equals the product of a_i by the number of people standing to the left of his position, add the product b_i by the number of people standing to the right of his position. Formally, the dissatisfaction of the student i, which is on the position j, equals a_i \u22c5 (j-1) + b_i \u22c5 (n-j).\\n\\nThe director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction.\\n\\nAlthough Stas is able to solve such problems, this was not given to him. He turned for help to you.\\n\\nInput\\n\\nThe first line contains a single integer n (1 \u2264 n \u2264 10^5) \u2014 the number of people in the queue.\\n\\nEach of the following n lines contains two integers a_i and b_i (1 \u2264 a_i, b_i \u2264 10^8) \u2014 the characteristic of the student i, initially on the position i.\\n\\nOutput\\n\\nOutput one integer \u2014 minimum total dissatisfaction which can be achieved by rearranging people in the queue.\\n\\nExamples\\n\\nInput\\n\\n\\n3\\n4 2\\n2 3\\n6 1\\n\\n\\nOutput\\n\\n\\n12\\n\\nInput\\n\\n\\n4\\n2 4\\n3 3\\n7 1\\n2 3\\n\\n\\nOutput\\n\\n\\n25\\n\\nInput\\n\\n\\n10\\n5 10\\n12 4\\n31 45\\n20 55\\n30 17\\n29 30\\n41 32\\n7 1\\n5 5\\n3 15\\n\\n\\nOutput\\n\\n\\n1423\\n\\nNote\\n\\nIn the first example it is optimal to put people in this order: (3, 1, 2). The first person is in the position of 2, then his dissatisfaction will be equal to 4 \u22c5 1+2 \u22c5 1=6. The second person is in the position of 3, his dissatisfaction will be equal to 2 \u22c5 2+3 \u22c5 0=4. The third person is in the position of 1, his dissatisfaction will be equal to 6 \u22c5 0+1 \u22c5 2=2. The total dissatisfaction will be 12.\\n\\nIn the second example, you need to put people in this order: (3, 2, 4, 1). The total dissatisfaction will be 25.\",\"targets\":\"import java.util.*; \\/\\/7\\nimport java.io.*;\\n\\/\\/Mai soch rha hu kauye ko codeforces pr add krlu pr drr lgta hai ki kahin rating na chura le.......... \\npublic class march\\n{\\n\\tpublic static class comp implements Comparator\\n\\t{\\n\\t\\tpublic int compare(pair p1,pair p2)\\n\\t\\t{\\n\\t\\t\\treturn (int)((p1.val-p1.key)-(p2.val-p2.key));\\n\\t\\t}\\n\\t}\\n\\tpublic static void main(String args[]) throws IOException\\n\\t{\\n\\t\\tReader sc=new Reader();\\n\\t\\tint n=sc.nextInt();\\n\\t\\tpair a[]=new pair[n];\\n\\t\\t\\n\\t\\tfor(int i=0;i sieveOfEratosthenes(int n) \\n { \\n boolean prime[] = new boolean[n+1];\\n\\t\\tLinkedList l=new LinkedList();\\t\\n for(int i=0;i\\n\\nThen it is optimal to replace the heights of the skyscrapers as follows (note that all...\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nconst double PI = acos(-1.0);\\nconst double eps = 1e-6;\\nconst int inf = 1e9;\\nconst long long llf = 1e18;\\nconst int mod = 1e9 + 7;\\nconst int maxn = 1e5 + 10;\\nint n, m;\\nint a[1010][1010];\\nvector r[1010], c[1010];\\nint main() {\\n ios::sync_with_stdio(false);\\n cin >> n >> m;\\n for (int i = 1; i <= n; i++) {\\n for (int j = 1; j <= m; j++) {\\n cin >> a[i][j];\\n r[i].push_back(a[i][j]);\\n c[j].push_back(a[i][j]);\\n }\\n }\\n for (int i = 1; i <= n; i++) {\\n sort(r[i].begin(), r[i].end());\\n r[i].erase(unique(r[i].begin(), r[i].end()), r[i].end());\\n }\\n for (int i = 1; i <= m; i++) {\\n sort(c[i].begin(), c[i].end());\\n c[i].erase(unique(c[i].begin(), c[i].end()), c[i].end());\\n }\\n for (int i = 1; i <= n; i++) {\\n for (int j = 1; j <= m; j++) {\\n int x = lower_bound(r[i].begin(), r[i].end(), a[i][j]) - r[i].begin();\\n int y = lower_bound(c[j].begin(), c[j].end(), a[i][j]) - c[j].begin();\\n int ans = max(max(x, y) + (int)c[j].size() - y,\\n max(x, y) + (int)r[i].size() - x);\\n cout << ans << \\\" \\\";\\n }\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A schoolboy named Vasya loves reading books on programming and mathematics. He has recently read an encyclopedia article that described the method of median smoothing (or median filter) and its many applications in science and engineering. Vasya liked the idea of the method very much, and he decided to try it in practice.\\n\\nApplying the simplest variant of median smoothing to the sequence of numbers a1, a2, ..., an will result a new sequence b1, b2, ..., bn obtained by the following algorithm:\\n\\n * b1 = a1, bn = an, that is, the first and the last number of the new sequence match the corresponding numbers of the original sequence. \\n * For i = 2, ..., n - 1 value bi is equal to the median of three values ai - 1, ai and ai + 1. \\n\\n\\n\\nThe median of a set of three numbers is the number that goes on the second place, when these three numbers are written in the non-decreasing order. For example, the median of the set 5, 1, 2 is number 2, and the median of set 1, 0, 1 is equal to 1.\\n\\nIn order to make the task easier, Vasya decided to apply the method to sequences consisting of zeros and ones only.\\n\\nHaving made the procedure once, Vasya looked at the resulting sequence and thought: what if I apply the algorithm to it once again, and then apply it to the next result, and so on? Vasya tried a couple of examples and found out that after some number of median smoothing algorithm applications the sequence can stop changing. We say that the sequence is stable, if it does not change when the median smoothing is applied to it.\\n\\nNow Vasya wonders, whether the sequence always eventually becomes stable. He asks you to write a program that, given a sequence of zeros and ones, will determine whether it ever becomes stable. Moreover, if it ever becomes stable, then you should determine what will it look like and how many times one needs to apply the median smoothing algorithm to initial sequence in order to obtain a stable one.\\n\\nInput\\n\\nThe first input line of the input contains a single integer n (3 \u2264 n \u2264 500 000) \u2014 the length of...\",\"targets\":\"#include \\nusing namespace std;\\nconst int maxn = 500010;\\nint a[maxn], n, t, b[maxn], sum[maxn];\\nvoid update(int i, int l) {\\n t = max(t, (l + 1) \\/ 2);\\n if (l % 2 == 1)\\n for (int j = i - l; j <= i - 1; j++) a[j] = a[i];\\n else {\\n for (int j = i - l; j <= i - l \\/ 2 - 1; j++) a[j] = a[i] ^ 1;\\n for (int j = i - l \\/ 2; j <= i - 1; j++) a[j] = a[i];\\n }\\n}\\nint main() {\\n scanf(\\\"%d\\\", &n);\\n for (int i = 1; i <= n; i++) scanf(\\\"%d\\\", &a[i]);\\n int l = 0;\\n for (int i = 2; i < n; i++) {\\n if (a[i] != a[i + 1] && a[i] != a[i - 1])\\n l++;\\n else {\\n update(i, l);\\n l = 0;\\n }\\n }\\n update(n, l);\\n printf(\\\"%d\\\\n\\\", t);\\n for (int i = 1; i <= n; i++) printf(\\\"%d \\\", a[i]);\\n printf(\\\"\\\\n\\\");\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given an array a of length n.\\n\\nLet's define the eversion operation. Let x = a_n. Then array a is partitioned into two parts: left and right. The left part contains the elements of a that are not greater than x (\u2264 x). The right part contains the elements of a that are strictly greater than x (> x). The order of elements in each part is kept the same as before the operation, i. e. the partition is stable. Then the array is replaced with the concatenation of the left and the right parts.\\n\\nFor example, if the array a is [2, 4, 1, 5, 3], the eversion goes like this: [2, 4, 1, 5, 3] \u2192 [2, 1, 3], [4, 5] \u2192 [2, 1, 3, 4, 5].\\n\\nWe start with the array a and perform eversions on this array. We can prove that after several eversions the array a stops changing. Output the minimum number k such that the array stops changing after k eversions.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 100). Description of the test cases follows.\\n\\nThe first line contains a single integer n (1 \u2264 n \u2264 2 \u22c5 10^5).\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^9).\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case print a single integer k \u2014 the number of eversions after which the array stops changing.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n5\\n2 4 1 5 3\\n5\\n5 3 2 4 1\\n4\\n1 1 1 1\\n\\n\\nOutput\\n\\n\\n1\\n2\\n0\\n\\nNote\\n\\nConsider the fist example.\\n\\n * The first eversion: a = [1, 4, 2, 5, 3], x = 3. [2, 4, 1, 5, 3] \u2192 [2, 1, 3], [4, 5] \u2192 [2, 1, 3, 4, 5]. \\n * The second and following eversions: a = [2, 1, 3, 4, 5], x = 5. [2, 1, 3, 4, 5] \u2192 [2, 1, 3, 4, 5], [] \u2192 [2, 1, 3, 4, 5]. This eversion does not change the array, so the answer is 1. \\n\\n\\n\\nConsider the second example. \\n\\n * The first eversion: a = [5, 3, 2, 4, 1], x = 1. [5, 3, 2, 4, 1] \u2192 [1], [5, 3, 2, 4] \u2192 [1, 5, 3, 2, 4]. \\n * The second eversion: a = [1, 5, 3, 2, 4], x = 4. [1, 5, 3, 2, 4] \u2192 [1, 3, 2, 4], [5] \u2192 [1, 3, 2, 4, 5]. \\n * The third and following eversions: a = [1, 3, 2, 4,...\\nUsing java can you solve the prior task?\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.io.PrintWriter;\\nimport java.util.ArrayList;\\nimport java.util.*;\\n\\npublic class ArrayEversion {\\n static class Fast {\\n BufferedReader br;\\n StringTokenizer st;\\n\\n public Fast() {\\n br = new BufferedReader(\\n new InputStreamReader(System.in));\\n }\\n\\n String next() {\\n while (st == null || !st.hasMoreElements()) {\\n try {\\n st = new StringTokenizer(br.readLine());\\n } catch (IOException e) {\\n e.printStackTrace();\\n }\\n }\\n return st.nextToken();\\n }\\n\\n int nextInt() {\\n return Integer.parseInt(next());\\n }\\n\\n long nextLong() {\\n return Long.parseLong(next());\\n }\\n\\n double nextDouble() {\\n return Double.parseDouble(next());\\n }\\n\\n int[] readArray(int n) {\\n int a[] = new int[n];\\n for (int i = 0; i < n; i++)\\n a[i] = nextInt();\\n return a;\\n }\\n\\n long[] readArray1(int n) {\\n long a[] = new long[n];\\n for (int i = 0; i < n; i++)\\n a[i] = nextLong();\\n return a;\\n }\\n\\n String nextLine() {\\n String str = \\\"\\\";\\n try {\\n str = br.readLine().trim();\\n } catch (IOException e) {\\n e.printStackTrace();\\n }\\n return str;\\n }\\n }\\n\\n public static void main(String args[]) {\\n Fast sc = new Fast();\\n PrintWriter out = new PrintWriter(System.out);\\n int t = sc.nextInt();\\n while (t-- > 0) {\\n int n = sc.nextInt();\\n ArrayList arr=new ArrayList<>();\\n for(int i=0;i=0;i--)\\n {\\n ...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given two positive integers n and s. Find the maximum possible median of an array of n non-negative integers (not necessarily distinct), such that the sum of its elements is equal to s.\\n\\nA median of an array of integers of length m is the number standing on the \u2308 {m\\/2} \u2309-th (rounding up) position in the non-decreasing ordering of its elements. Positions are numbered starting from 1. For example, a median of the array [20,40,20,50,50,30] is the \u2308 m\\/2 \u2309-th element of [20,20,30,40,50,50], so it is 30. There exist other definitions of the median, but in this problem we use the described definition.\\n\\nInput\\n\\nThe input consists of multiple test cases. The first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Description of the test cases follows.\\n\\nEach test case contains a single line with two integers n and s (1 \u2264 n, s \u2264 10^9) \u2014 the length of the array and the required sum of the elements.\\n\\nOutput\\n\\nFor each test case print a single integer \u2014 the maximum possible median.\\n\\nExample\\n\\nInput\\n\\n\\n8\\n1 5\\n2 5\\n3 5\\n2 1\\n7 17\\n4 14\\n1 1000000000\\n1000000000 1\\n\\n\\nOutput\\n\\n\\n5\\n2\\n2\\n0\\n4\\n4\\n1000000000\\n0\\n\\nNote\\n\\nPossible arrays for the first three test cases (in each array the median is underlined):\\n\\n * In the first test case [\\\\underline{5}] \\n * In the second test case [\\\\underline{2}, 3] \\n * In the third test case [1, \\\\underline{2}, 2] \\nSolve the task in JAVA.\",\"targets\":\"import java.util.*;\\npublic class median \\n{\\n public static void main(String[] args)\\n {\\n try \\n {\\n Scanner sc=new Scanner(System.in);\\n int T=sc.nextInt();\\n for(int i=0;i\\nusing namespace std;\\nconst int mxn = 3e6 + 7, du = 1e9 + 7;\\nint add(int a, int b) {\\n a += b;\\n a %= du;\\n return a;\\n}\\nint sub(int a, int b) {\\n a -= b;\\n if (a < 0) a += du;\\n return a;\\n}\\nint mul(int a, int b) {\\n long long pro = (long long)a * (long long)b;\\n pro %= du;\\n return pro;\\n}\\nint pw(int a, int b) {\\n int res = 1;\\n while (b) {\\n if (b % 2) res = mul(res, a);\\n a = mul(a, a);\\n b \\/= 2;\\n }\\n return res;\\n}\\nint dv(int a, int b) { return mul(a, pw(b, du - 2)); }\\nint fact[mxn], inv[mxn];\\nvoid init() {\\n fact[0] = 1;\\n for (int i = 1; i < mxn; i++) fact[i] = mul(fact[i - 1], i);\\n inv[mxn - 1] = dv(1, fact[mxn - 1]);\\n for (int i = mxn - 2; i >= 0; i--) inv[i] = mul(inv[i + 1], i + 1);\\n}\\nint C(int a, int b) {\\n if (a > b) return 0;\\n return mul(fact[b], mul(inv[a], inv[b - a]));\\n}\\nint n, q;\\nint dp[mxn][3];\\nsigned main() {\\n ios::sync_with_stdio(0);\\n cin.tie(0);\\n cout.tie(0);\\n init();\\n cin >> n >> q;\\n dp[0][0] = dp[0][1] = dp[0][2] = n;\\n for (int i = 1; i < 3 * n; i++) {\\n int sum = C(i + 1, 3 * n);\\n dp[i][0] = dv(sub(sub(sum, mul(2, dp[i - 1][0])), dp[i - 1][1]), 3);\\n dp[i][1] = add(dp[i][0], dp[i - 1][0]);\\n dp[i][2] = add(dp[i][1], dp[i - 1][1]);\\n }\\n while (q--) {\\n int x;\\n cin >> x;\\n cout << add(dp[x][0], C(x, 3 * n)) << '\\\\n';\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"This problem is an extension of the problem \\\"Wonderful Coloring - 1\\\". It has quite many differences, so you should read this statement completely.\\n\\nRecently, Paul and Mary have found a new favorite sequence of integers a_1, a_2, ..., a_n. They want to paint it using pieces of chalk of k colors. The coloring of a sequence is called wonderful if the following conditions are met:\\n\\n 1. each element of the sequence is either painted in one of k colors or isn't painted; \\n 2. each two elements which are painted in the same color are different (i. e. there's no two equal values painted in the same color); \\n 3. let's calculate for each of k colors the number of elements painted in the color \u2014 all calculated numbers must be equal; \\n 4. the total number of painted elements of the sequence is the maximum among all colorings of the sequence which meet the first three conditions. \\n\\n\\n\\nE. g. consider a sequence a=[3, 1, 1, 1, 1, 10, 3, 10, 10, 2] and k=3. One of the wonderful colorings of the sequence is shown in the figure.\\n\\n The example of a wonderful coloring of the sequence a=[3, 1, 1, 1, 1, 10, 3, 10, 10, 2] and k=3. Note that one of the elements isn't painted.\\n\\nHelp Paul and Mary to find a wonderful coloring of a given sequence a.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10000) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of two lines. The first one contains two integers n and k (1 \u2264 n \u2264 2\u22c510^5, 1 \u2264 k \u2264 n) \u2014 the length of a given sequence and the number of colors, respectively. The second one contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 n).\\n\\nIt is guaranteed that the sum of n over all test cases doesn't exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nOutput t lines, each of them must contain a description of a wonderful coloring for the corresponding test case.\\n\\nEach wonderful coloring must be printed as a sequence of n integers c_1, c_2, ..., c_n (0 \u2264 c_i \u2264 k) separated by spaces where\\n\\n * c_i=0, if i-th element isn't painted; \\n * c_i>0, if i-th element is painted in the...\",\"targets\":\"import java.util.Arrays;\\nimport java.util.Comparator;\\nimport java.util.Scanner;\\nimport static java.lang.Integer.min;\\n\\npublic class problemB {\\n static Scanner input = new Scanner(System.in);\\n static void solve() {\\n int n = input.nextInt();\\n int k = input.nextInt();\\n int[] a = new int[n];\\n Integer[] id = new Integer[n];\\n int[] c = new int[n];\\n for(int i=0; i a[(int) x]));\\n int col = 1;\\n int[] cache = new int[k];\\n for(int i=0; i0) {\\n solve();\\n --test;\\n }\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A soldier wants to buy w bananas in the shop. He has to pay k dollars for the first banana, 2k dollars for the second one and so on (in other words, he has to pay i\u00b7k dollars for the i-th banana). \\n\\nHe has n dollars. How many dollars does he have to borrow from his friend soldier to buy w bananas?\\n\\nInput\\n\\nThe first line contains three positive integers k, n, w (1 \u2264 k, w \u2264 1000, 0 \u2264 n \u2264 109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants. \\n\\nOutput\\n\\nOutput one integer \u2014 the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.\\n\\nExamples\\n\\nInput\\n\\n3 17 4\\n\\n\\nOutput\\n\\n13\",\"targets\":\"k, n, w = map(int, input().split())\\nsum = i = 0\\nwhile w:\\n\\tw -= 1\\n\\ti += 1\\n\\tsum += i*k\\nprint(max(0, sum-n))\",\"language\":\"python\",\"split\":\"train\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Alice and Borys are playing tennis.\\n\\nA tennis match consists of games. In each game, one of the players is serving and the other one is receiving.\\n\\nPlayers serve in turns: after a game where Alice is serving follows a game where Borys is serving, and vice versa.\\n\\nEach game ends with a victory of one of the players. If a game is won by the serving player, it's said that this player holds serve. If a game is won by the receiving player, it's said that this player breaks serve.\\n\\nIt is known that Alice won a games and Borys won b games during the match. It is unknown who served first and who won which games.\\n\\nFind all values of k such that exactly k breaks could happen during the match between Alice and Borys in total.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10^3). Description of the test cases follows.\\n\\nEach of the next t lines describes one test case and contains two integers a and b (0 \u2264 a, b \u2264 10^5; a + b > 0) \u2014 the number of games won by Alice and Borys, respectively.\\n\\nIt is guaranteed that the sum of a + b over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case print two lines.\\n\\nIn the first line, print a single integer m (1 \u2264 m \u2264 a + b + 1) \u2014 the number of values of k such that exactly k breaks could happen during the match.\\n\\nIn the second line, print m distinct integers k_1, k_2, \u2026, k_m (0 \u2264 k_1 < k_2 < \u2026 < k_m \u2264 a + b) \u2014 the sought values of k in increasing order.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n2 1\\n1 1\\n0 5\\n\\n\\nOutput\\n\\n\\n4\\n0 1 2 3\\n2\\n0 2\\n2\\n2 3\\n\\nNote\\n\\nIn the first test case, any number of breaks between 0 and 3 could happen during the match: \\n\\n * Alice holds serve, Borys holds serve, Alice holds serve: 0 breaks; \\n * Borys holds serve, Alice holds serve, Alice breaks serve: 1 break; \\n * Borys breaks serve, Alice breaks serve, Alice holds serve: 2 breaks; \\n * Alice breaks serve, Borys breaks serve, Alice breaks serve: 3 breaks. \\n\\n\\n\\nIn the second test case, the players could either both hold serves (0 breaks) or both break serves (2...\\n\\ncnt\",\"targets\":\"= int(input())\\n\\n\\nfor _ in range(cnt):\\n\\ta, b = map(int, input().split())\\n\\tif b > a: a, b = b, a # a >= b now\\n\\n\\tdiff = a - b\\n\\n\\tmin_breaks = diff \\/\\/ 2\\n\\ta -= 2 * min_breaks\\n\\tcould_be_odd = a > b\\n\\n\\tnext_games = a + b\\n\\n\\tpossibilities = [str(min_breaks + i) for i in range(next_games+1) if could_be_odd or (i % 2 == 0)]\\n\\n\\tprint(len(possibilities))\\n\\tprint(\\\" \\\".join(possibilities))\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Nearly each project of the F company has a whole team of developers working on it. They often are in different rooms of the office in different cities and even countries. To keep in touch and track the results of the project, the F company conducts shared online meetings in a Spyke chat.\\n\\nOne day the director of the F company got hold of the records of a part of an online meeting of one successful team. The director watched the record and wanted to talk to the team leader. But how can he tell who the leader is? The director logically supposed that the leader is the person who is present at any conversation during a chat meeting. In other words, if at some moment of time at least one person is present on the meeting, then the leader is present on the meeting.\\n\\nYou are the assistant director. Given the 'user logged on'\\/'user logged off' messages of the meeting in the chronological order, help the director determine who can be the leader. Note that the director has the record of only a continuous part of the meeting (probably, it's not the whole meeting).\\n\\nInput\\n\\nThe first line contains integers n and m (1 \u2264 n, m \u2264 105) \u2014 the number of team participants and the number of messages. Each of the next m lines contains a message in the format:\\n\\n * '+ id': the record means that the person with number id (1 \u2264 id \u2264 n) has logged on to the meeting. \\n * '- id': the record means that the person with number id (1 \u2264 id \u2264 n) has logged off from the meeting. \\n\\n\\n\\nAssume that all the people of the team are numbered from 1 to n and the messages are given in the chronological order. It is guaranteed that the given sequence is the correct record of a continuous part of the meeting. It is guaranteed that no two log on\\/log off events occurred simultaneously.\\n\\nOutput\\n\\nIn the first line print integer k (0 \u2264 k \u2264 n) \u2014 how many people can be leaders. In the next line, print k integers in the increasing order \u2014 the numbers of the people who can be leaders.\\n\\nIf the data is such that no member of the team can be a leader, print a single...\\\":\",\"targets\":\"#include \\nusing namespace std;\\nint n, m;\\nint mcnt;\\nint cnt[100007];\\nint met[100007];\\nint lead[100007];\\nvector metp;\\nvector metm;\\nvector endd;\\nint main() {\\n scanf(\\\"%d %d\\\", &n, &m);\\n char c[1];\\n int d;\\n for (int i = 0; i < m; i++) {\\n scanf(\\\"%s %d\\\", &c, &d);\\n if (c[0] == '-')\\n met[i] = (-1) * d;\\n else\\n met[i] = d;\\n }\\n for (int i = 0; i < m; i++) {\\n if (met[i] < 0)\\n if (cnt[abs(met[i])] == 0) {\\n metp.push_back(abs(met[i]));\\n cnt[abs(met[i])] = 1;\\n }\\n cnt[abs(met[i])]++;\\n }\\n for (int i = 1; i <= n; i++) cnt[i] = 0;\\n for (int i = m - 1; i >= 0; i--) {\\n if (met[i] > 0)\\n if (cnt[abs(met[i])] == 0) {\\n metm.push_back((-1) * met[i]);\\n cnt[abs(met[i])] = 1;\\n }\\n cnt[abs(met[i])]++;\\n }\\n for (int i = metp.size() - 1; i >= 0; i--) endd.push_back(metp[i]);\\n for (int i = 0; i < m; i++) endd.push_back(met[i]);\\n for (int i = 0; i < metm.size(); i++) endd.push_back(metm[i]);\\n m = endd.size();\\n for (int i = 0; i < m; i++) lead[abs(endd[i])] = 1;\\n mcnt = 0;\\n int pr = endd[0];\\n bool f = 0;\\n if (endd[m - 1] == -pr)\\n for (int i = 0; i < m; i++) {\\n if (endd[i] == -pr)\\n if (i != m - 1)\\n if (endd[i + 1] != pr || mcnt != 1) f = 1;\\n if (endd[i] < 0)\\n mcnt--;\\n else\\n mcnt++;\\n }\\n else\\n f = 1;\\n if (f == 0) lead[pr] = 0;\\n mcnt = 0;\\n for (int i = 1; i <= n; i++)\\n if (lead[i] == 0) mcnt++;\\n printf(\\\"%d\\\\n\\\", mcnt);\\n for (int i = 1; i <= n; i++)\\n if (lead[i] == 0) printf(\\\"%d \\\", i);\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Polycarp has found a table having an infinite number of rows and columns. The rows are numbered from 1, starting from the topmost one. The columns are numbered from 1, starting from the leftmost one.\\n\\nInitially, the table hasn't been filled and Polycarp wants to fix it. He writes integers from 1 and so on to the table as follows.\\n\\n The figure shows the placement of the numbers from 1 to 10. The following actions are denoted by the arrows.\\n\\nThe leftmost topmost cell of the table is filled with the number 1. Then he writes in the table all positive integers beginning from 2 sequentially using the following algorithm.\\n\\nFirst, Polycarp selects the leftmost non-filled cell in the first row and fills it. Then, while the left neighbor of the last filled cell is filled, he goes down and fills the next cell. So he goes down until the last filled cell has a non-filled neighbor to the left (look at the vertical arrow going down in the figure above).\\n\\nAfter that, he fills the cells from the right to the left until he stops at the first column (look at the horizontal row in the figure above). Then Polycarp selects the leftmost non-filled cell in the first row, goes down, and so on.\\n\\nA friend of Polycarp has a favorite number k. He wants to know which cell will contain the number. Help him to find the indices of the row and the column, such that the intersection of the row and the column is the cell containing the number k.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 100) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of one line containing one integer k (1 \u2264 k \u2264 10^9) which location must be found.\\n\\nOutput\\n\\nFor each test case, output in a separate line two integers r and c (r, c \u2265 1) separated by spaces \u2014 the indices of the row and the column containing the cell filled by the number k, respectively.\\n\\nExample\\n\\nInput\\n\\n\\n7\\n11\\n14\\n5\\n4\\n1\\n2\\n1000000000\\n\\n\\nOutput\\n\\n\\n2 4\\n4 3\\n1 3\\n2 1\\n1 1\\n1 2\\n31623 14130\\nimpor\",\"targets\":\"t math\\nt=int(input())\\nwhile t:\\n\\n k=int(input())\\n x=int(math.sqrt(k))\\n y=x*x\\n p=x+1\\n q=p*p\\n if k==y:\\n print(x,1)\\n elif (q-k)<=(p-1):\\n print(p,q-k+1)\\n else:\\n a=1\\n for i in range(y+1,10**9+1):\\n if i==k:\\n break\\n else:\\n a+=1\\n print(a,p)\\n\\n\\n t-=1\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A bracket sequence is a string containing only characters \\\"(\\\" and \\\")\\\". A regular bracket sequence (or, shortly, an RBS) is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters \\\"1\\\" and \\\"+\\\" between the original characters of the sequence. For example:\\n\\n * bracket sequences \\\"()()\\\" and \\\"(())\\\" are regular (the resulting expressions are: \\\"(1)+(1)\\\" and \\\"((1+1)+1)\\\"); \\n * bracket sequences \\\")(\\\", \\\"(\\\" and \\\")\\\" are not. \\n\\n\\n\\nLet's denote the concatenation of two strings x and y as x+y. For example, \\\"()()\\\" + \\\")(\\\" = \\\"()())(\\\".\\n\\nYou are given n bracket sequences s_1, s_2, ..., s_n. You can rearrange them in any order (you can rearrange only the strings themselves, but not the characters in them).\\n\\nYour task is to rearrange the strings in such a way that the string s_1 + s_2 + ... + s_n has as many non-empty prefixes that are RBS as possible.\\n\\nInput\\n\\nThe first line contains a single integer n (1 \u2264 n \u2264 20).\\n\\nThen n lines follow, the i-th of them contains s_i \u2014 a bracket sequence (a string consisting of characters \\\"(\\\" and\\/or \\\")\\\". All sequences s_i are non-empty, their total length does not exceed 4 \u22c5 10^5.\\n\\nOutput\\n\\nPrint one integer \u2014 the maximum number of non-empty prefixes that are RBS for the string s_1 + s_2 + ... + s_n, if the strings s_1, s_2, ..., s_n can be rearranged arbitrarily.\\n\\nExamples\\n\\nInput\\n\\n\\n2\\n(\\n)\\n\\n\\nOutput\\n\\n\\n1\\n\\n\\nInput\\n\\n\\n4\\n()()())\\n(\\n(\\n)\\n\\n\\nOutput\\n\\n\\n4\\n\\n\\nInput\\n\\n\\n1\\n(())\\n\\n\\nOutput\\n\\n\\n1\\n\\n\\nInput\\n\\n\\n1\\n)(()\\n\\n\\nOutput\\n\\n\\n0\\n\\nNote\\n\\nIn the first example, you can concatenate the strings as follows: \\\"(\\\" + \\\")\\\" = \\\"()\\\", the resulting string will have one prefix, that is an RBS: \\\"()\\\".\\n\\nIn the second example, you can concatenate the strings as follows: \\\"(\\\" + \\\")\\\" + \\\"()()())\\\" + \\\"(\\\" = \\\"()()()())(\\\", the resulting string will have four prefixes that are RBS: \\\"()\\\", \\\"()()\\\", \\\"()()()\\\", \\\"()()()()\\\".\\n\\nThe third and the fourth examples contain only one string each, so the order is fixed.\",\"targets\":\"#include \\nusing namespace std;\\ntemplate \\nostream &operator<<(ostream &out, const pair<_F, _S> &_pair) {\\n return out << \\\"(\\\" << _pair.first << \\\",\\\" << _pair.second << \\\")\\\";\\n}\\ntemplate \\nostream &operator<<(ostream &out, const vector &_vec) {\\n out << \\\"[\\\";\\n for (int _vecp = 0; _vecp < _vec.size(); ++_vecp)\\n out << _vec[_vecp] << \\\",]\\\"[_vecp + 1 == _vec.size()];\\n return out;\\n}\\nvoid debug() {}\\ntemplate \\nvoid debug(const T &head, const U &...tail) {\\n cerr << head << (sizeof...(tail) ? \\\" \\\" : \\\"\\\\n\\\"), debug(tail...);\\n}\\ntemplate \\nvoid D(const T &...parm) {\\n cerr << \\\">>> \\\", debug(parm...);\\n}\\nconst int mx = 4e5 + 10;\\nconst long long mod = 998244353;\\nmt19937_64 mtrand(time(0));\\nint n, m, T;\\nstring s[20];\\nint b[20];\\nint cnt[1 << 20];\\nvector vec[20];\\nunordered_map mp[20], mp2[20];\\nint dp[1 << 20][2];\\nint sk[mx], tot;\\nvoid solve(int id) {\\n for (int i = 0; i < s[id].size(); ++i) {\\n if (s[id][i] == '(')\\n ++b[id];\\n else\\n --b[id];\\n vec[id].push_back(b[id]);\\n ++mp2[id][b[id]];\\n if (!mp[id].count(b[id])) mp[id][b[id]] = mp2[id][b[id] + 1];\\n }\\n}\\nvoid run_case() {\\n cin >> n;\\n for (int i = 0; i < n; ++i) {\\n cin >> s[i];\\n solve(i);\\n }\\n int up = 1 << n;\\n for (int i = 0; i < up; ++i) {\\n for (int j = 0; j < n; ++j) {\\n if ((i >> j) & 1) cnt[i] += b[j];\\n }\\n dp[i][0] = dp[i][1] = -0x3f3f3f3f;\\n }\\n dp[0][0] = 0;\\n for (int i = 1; i < up; ++i) {\\n for (int j = 0; j < n; ++j) {\\n if ((i >> j) & 1) {\\n int st = i & (up - (1 << j) - 1);\\n if (mp[j].count(-cnt[st] - 1)) {\\n dp[i][1] = max(dp[i][1], dp[st][0] + mp[j][-cnt[st] - 1]);\\n } else {\\n dp[i][0] = max(dp[i][0], dp[st][0] + mp2[j][-cnt[st]]);\\n }\\n dp[i][1] = max(dp[i][1], dp[st][1]);\\n }\\n }\\n }\\n long long ans = max(dp[up - 1][0], dp[up - 1][1]);\\n cout << ans << \\\"\\\\n\\\";\\n}\\nint main() {\\n ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);\\n T = 1;\\n for (int i = 1; i <= T; ++i)...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Some number of people (this number is even) have stood in a circle. The people stand in the circle evenly. They are numbered clockwise starting from a person with the number 1. Each person is looking through the circle's center at the opposite person.\\n\\n A sample of a circle of 6 persons. The orange arrows indicate who is looking at whom.\\n\\nYou don't know the exact number of people standing in the circle (but this number is even, no doubt). It is known that the person with the number a is looking at the person with the number b (and vice versa, of course). What is the number associated with a person being looked at by the person with the number c? If, for the specified a, b, and c, no such circle exists, output -1.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of one line containing three distinct integers a, b, c (1 \u2264 a,b,c \u2264 10^8).\\n\\nOutput\\n\\nFor each test case output in a separate line a single integer d \u2014 the number of the person being looked at by the person with the number c in a circle such that the person with the number a is looking at the person with the number b. If there are multiple solutions, print any of them. Output -1 if there's no circle meeting the given conditions.\\n\\nExample\\n\\nInput\\n\\n\\n7\\n6 2 4\\n2 3 1\\n2 4 10\\n5 3 4\\n1 3 2\\n2 5 4\\n4 3 2\\n\\n\\nOutput\\n\\n\\n8\\n-1\\n-1\\n-1\\n4\\n1\\n-1\\n\\nNote\\n\\nIn the first test case, there's a desired circle of 8 people. The person with the number 6 will look at the person with the number 2 and the person with the number 8 will look at the person with the number 4.\\n\\nIn the second test case, there's no circle meeting the conditions. If the person with the number 2 is looking at the person with the number 3, the circle consists of 2 people because these persons are neighbors. But, in this case, they must have the numbers 1 and 2, but it doesn't meet the problem's conditions.\\n\\nIn the third test case, the only circle with the persons with the numbers 2 and 4 looking at each other consists of 4...\\nUsing python3 can you solve the prior task?\",\"targets\":\"import os\\nimport sys\\nfrom io import BytesIO, IOBase\\n \\n \\n#--------------------fastio--------------------\\n\\nBUFSIZE = 8192\\n\\n\\nclass FastIO(IOBase):\\n newlines = 0\\n\\n def __init__(self, file):\\n self._fd = file.fileno()\\n self.buffer = BytesIO()\\n self.writable = \\\"x\\\" in file.mode or \\\"r\\\" not in file.mode\\n self.write = self.buffer.write if self.writable else None\\n\\n def read(self):\\n while True:\\n b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))\\n if not b:\\n break\\n ptr = self.buffer.tell()\\n self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)\\n self.newlines = 0\\n return self.buffer.read()\\n\\n def readline(self):\\n while self.newlines == 0:\\n b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))\\n self.newlines = b.count(b\\\"\\\\n\\\") + (not b)\\n ptr = self.buffer.tell()\\n self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)\\n self.newlines -= 1\\n return self.buffer.readline()\\n\\n def flush(self):\\n if self.writable:\\n os.write(self._fd, self.buffer.getvalue())\\n self.buffer.truncate(0), self.buffer.seek(0)\\n\\n\\nclass IOWrapper(IOBase):\\n def __init__(self, file):\\n self.buffer = FastIO(file)\\n self.flush = self.buffer.flush\\n self.writable = self.buffer.writable\\n self.write = lambda s: self.buffer.write(s.encode(\\\"ascii\\\"))\\n self.read = lambda: self.buffer.read().decode(\\\"ascii\\\")\\n self.readline = lambda: self.buffer.readline().decode(\\\"ascii\\\")\\n\\n\\nif(os.path.exists('input.txt')):\\n sys.stdin = open('input.txt','r') ; sys.stdout = open('output.txt','w')\\nelse:\\n sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)\\n input = lambda: sys.stdin.readline().rstrip(\\\"\\\\r\\\\n\\\")\\n\\nfor t in range(int(input())):\\n a,b,c = map(int, input().split())\\n size = abs(a-b) * 2\\n if size < max(a,b,c):\\n print(-1)\\n else:\\n if...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A total of n depots are located on a number line. Depot i lies at the point x_i for 1 \u2264 i \u2264 n.\\n\\nYou are a salesman with n bags of goods, attempting to deliver one bag to each of the n depots. You and the n bags are initially at the origin 0. You can carry up to k bags at a time. You must collect the required number of goods from the origin, deliver them to the respective depots, and then return to the origin to collect your next batch of goods.\\n\\nCalculate the minimum distance you need to cover to deliver all the bags of goods to the depots. You do not have to return to the origin after you have delivered all the bags.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10 500). Description of the test cases follows.\\n\\nThe first line of each test case contains two integers n and k (1 \u2264 k \u2264 n \u2264 2 \u22c5 10^5).\\n\\nThe second line of each test case contains n integers x_1, x_2, \u2026, x_n (-10^9 \u2264 x_i \u2264 10^9). It is possible that some depots share the same position.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, output a single integer denoting the minimum distance you need to cover to deliver all the bags of goods to the depots. \\n\\nExample\\n\\nInput\\n\\n\\n4\\n5 1\\n1 2 3 4 5\\n9 3\\n-5 -10 -15 6 5 8 3 7 4\\n5 3\\n2 2 3 3 3\\n4 2\\n1000000000 1000000000 1000000000 1000000000\\n\\n\\nOutput\\n\\n\\n25\\n41\\n7\\n3000000000\\n\\nNote\\n\\nIn the first test case, you can carry only one bag at a time. Thus, the following is a solution sequence that gives a minimum travel distance: 0 \u2192 2 \u2192 0 \u2192 4 \u2192 0 \u2192 3 \u2192 0 \u2192 1 \u2192 0 \u2192 5, where each 0 means you go the origin and grab one bag, and each positive integer means you deliver the bag to a depot at this coordinate, giving a total distance of 25 units. It must be noted that there are other sequences that give the same distance.\\n\\nIn the second test case, you can follow the following sequence, among multiple such sequences, to travel minimum distance: 0 \u2192 6 \u2192 8 \u2192 7 \u2192 0 \u2192 5 \u2192 4 \u2192 3 \u2192 0 \u2192 (-5) \u2192 (-10) \u2192 (-15), with distance...\\nThe above is tricky. Write me a correct solution in JAVA.\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.io.PrintWriter;\\nimport java.util.*;\\n\\npublic class minimizeDist {\\n static class Fast {\\n BufferedReader br;\\n StringTokenizer st;\\n\\n public Fast() {\\n br = new BufferedReader(\\n new InputStreamReader(System.in));\\n }\\n\\n String next() {\\n while (st == null || !st.hasMoreElements()) {\\n try {\\n st = new StringTokenizer(br.readLine());\\n } catch (IOException e) {\\n e.printStackTrace();\\n }\\n }\\n return st.nextToken();\\n }\\n\\n int nextInt() {\\n return Integer.parseInt(next());\\n }\\n\\n long nextLong() {\\n return Long.parseLong(next());\\n }\\n\\n double nextDouble() {\\n return Double.parseDouble(next());\\n }\\n\\n int[] readArray(int n) {\\n int a[] = new int[n];\\n for (int i = 0; i < n; i++)\\n a[i] = nextInt();\\n return a;\\n }\\n\\n long[] readArray1(int n) {\\n long a[] = new long[n];\\n for (int i = 0; i < n; i++)\\n a[i] = nextLong();\\n return a;\\n }\\n\\n String nextLine() {\\n String str = \\\"\\\";\\n try {\\n str = br.readLine().trim();\\n } catch (IOException e) {\\n e.printStackTrace();\\n }\\n return str;\\n }\\n }\\n\\n public static void main(String args[]) {\\n Fast sc = new Fast();\\n PrintWriter out = new PrintWriter(System.out);\\n int t = sc.nextInt();\\n while (t-- > 0) {\\n int n = sc.nextInt();\\n int k = sc.nextInt();\\n long arr[] = sc.readArray1(n);\\n Arrays.sort(arr);\\n long res = 0;\\n if (arr[0] < 0&&n>0) {\\n if (arr[n - 1] >= 0&&Math.abs(arr[0]) >= arr[n - 1] )\\n {\\n ...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in PYTHON3?\\nYou are given a string s of length n consisting of characters a and\\/or b.\\n\\nLet \\\\operatorname{AB}(s) be the number of occurrences of string ab in s as a substring. Analogically, \\\\operatorname{BA}(s) is the number of occurrences of ba in s as a substring.\\n\\nIn one step, you can choose any index i and replace s_i with character a or b.\\n\\nWhat is the minimum number of steps you need to make to achieve \\\\operatorname{AB}(s) = \\\\operatorname{BA}(s)?\\n\\nReminder:\\n\\nThe number of occurrences of string d in s as substring is the number of indices i (1 \u2264 i \u2264 |s| - |d| + 1) such that substring s_i s_{i + 1} ... s_{i + |d| - 1} is equal to d. For example, \\\\operatorname{AB}(aabbbabaa) = 2 since there are two indices i: i = 2 where aabbbabaa and i = 6 where aabbbabaa.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 1000). Description of the test cases follows.\\n\\nThe first and only line of each test case contains a single string s (1 \u2264 |s| \u2264 100, where |s| is the length of the string s), consisting only of characters a and\\/or b.\\n\\nOutput\\n\\nFor each test case, print the resulting string s with \\\\operatorname{AB}(s) = \\\\operatorname{BA}(s) you'll get making the minimum number of steps.\\n\\nIf there are multiple answers, print any of them.\\n\\nExample\\n\\nInput\\n\\n\\n4\\nb\\naabbbabaa\\nabbb\\nabbaab\\n\\n\\nOutput\\n\\n\\nb\\naabbbabaa\\nbbbb\\nabbaaa\\n\\nNote\\n\\nIn the first test case, both \\\\operatorname{AB}(s) = 0 and \\\\operatorname{BA}(s) = 0 (there are no occurrences of ab (ba) in b), so can leave s untouched.\\n\\nIn the second test case, \\\\operatorname{AB}(s) = 2 and \\\\operatorname{BA}(s) = 2, so you can leave s untouched. \\n\\nIn the third test case, \\\\operatorname{AB}(s) = 1 and \\\\operatorname{BA}(s) = 0. For example, we can change s_1 to b and make both values zero.\\n\\nIn the fourth test case, \\\\operatorname{AB}(s) = 2 and \\\\operatorname{BA}(s) = 1. For example, we can change s_6 to a and make both values equal to 1.\",\"targets\":\"for i in range(int(input())):\\n s=input()\\n a=0\\n for i in range(len(s)-1):\\n if s[i]=='a' and s[i+1]=='b':\\n a+=1\\n if s[i]=='b' and s[i+1]=='a':\\n a-=1\\n if a==0:\\n print(s)\\n else:\\n if s[0]=='a':\\n s='b'+s[1:]\\n else:\\n s='a'+s[1:]\\n a=0\\n for i in range(len(s)-1):\\n if s[i]=='a' and s[i+1]=='b':\\n a+=1\\n if s[i]=='b' and s[i+1]=='a':\\n a-=1\\n if a==0:\\n print(s)\\n else:\\n if s[0]=='a':\\n s='b'+s[1:]\\n else:\\n s='a'+s[1:]\\n if s[-1]=='a':\\n s=s[:-1]+'b'\\n else:\\n s=s[:-1]+'a'\\n a=0\\n for i in range(len(s)-1):\\n if s[i]=='a' and s[i+1]=='b':\\n a+=1\\n if s[i]=='b' and s[i+1]=='a':\\n a-=1\\n if a==0:\\n print(s)\\n else:\\n if s[0]=='a':\\n s='b'+s[1:]\\n else:\\n s='a'+s[1:]\\n print(s)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Tanya is learning how to add numbers, but so far she is not doing it correctly. She is adding two numbers a and b using the following algorithm:\\n\\n 1. If one of the numbers is shorter than the other, Tanya adds leading zeros so that the numbers are the same length. \\n 2. The numbers are processed from right to left (that is, from the least significant digits to the most significant). \\n 3. In the first step, she adds the last digit of a to the last digit of b and writes their sum in the answer. \\n 4. At each next step, she performs the same operation on each pair of digits in the same place and writes the result to the left side of the answer. \\n\\n\\n\\nFor example, the numbers a = 17236 and b = 3465 Tanya adds up as follows:\\n\\n$$$ \\\\large{ \\\\begin{array}{r} + \\\\begin{array}{r} 17236\\\\\\\\\\\\ 03465\\\\\\\\\\\\ \\\\end{array} \\\\\\\\\\\\ \\\\hline \\\\begin{array}{r} 1106911 \\\\end{array} \\\\end{array}} $$$\\n\\n * calculates the sum of 6 + 5 = 11 and writes 11 in the answer. \\n * calculates the sum of 3 + 6 = 9 and writes the result to the left side of the answer to get 911. \\n * calculates the sum of 2 + 4 = 6 and writes the result to the left side of the answer to get 6911. \\n * calculates the sum of 7 + 3 = 10, and writes the result to the left side of the answer to get 106911. \\n * calculates the sum of 1 + 0 = 1 and writes the result to the left side of the answer and get 1106911. \\n\\n\\n\\nAs a result, she gets 1106911.\\n\\nYou are given two positive integers a and s. Find the number b such that by adding a and b as described above, Tanya will get s. Or determine that no suitable b exists.\\n\\nInput\\n\\nThe first line of input data contains an integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases.\\n\\nEach test case consists of a single line containing two positive integers a and s (1 \u2264 a < s \u2264 10^{18}) separated by a space.\\n\\nOutput\\n\\nFor each test case print the answer on a separate line.\\n\\nIf the solution exists, print a single positive integer b. The answer must be written without leading zeros. If multiple answers exist, print any of them.\\n\\nIf no suitable number b...\\nThe above is tricky. Write me a correct solution in PYTHON3.\",\"targets\":\"import sys\\nimport math\\ninput=sys.stdin.readline\\ndef solve(a,s):\\n a=[int(i) for i in a]\\n s=[int(i) for i in s]\\n i=len(a)-1\\n j=len(s)-1\\n ans=[]\\n while(True):\\n if(i==-1):\\n for k in range(j,-1,-1):\\n ans.append(s[k])\\n break\\n if(j==-1):\\n return -1\\n if(a[i]>s[j]):\\n if(j==0):\\n return -1\\n if(s[j-1]!=1):\\n return -1\\n else:\\n ans.append(int(str(s[j-1])+str(s[j]))-a[i])\\n j-=2\\n i-=1\\n else:\\n ans.append(s[j]-a[i])\\n j-=1\\n i-=1\\n ans.reverse()\\n index=len(ans)-1\\n for i in range(len(ans)):\\n if(ans[i]!=0):\\n index=i\\n break\\n ans=ans[index:]\\n anss=\\\"\\\"\\n for i in ans:\\n anss+=str(i)\\n if(len(anss)==0):\\n anss+='0'\\n return anss\\nfor _ in range(int(input())):\\n print(solve(*input().split()))\",\"language\":\"python\",\"split\":\"test\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"You are given strings S and T, consisting of lowercase English letters. It is guaranteed that T is a permutation of the string abc. \\n\\nFind string S', the lexicographically smallest permutation of S such that T is not a subsequence of S'.\\n\\nString a is a permutation of string b if the number of occurrences of each distinct character is the same in both strings.\\n\\nA string a is a subsequence of a string b if a can be obtained from b by deletion of several (possibly, zero or all) elements.\\n\\nA string a is lexicographically smaller than a string b if and only if one of the following holds:\\n\\n * a is a prefix of b, but a \u2260 b;\\n * in the first position where a and b differ, the string a has a letter that appears earlier in the alphabet than the corresponding letter in b.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains a single integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases. Description of the test cases follows.\\n\\nThe first line of each test case contains a string S (1 \u2264 |S| \u2264 100), consisting of lowercase English letters.\\n\\nThe second line of each test case contains a string T that is a permutation of the string abc. (Hence, |T| = 3).\\n\\nNote that there is no limit on the sum of |S| across all test cases.\\n\\nOutput\\n\\nFor each test case, output a single string S', the lexicographically smallest permutation of S such that T is not a subsequence of S'.\\n\\nExample\\n\\nInput\\n\\n\\n7\\nabacaba\\nabc\\ncccba\\nacb\\ndbsic\\nbac\\nabracadabra\\nabc\\ndddddddddddd\\ncba\\nbbc\\nabc\\nac\\nabc\\n\\n\\nOutput\\n\\n\\naaaacbb\\nabccc\\nbcdis\\naaaaacbbdrr\\ndddddddddddd\\nbbc\\nac\\n\\nNote\\n\\nIn the first test case, both aaaabbc and aaaabcb are lexicographically smaller than aaaacbb, but they contain abc as a subsequence.\\n\\nIn the second test case, abccc is the smallest permutation of cccba and does not contain acb as a subsequence.\\n\\nIn the third test case, bcdis is the smallest permutation of dbsic and does not contain bac as a subsequence.\\\":\",\"targets\":\"#include \\nusing namespace std;\\nint t;\\nstring s, T;\\nint main() {\\n cin >> t;\\n while (t--) {\\n cin >> s >> T;\\n int n = s.size();\\n int a[n];\\n for (int i = 0; i < n; i++) a[i] = s[i];\\n sort(a, a + n);\\n int acheck = 0, bcheck = 0, ccheck = 0;\\n for (int i = 0; i < n; i++) {\\n if (s[i] == 'a') acheck++;\\n if (s[i] == 'b') bcheck++;\\n if (s[i] == 'c') ccheck++;\\n }\\n if (acheck == 0 || bcheck == 0 || ccheck == 0 || T != \\\"abc\\\") {\\n for (int i = 0; i < n; i++) cout << (char)a[i];\\n cout << endl;\\n } else {\\n for (int i = 0; i < n; i++) {\\n if (a[i] == 98) {\\n continue;\\n }\\n cout << (char)a[i];\\n if (a[i] == 99) ccheck--;\\n if (ccheck == 0)\\n while (bcheck > 0) {\\n cout << \\\"b\\\";\\n bcheck--;\\n }\\n }\\n cout << endl;\\n }\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nAlice and Bob are playing a game on a line with n cells. There are n cells labeled from 1 through n. For each i from 1 to n-1, cells i and i+1 are adjacent.\\n\\nAlice initially has a token on some cell on the line, and Bob tries to guess where it is. \\n\\nBob guesses a sequence of line cell numbers x_1, x_2, \u2026, x_k in order. In the i-th question, Bob asks Alice if her token is currently on cell x_i. That is, Alice can answer either \\\"YES\\\" or \\\"NO\\\" to each Bob's question.\\n\\nAt most one time in this process, before or after answering a question, Alice is allowed to move her token from her current cell to some adjacent cell. Alice acted in such a way that she was able to answer \\\"NO\\\" to all of Bob's questions.\\n\\nNote that Alice can even move her token before answering the first question or after answering the last question. Alice can also choose to not move at all.\\n\\nYou are given n and Bob's questions x_1, \u2026, x_k. You would like to count the number of scenarios that let Alice answer \\\"NO\\\" to all of Bob's questions. \\n\\nLet (a,b) denote a scenario where Alice starts at cell a and ends at cell b. Two scenarios (a_i, b_i) and (a_j, b_j) are different if a_i \u2260 a_j or b_i \u2260 b_j.\\n\\nInput\\n\\nThe first line contains two integers n and k (1 \u2264 n,k \u2264 10^5) \u2014 the number of cells and the number of questions Bob asked.\\n\\nThe second line contains k integers x_1, x_2, \u2026, x_k (1 \u2264 x_i \u2264 n) \u2014 Bob's questions.\\n\\nOutput\\n\\nPrint a single integer, the number of scenarios that let Alice answer \\\"NO\\\" to all of Bob's questions.\\n\\nExamples\\n\\nInput\\n\\n\\n5 3\\n5 1 4\\n\\n\\nOutput\\n\\n\\n9\\n\\n\\nInput\\n\\n\\n4 8\\n1 2 3 4 4 3 2 1\\n\\n\\nOutput\\n\\n\\n0\\n\\n\\nInput\\n\\n\\n100000 1\\n42\\n\\n\\nOutput\\n\\n\\n299997\\n\\nNote\\n\\nThe notation (i,j) denotes a scenario where Alice starts at cell i and ends at cell j.\\n\\nIn the first example, the valid scenarios are (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 3), (4, 5). For example, (3,4) is valid since Alice can start at cell 3, stay there for the first three questions, then move to cell 4 after the last question. \\n\\n(4,5) is valid since Alice can start at cell 4,...\",\"targets\":\"#include \\nusing namespace std;\\nconst int MAXN = 100005;\\nconst int INF = 987654321;\\nint x[MAXN];\\npair pos[MAXN];\\nint main(int argc, char **argv) {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n cout.tie(NULL);\\n ;\\n int n, k;\\n cin >> n >> k;\\n for (int i = 1; i <= n; i++) {\\n pos[i] = pair(INF, -INF);\\n }\\n for (int i = 1; i <= k; i++) {\\n cin >> x[i];\\n pos[x[i]].first = min(pos[x[i]].first, i);\\n pos[x[i]].second = max(pos[x[i]].second, i);\\n }\\n int ans = 0;\\n for (int i = 1; i <= n; i++) {\\n if (pos[i] == pair(INF, -INF)) {\\n if (i > 1 && i < n) {\\n ans += 3;\\n } else {\\n ans += 2;\\n }\\n } else {\\n if (i > 1 && pos[i].first > pos[i - 1].second) ans++;\\n if (i < n && pos[i].first > pos[i + 1].second) ans++;\\n }\\n }\\n cout << ans << endl;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Ehab loves number theory, but for some reason he hates the number x. Given an array a, find the length of its longest subarray such that the sum of its elements isn't divisible by x, or determine that such subarray doesn't exist.\\n\\nAn array a is a subarray of an array b if a can be obtained from b by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 5) \u2014 the number of test cases you need to solve. The description of the test cases follows.\\n\\nThe first line of each test case contains 2 integers n and x (1 \u2264 n \u2264 10^5, 1 \u2264 x \u2264 10^4) \u2014 the number of elements in the array a and the number that Ehab hates.\\n\\nThe second line contains n space-separated integers a_1, a_2, \u2026, a_{n} (0 \u2264 a_i \u2264 10^4) \u2014 the elements of the array a.\\n\\nOutput\\n\\nFor each testcase, print the length of the longest subarray whose sum isn't divisible by x. If there's no such subarray, print -1.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3 3\\n1 2 3\\n3 4\\n1 2 3\\n2 2\\n0 6\\n\\n\\nOutput\\n\\n\\n2\\n3\\n-1\\n\\nNote\\n\\nIn the first test case, the subarray [2,3] has sum of elements 5, which isn't divisible by 3.\\n\\nIn the second test case, the sum of elements of the whole array is 6, which isn't divisible by 4.\\n\\nIn the third test case, all subarrays have an even sum, so the answer is -1.\\nSolve the task in PYTHON3.\",\"targets\":\"for i in range(int(input())):\\n n = int(input())\\n a = set(map(int, input().split(' ')))\\n print(len(a))\",\"language\":\"python\",\"split\":\"train\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Petya is a math teacher. n of his students has written a test consisting of m questions. For each student, it is known which questions he has answered correctly and which he has not.\\n\\nIf the student answers the j-th question correctly, he gets p_j points (otherwise, he gets 0 points). Moreover, the points for the questions are distributed in such a way that the array p is a permutation of numbers from 1 to m.\\n\\nFor the i-th student, Petya knows that he expects to get x_i points for the test. Petya wonders how unexpected the results could be. Petya believes that the surprise value of the results for students is equal to \u2211_{i=1}^{n} |x_i - r_i|, where r_i is the number of points that the i-th student has got for the test.\\n\\nYour task is to help Petya find such a permutation p for which the surprise value of the results is maximum possible. If there are multiple answers, print any of them.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases.\\n\\nThe first line of each test case contains two integers n and m (1 \u2264 n \u2264 10; 1 \u2264 m \u2264 10^4) \u2014 the number of students and the number of questions, respectively.\\n\\nThe second line contains n integers x_1, x_2, ..., x_n (0 \u2264 x_i \u2264 (m(m+1))\\/(2)), where x_i is the number of points that the i-th student expects to get.\\n\\nThis is followed by n lines, the i-th line contains the string s_i (|s_i| = m; s_{i, j} \u2208 \\\\{0, 1\\\\}), where s_{i, j} is 1 if the i-th student has answered the j-th question correctly, and 0 otherwise.\\n\\nThe sum of m for all test cases does not exceed 10^4.\\n\\nOutput\\n\\nFor each test case, print m integers \u2014 a permutation p for which the surprise value of the results is maximum possible. If there are multiple answers, print any of them.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n4 3\\n5 1 2 2\\n110\\n100\\n101\\n100\\n4 4\\n6 2 0 10\\n1001\\n0010\\n0110\\n0101\\n3 6\\n20 3 15\\n010110\\n000101\\n111111\\n\\n\\nOutput\\n\\n\\n3 1 2 \\n2 3 4 1 \\n3 1 4 5 2 6\",\"targets\":\"#include \\nusing namespace std;\\nconst long long LINF = 1e17;\\nconst long double pi = 3.1415926535897932;\\nconst string endstr = \\\"\\\\n\\\";\\ntemplate \\nT gcd(T a, T b) {\\n return (a == 0) ? b : gcd(b % a, a);\\n}\\ntemplate \\nT lcm(T a, T b) {\\n return a \\/ gcd(a, b) * b;\\n}\\nbool p_comp_fs(const pair p1,\\n const pair p2) {\\n return p1.first < p2.first;\\n};\\nbool p_comp_fg(const pair p1,\\n const pair p2) {\\n return p1.first > p2.first;\\n};\\nbool p_comp_ss(const pair p1,\\n const pair p2) {\\n return p1.second < p2.second;\\n};\\nbool p_comp_sg(const pair p1,\\n const pair p2) {\\n return p1.second > p2.second;\\n};\\ntemplate \\nvector uniquen(vector vec) {\\n sort((vec).begin(), (vec).end());\\n vec.erase(unique(vec.begin(), vec.end()), vec.end());\\n return vec;\\n}\\ninline long long popcnt(long long x) {\\n return __builtin_popcountll((unsigned long long)x);\\n};\\ntemplate \\nbool chmax(T &a, T b) {\\n if (a < b) {\\n a = b;\\n return true;\\n }\\n return false;\\n}\\ntemplate \\nbool chmin(T &a, T b) {\\n if (a > b) {\\n a = b;\\n return true;\\n }\\n return false;\\n}\\nbool bit(long long st, long long b) { return ((st >> b) & 1) == 1; }\\nvoid solve() {\\n long long N, M;\\n cin >> N >> M;\\n vector X(N);\\n for (long long i = 0; i < N; i++) cin >> X[i];\\n vector > S(N, vector(M, 0));\\n for (long long i = 0; i < N; i++)\\n for (long long j = 0; j < M; j++) {\\n char c;\\n cin >> c;\\n if (c == '1') S[i][j] = 1;\\n }\\n long long ans_v = -LINF;\\n vector ans;\\n for (long long st = 0; st < (1ll << N); st++) {\\n vector > cnt;\\n for (long long j = 0; j < M; j++) {\\n long long c = 0;\\n for (long long i = 0; i < N; i++) {\\n if (bit(st, i))\\n c -= S[i][j];\\n ...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Calvin the robot lies in an infinite rectangular grid. Calvin's source code contains a list of n commands, each either 'U', 'R', 'D', or 'L' \u2014 instructions to move a single square up, right, down, or left, respectively. How many ways can Calvin execute a non-empty contiguous substrings of commands and return to the same square he starts in? Two substrings are considered different if they have different starting or ending indices.\\n\\nInput\\n\\nThe first line of the input contains a single positive integer, n (1 \u2264 n \u2264 200) \u2014 the number of commands.\\n\\nThe next line contains n characters, each either 'U', 'R', 'D', or 'L' \u2014 Calvin's source code.\\n\\nOutput\\n\\nPrint a single integer \u2014 the number of contiguous substrings that Calvin can execute and return to his starting square.\\n\\nExamples\\n\\nInput\\n\\n6\\nURLLDR\\n\\n\\nOutput\\n\\n2\\n\\n\\nInput\\n\\n4\\nDLUU\\n\\n\\nOutput\\n\\n0\\n\\n\\nInput\\n\\n7\\nRLRLRLR\\n\\n\\nOutput\\n\\n12\\n\\nNote\\n\\nIn the first case, the entire source code works, as well as the \\\"RL\\\" substring in the second and third characters.\\n\\nNote that, in the third case, the substring \\\"LR\\\" appears three times, and is therefore counted three times to the total result.\\n#incl\",\"targets\":\"ude \\nusing namespace std;\\nconst double EPS = 1e-4;\\nconst long double PI = acos((long double)-1.0);\\nconst long long int MOD = 1e9 + 7;\\nlong long int powmod(long long int a, long long int b, long long int mod) {\\n long long int res = 1;\\n a %= mod;\\n for (; b; b >>= 1) {\\n if (b & 1) res = res * a % mod;\\n a = a * a % mod;\\n }\\n return res;\\n}\\nconst int debug = 1;\\ntemplate \\nvoid DBG(vector v) {\\n if (debug) {\\n for (T t : v) cout << t << \\\" \\\";\\n cout << endl;\\n }\\n}\\ntemplate \\nvoid DBG(T t) {\\n if (debug) cout << t << endl;\\n}\\nint main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n cout.precision(10);\\n cout << fixed;\\n int n;\\n cin >> n;\\n string commands;\\n cin >> commands;\\n int count = 0;\\n for (int i = 0; i < n; i++) {\\n auto t = make_pair(0, 0);\\n for (int j = i; j < n; j++) {\\n char c = commands[j];\\n if (c == 'U') t.first++;\\n if (c == 'D') t.first--;\\n if (c == 'R') t.second++;\\n if (c == 'L') t.second--;\\n if (t.first == 0 and t.second == 0) {\\n count++;\\n }\\n }\\n }\\n cout << count << endl;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Drazil is playing a math game with Varda.\\n\\nLet's define for positive integer x as a product of factorials of its digits. For example, .\\n\\nFirst, they choose a decimal number a consisting of n digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number x satisfying following two conditions:\\n\\n1. x doesn't contain neither digit 0 nor digit 1.\\n\\n2. = .\\n\\nHelp friends find such number.\\n\\nInput\\n\\nThe first line contains an integer n (1 \u2264 n \u2264 15) \u2014 the number of digits in a.\\n\\nThe second line contains n digits of a. There is at least one digit in a that is larger than 1. Number a may possibly contain leading zeroes.\\n\\nOutput\\n\\nOutput a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.\\n\\nExamples\\n\\nInput\\n\\n4\\n1234\\n\\n\\nOutput\\n\\n33222\\n\\n\\nInput\\n\\n3\\n555\\n\\n\\nOutput\\n\\n555\\n\\nNote\\n\\nIn the first case, \\\":\",\"targets\":\"#include \\nusing namespace std;\\nsigned main() {\\n long long n;\\n cin >> n;\\n long long x;\\n cin >> x;\\n vector digits;\\n while (x) {\\n long long r = x % 10;\\n if (r > 1) digits.push_back(r);\\n x \\/= 10;\\n }\\n vector ans;\\n for (long long i = 0; i < digits.size(); i++) {\\n if (digits[i] == 2 || digits[i] == 3 || digits[i] == 5 || digits[i] == 7) {\\n ans.push_back(digits[i]);\\n } else if (digits[i] == 4) {\\n ans.push_back(3);\\n ans.push_back(2);\\n ans.push_back(2);\\n } else if (digits[i] == 6) {\\n ans.push_back(5);\\n ans.push_back(3);\\n } else if (digits[i] == 8) {\\n ans.push_back(7);\\n ans.push_back(2);\\n ans.push_back(2);\\n ans.push_back(2);\\n } else {\\n ans.push_back(7);\\n ans.push_back(3);\\n ans.push_back(3);\\n ans.push_back(2);\\n }\\n }\\n sort(ans.begin(), ans.end(), greater());\\n for (long long i = 0; i < ans.size(); i++) cout << ans[i];\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given an integer k and a string s that consists only of characters 'a' (a lowercase Latin letter) and '*' (an asterisk).\\n\\nEach asterisk should be replaced with several (from 0 to k inclusive) lowercase Latin letters 'b'. Different asterisk can be replaced with different counts of letter 'b'.\\n\\nThe result of the replacement is called a BA-string.\\n\\nTwo strings a and b are different if they either have different lengths or there exists such a position i that a_i \u2260 b_i.\\n\\nA string a is lexicographically smaller than a string b if and only if one of the following holds: \\n\\n * a is a prefix of b, but a \u2260 b; \\n * in the first position where a and b differ, the string a has a letter that appears earlier in the alphabet than the corresponding letter in b. \\n\\n\\n\\nNow consider all different BA-strings and find the x-th lexicographically smallest of them.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 2000) \u2014 the number of testcases.\\n\\nThe first line of each testcase contains three integers n, k and x (1 \u2264 n \u2264 2000; 0 \u2264 k \u2264 2000; 1 \u2264 x \u2264 10^{18}). n is the length of string s.\\n\\nThe second line of each testcase is a string s. It consists of n characters, each of them is either 'a' (a lowercase Latin letter) or '*' (an asterisk).\\n\\nThe sum of n over all testcases doesn't exceed 2000. For each testcase x doesn't exceed the total number of different BA-strings. String s contains at least one character 'a'.\\n\\nOutput\\n\\nFor each testcase, print a single string, consisting only of characters 'b' and 'a' (lowercase Latin letters) \u2014 the x-th lexicographically smallest BA-string.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n2 4 3\\na*\\n4 1 3\\na**a\\n6 3 20\\n**a***\\n\\n\\nOutput\\n\\n\\nabb\\nabba\\nbabbbbbbbbb\\n\\nNote\\n\\nIn the first testcase of the example, BA-strings ordered lexicographically are: \\n\\n 1. a\\n 2. ab\\n 3. abb\\n 4. abbb\\n 5. abbbb\\n\\n\\n\\nIn the second testcase of the example, BA-strings ordered lexicographically are: \\n\\n 1. aa\\n 2. aba\\n 3. abba\\n\\n\\n\\nNote that string \\\"aba\\\" is only counted once, even though there are two ways to replace asterisks with characters...\\nimpor\",\"targets\":\"t sys\\ninput = sys.stdin.readline\\n############ ---- Input Functions ---- ############\\ndef inp():\\n return (int(input()))\\ndef inlt():\\n return (list(map(int, input().split())))\\ndef insr():\\n s = input()\\n return (list(s[:len(s) - 1]))\\ndef invr():\\n return (map(int, input().split()))\\nfrom collections import Counter\\nt = inp()\\nfor _ in range(t):\\n n,k,x = invr()\\n s = insr()\\n ss = [s[0]]\\n for i,c in enumerate(list(s)[1:]):\\n if c == 'a':\\n ss.append(c)\\n continue\\n if c == ss[-1]:\\n continue\\n else:\\n ss.append(c)\\n A = []\\n t = 0\\n if s[0]=='*':\\n t = 1\\n for i,c in enumerate(list(s)[1:]):\\n # print(c,s[i-1],'_____')\\n if c == '*' and s[i]=='*':\\n t+=1\\n if c==\\\"*\\\" and s[i]!='*':\\n t=1\\n if c =='a' and s[i]=='*':\\n A.append(t)\\n if s[-1]=='*':\\n A.append(t)\\n res_cnt = []\\n x -= 1\\n for i in A[::-1]:\\n res_cnt.append(x%(i*k+1))\\n x\\/\\/=(i*k+1)\\n # res_cnt = res_cnt[::-1]\\n # print(res_cnt,ss,A)\\n res = ''\\n for c in ss:\\n if c =='*':\\n num = res_cnt.pop()\\n res+='b'*num\\n else:\\n res+='a'\\n print(res)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You have an array a consisting of n distinct positive integers, numbered from 1 to n. Define p_k as $$$p_k = \u2211_{1 \u2264 i, j \u2264 k} a_i mod a_j, where x \\\\bmod y denotes the remainder when x is divided by y. You have to find and print p_1, p_2, \\\\ldots, p_n$$$. \\n\\nInput\\n\\nThe first line contains n \u2014 the length of the array (2 \u2264 n \u2264 2 \u22c5 10^5).\\n\\nThe second line contains n space-separated distinct integers a_1, \u2026, a_n (1 \u2264 a_i \u2264 3 \u22c5 10^5, a_i \u2260 a_j if i \u2260 j). \\n\\nOutput\\n\\nPrint n integers p_1, p_2, \u2026, p_n. \\n\\nExamples\\n\\nInput\\n\\n\\n4\\n6 2 7 3\\n\\n\\nOutput\\n\\n\\n0 2 12 22\\n\\n\\nInput\\n\\n\\n3\\n3 2 1\\n\\n\\nOutput\\n\\n\\n0 3 5\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nusing ll = long long;\\nusing ull = long unsigned long;\\nusing ld = double long;\\ntemplate \\nstruct asym_ra {\\n T a[N + 1];\\n T b[N \\/ B + 2];\\n T get(int r) {\\n if (r <= 0) return T();\\n if (r > N) r = N;\\n return a[r] + b[r \\/ B];\\n }\\n T operator()(int l, int r) { return get(r) - get(l); }\\n void add(int p, const T& v) {\\n for (int i = p + 1; i % B && i <= N; i++) a[i] += v;\\n for (int i = p \\/ B + 1; i < N \\/ B + 2; i++) b[i] += v;\\n }\\n};\\nint n;\\nint a[200005];\\nconst int H = 300000;\\nasym_ra cnt;\\nasym_ra sum;\\nint main() {\\n ios::sync_with_stdio(!cin.tie(0));\\n cin >> n;\\n ll sol = 0;\\n for (int i = 0; i < n; i++) {\\n int x;\\n cin >> x;\\n for (int j = 0; j <= H; j += x) {\\n sol += sum(j, j + x) - cnt(j, j + x) * 1ll * j;\\n }\\n for (int q = 1;;) {\\n int r = x \\/ q;\\n int l = x \\/ (q + 1) + 1;\\n r++;\\n sol += x * cnt(l, r) - q * sum(l, r);\\n if (l == 1) break;\\n q = x \\/ (l - 1);\\n }\\n sol += x * 1ll * cnt(x + 1, H + 1);\\n cout << sol << ' ';\\n cnt.add(x, 1);\\n sum.add(x, x);\\n }\\n cout << '\\\\n';\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.\\n\\nNote, that during capitalization all the letters except the first one remains unchanged.\\n\\nInput\\n\\nA single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.\\n\\nOutput\\n\\nOutput the given word after capitalization.\\n\\nExamples\\n\\nInput\\n\\nApPLe\\n\\n\\nOutput\\n\\nApPLe\\n\\n\\nInput\\n\\nkonjac\\n\\n\\nOutput\\n\\nKonjac\\npalav\",\"targets\":\"ra = input()\\nprint(palavra[0].upper() + palavra[1:])\",\"language\":\"python\",\"split\":\"train\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A balance scale tips to the left if L>R, where L is the total weight of the masses on the left pan and R is the total weight of the masses on the right pan. Similarly, it balances if L=R, and tips to the right if L c + d) else \\\"Balanced\\\" if a + b == c + d else \\\"Right\\\")\",\"language\":\"python\",\"split\":\"train\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Moamen has an array of n distinct integers. He wants to sort that array in non-decreasing order by doing the following operations in order exactly once:\\n\\n 1. Split the array into exactly k non-empty subarrays such that each element belongs to exactly one subarray. \\n 2. Reorder these subarrays arbitrary. \\n 3. Merge the subarrays in their new order. \\n\\n\\n\\nA sequence a is a subarray of a sequence b if a can be obtained from b by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.\\n\\nCan you tell Moamen if there is a way to sort the array in non-decreasing order using the operations written above?\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^3) \u2014 the number of test cases. The description of the test cases follows.\\n\\nThe first line of each test case contains two integers n and k (1 \u2264 k \u2264 n \u2264 10^5).\\n\\nThe second line contains n integers a_1, a_2, \u2026, a_n (0 \u2264 |a_i| \u2264 10^9). It is guaranteed that all numbers are distinct.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 3\u22c510^5.\\n\\nOutput\\n\\nFor each test case, you should output a single string.\\n\\nIf Moamen can sort the array in non-decreasing order, output \\\"YES\\\" (without quotes). Otherwise, output \\\"NO\\\" (without quotes).\\n\\nYou can print each letter of \\\"YES\\\" and \\\"NO\\\" in any case (upper or lower).\\n\\nExample\\n\\nInput\\n\\n\\n3\\n5 4\\n6 3 4 2 1\\n4 2\\n1 -4 0 -2\\n5 1\\n1 2 3 4 5\\n\\n\\nOutput\\n\\n\\nYes\\nNo\\nYes\\n\\nNote\\n\\nIn the first test case, a = [6, 3, 4, 2, 1], and k = 4, so we can do the operations as follows: \\n\\n 1. Split a into \\\\{ [6], [3, 4], [2], [1] \\\\}. \\n 2. Reorder them: \\\\{ [1], [2], [3,4], [6] \\\\}. \\n 3. Merge them: [1, 2, 3, 4, 6], so now the array is sorted. \\n\\n\\n\\nIn the second test case, there is no way to sort the array by splitting it into only 2 subarrays.\\n\\nAs an example, if we split it into \\\\{ [1, -4], [0, -2] \\\\}, we can reorder them into \\\\{ [1, -4], [0, -2] \\\\} or \\\\{ [0, -2], [1, -4] \\\\}. However, after merging the subarrays, it is impossible to get a sorted array.\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\ntemplate \\nvoid print_vec(vector &v) {\\n for (auto i : v) {\\n cout << i << \\\" \\\";\\n }\\n cout << std::endl;\\n return;\\n}\\nvoid solve() {\\n int n, k;\\n cin >> n >> k;\\n vector v(n);\\n for (auto &i : v) {\\n cin >> i;\\n }\\n vector co(v);\\n sort(begin(co), end(co));\\n int subarrays = 0;\\n for (auto i = begin(v); i < end(v); i++) {\\n auto j = lower_bound(begin(co), end(co), *i);\\n while (i < end(v) - 1 && j < end(co) - 1 && (*(i + 1) == *(j + 1))) {\\n i++;\\n j++;\\n }\\n subarrays++;\\n }\\n cout << (k >= subarrays ? \\\"YES\\\" : \\\"NO\\\") << std::endl;\\n}\\nint main() {\\n std::ios::sync_with_stdio(false);\\n cout << fixed;\\n unsigned long long n = 1;\\n cin >> n;\\n while (n--) {\\n solve();\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Stephen Queen wants to write a story. He is a very unusual writer, he uses only letters 'a', 'b', 'c', 'd' and 'e'!\\n\\nTo compose a story, Stephen wrote out n words consisting of the first 5 lowercase letters of the Latin alphabet. He wants to select the maximum number of words to make an interesting story.\\n\\nLet a story be a sequence of words that are not necessarily different. A story is called interesting if there exists a letter which occurs among all words of the story more times than all other letters together.\\n\\nFor example, the story consisting of three words \\\"bac\\\", \\\"aaada\\\", \\\"e\\\" is interesting (the letter 'a' occurs 5 times, all other letters occur 4 times in total). But the story consisting of two words \\\"aba\\\", \\\"abcde\\\" is not (no such letter that it occurs more than all other letters in total).\\n\\nYou are given a sequence of n words consisting of letters 'a', 'b', 'c', 'd' and 'e'. Your task is to choose the maximum number of them to make an interesting story. If there's no way to make a non-empty story, output 0.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 5000) \u2014 the number of test cases. Then t test cases follow.\\n\\nThe first line of each test case contains one integer n (1 \u2264 n \u2264 2 \u22c5 10^5) \u2014 the number of the words in the sequence. Then n lines follow, each of them contains a word \u2014 a non-empty string consisting of lowercase letters of the Latin alphabet. The words in the sequence may be non-distinct (i. e. duplicates are allowed). Only the letters 'a', 'b', 'c', 'd' and 'e' may occur in the words.\\n\\nIt is guaranteed that the sum of n over all test cases doesn't exceed 2 \u22c5 10^5; the sum of the lengths of all words over all test cases doesn't exceed 4 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, output the maximum number of words that compose an interesting story. Print 0 if there's no way to make a non-empty interesting story.\\n\\nExample\\n\\nInput\\n\\n\\n6\\n3\\nbac\\naaada\\ne\\n3\\naba\\nabcde\\naba\\n2\\nbaba\\nbaba\\n4\\nab\\nab\\nc\\nbc\\n5\\ncbdca\\nd\\na\\nd\\ne\\n3\\nb\\nc\\nca\\n\\n\\nOutput\\n\\n\\n3\\n2\\n0\\n2\\n3\\n2\\n\\nNote\\n\\nIn the first test case of the example, all 3 words...\\nSolve the task in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nconst int mxn = (int)2e5 + 5;\\nvoid solve() {\\n int n;\\n cin >> n;\\n vector> a(n);\\n for (int i = 0; i < n; i++) {\\n string s;\\n cin >> s;\\n for (auto x : s) a[i][x - 'a']++;\\n a[i][5] = s.length();\\n if (0) {\\n cerr << i << \\\": \\\";\\n for (auto x : a[i]) cerr << x << \\\" \\\";\\n cerr << \\\"\\\\n\\\";\\n }\\n }\\n if (0) cerr << \\\"done\\\\n\\\";\\n int ans = 0;\\n for (int i = 0; i < 5; i++) {\\n vector need;\\n for (int j = 0; j < n; j++) need.push_back(2 * a[j][i] - a[j][5]);\\n sort(need.begin(), need.end());\\n reverse(need.begin(), need.end());\\n int cnt = 0;\\n int res = 0;\\n do {\\n if (cnt == n) break;\\n res += need[cnt++];\\n } while (res > 0);\\n if (res <= 0) cnt--;\\n ans = max(ans, cnt);\\n }\\n cout << ans << \\\"\\\\n\\\";\\n}\\nint main() {\\n ios_base::sync_with_stdio(0);\\n cin.tie(0);\\n cout.tie(0);\\n int t = 1;\\n cin >> t;\\n while (t--) solve();\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given three integers n, a, b. Determine if there exists a permutation p_1, p_2, \u2026, p_n of integers from 1 to n, such that:\\n\\n * There are exactly a integers i with 2 \u2264 i \u2264 n-1 such that p_{i-1} < p_i > p_{i+1} (in other words, there are exactly a local maximums).\\n\\n * There are exactly b integers i with 2 \u2264 i \u2264 n-1 such that p_{i-1} > p_i < p_{i+1} (in other words, there are exactly b local minimums).\\n\\n\\n\\n\\nIf such permutations exist, find any such permutation.\\n\\nInput\\n\\nThe first line of the input contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. The description of test cases follows.\\n\\nThe only line of each test case contains three integers n, a and b (2 \u2264 n \u2264 10^5, 0 \u2264 a,b \u2264 n).\\n\\nThe sum of n over all test cases doesn't exceed 10^5.\\n\\nOutput\\n\\nFor each test case, if there is no permutation with the requested properties, output -1.\\n\\nOtherwise, print the permutation that you are found. If there are several such permutations, you may print any of them.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n4 1 1\\n6 1 2\\n6 4 0\\n\\n\\nOutput\\n\\n\\n1 3 2 4\\n4 2 3 1 5 6\\n-1\\n\\nNote\\n\\nIn the first test case, one example of such permutations is [1, 3, 2, 4]. In it p_1 < p_2 > p_3, and 2 is the only such index, and p_2> p_3 < p_4, and 3 the only such index.\\n\\nOne can show that there is no such permutation for the third test case.\\nSolve the task in PYTHON3.\",\"targets\":\"for s in[*open(0)][1:]:\\n n,a,b=map(int,s.split());r=-1,\\n if-2=b\\n if a^b:k=(n-2)*(a>b);r[k:k+2]=r[k+1],r[k]\\n for i in range(2-j,a+b-(a>b)+j,2):r[i:i+2]=r[i+1],r[i]\\n print(*r)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A parking lot in the City consists of n parking spaces, standing in a line. The parking spaces are numbered from 1 to n from left to right. \\n\\nWhen a car arrives at the lot, the operator determines an empty parking space for it. For the safety's sake the chosen place should be located as far from the already occupied places as possible. That is, the closest occupied parking space must be as far away as possible. If there are several such places, then the operator chooses the place with the minimum index from them. If all parking lot places are empty, then the car gets place number 1.\\n\\nWe consider the distance between the i-th and the j-th parking spaces equal to 4\u00b7|i - j| meters.\\n\\nYou are given the parking lot records of arriving and departing cars in the chronological order. For each record of an arriving car print the number of the parking lot that was given to this car.\\n\\nInput\\n\\nThe first line contains two space-separated integers n and m (1 \u2264 n, m \u2264 2\u00b7105) \u2014 the number of parking places and the number of records correspondingly. \\n\\nNext m lines contain the descriptions of the records, one per line. The i-th line contains numbers ti, idi (1 \u2264 ti \u2264 2; 1 \u2264 idi \u2264 106). If ti equals 1, then the corresponding record says that the car number idi arrived at the parking lot. If ti equals 2, then the corresponding record says that the car number idi departed from the parking lot. \\n\\nRecords about arriving to the parking lot and departing from the parking lot are given chronologically. All events occurred consecutively, no two events occurred simultaneously.\\n\\nIt is guaranteed that all entries are correct: \\n\\n * each car arrived at the parking lot at most once and departed from the parking lot at most once, \\n * there is no record of a departing car if it didn't arrive at the parking lot earlier, \\n * there are no more than n cars on the parking lot at any moment. \\n\\n\\n\\nYou can consider the cars arbitrarily numbered from 1 to 106, all numbers are distinct. Initially all places in the parking lot are empty.\\n\\nOutput\\n\\nFor...\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nset ss;\\nstruct node {\\n int val, id;\\n bool operator<(const node &b) const {\\n if (val != b.val) return val > b.val;\\n return id < b.id;\\n }\\n};\\nset ss2;\\nset::iterator pos, pos1, pos2;\\nnode tot[30];\\nint n;\\nvoid add(int id, int val, int &cnt) {\\n tot[cnt].id = id;\\n tot[cnt].val = val;\\n cnt++;\\n}\\nvoid check(int l, int r, int &cnt) {\\n if (l == 0 && r == n + 1) return;\\n if (l + 1 == r)\\n return;\\n else if (l == 0)\\n add(1, 4 * (r - 1), cnt);\\n else if (r == n + 1)\\n add(n, 4 * (n - l), cnt);\\n else if ((l + r) % 2 == 0)\\n add((l + r) \\/ 2, 4 * ((l + r) \\/ 2 - l), cnt);\\n else {\\n add((l + r) \\/ 2, 4 * ((l + r) \\/ 2 - l), cnt);\\n add((l + r) \\/ 2 + 1, 4 * (r - ((l + r) \\/ 2 + 1)), cnt);\\n }\\n}\\nmap mp;\\nint main() {\\n mp.clear();\\n ss.clear();\\n ss2.clear();\\n int m;\\n scanf(\\\"%d%d\\\", &n, &m);\\n for (int ii = 0; ii < m; ii++) {\\n int ope, x;\\n scanf(\\\"%d%d\\\", &ope, &x);\\n int ans;\\n if (ope == 1) {\\n if (ss.size() == 0)\\n ans = 1;\\n else\\n ans = ss2.begin()->id;\\n mp[x] = ans;\\n ss.insert(ans);\\n printf(\\\"%d\\\\n\\\", ans);\\n } else\\n ans = mp[x];\\n pos = ss.find(ans);\\n int ll, rr;\\n if (pos != ss.begin()) {\\n pos1 = pos;\\n pos1--;\\n ll = *pos1;\\n } else\\n ll = 0;\\n pos2 = pos;\\n pos2++;\\n if (pos2 != ss.end())\\n rr = *pos2;\\n else\\n rr = n + 1;\\n int cnt = 0;\\n check(ll, rr, cnt);\\n int cnt1 = cnt;\\n check(ll, ans, cnt);\\n check(ans, rr, cnt);\\n if (ope == 1) {\\n for (int i = 0; i < cnt1; i++) ss2.erase(tot[i]);\\n for (int i = cnt1; i < cnt; i++) ss2.insert(tot[i]);\\n } else {\\n for (int i = cnt1; i < cnt; i++) ss2.erase(tot[i]);\\n for (int i = 0; i < cnt1; i++) ss2.insert(tot[i]);\\n }\\n if (ope == 2) ss.erase(ans);\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"\\\"Contestant who earns a score equal to or greater than the k-th place finisher's score will advance to the next round, as long as the contestant earns a positive score...\\\" \u2014 an excerpt from contest rules.\\n\\nA total of n participants took part in the contest (n \u2265 k), and you already know their scores. Calculate how many participants will advance to the next round.\\n\\nInput\\n\\nThe first line of the input contains two integers n and k (1 \u2264 k \u2264 n \u2264 50) separated by a single space.\\n\\nThe second line contains n space-separated integers a1, a2, ..., an (0 \u2264 ai \u2264 100), where ai is the score earned by the participant who got the i-th place. The given sequence is non-increasing (that is, for all i from 1 to n - 1 the following condition is fulfilled: ai \u2265 ai + 1).\\n\\nOutput\\n\\nOutput the number of participants who advance to the next round.\\n\\nExamples\\n\\nInput\\n\\n8 5\\n10 9 8 7 7 7 5 5\\n\\n\\nOutput\\n\\n6\\n\\n\\nInput\\n\\n4 2\\n0 0 0 0\\n\\n\\nOutput\\n\\n0\\n\\nNote\\n\\nIn the first example the participant on the 5th place earned 7 points. As the participant on the 6th place also earned 7 points, there are 6 advancers.\\n\\nIn the second example nobody got a positive score.\",\"targets\":\"import sys\\n\\ndef solution():\\n arr = []\\n line = input()\\n k = int(line.split(\\\" \\\")[1])\\n arr = list(map(int, input().split(\\\" \\\")))\\n n = len(arr)\\n cutOff = arr[k - 1]\\n result = 0\\n for i in range(n):\\n if arr[i] < cutOff:\\n break\\n elif arr[i] > 0:\\n result += 1\\n \\n print(result)\\n\\n\\n\\nsolution()\",\"language\":\"python\",\"split\":\"train\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Note that the memory limit in this problem is lower than in others.\\n\\nYou have a vertical strip with n cells, numbered consecutively from 1 to n from top to bottom.\\n\\nYou also have a token that is initially placed in cell n. You will move the token up until it arrives at cell 1.\\n\\nLet the token be in cell x > 1 at some moment. One shift of the token can have either of the following kinds: \\n\\n * Subtraction: you choose an integer y between 1 and x-1, inclusive, and move the token from cell x to cell x - y. \\n * Floored division: you choose an integer z between 2 and x, inclusive, and move the token from cell x to cell \u230a x\\/z \u230b (x divided by z rounded down). \\n\\n\\n\\nFind the number of ways to move the token from cell n to cell 1 using one or more shifts, and print it modulo m. Note that if there are several ways to move the token from one cell to another in one shift, all these ways are considered distinct (check example explanation for a better understanding).\\n\\nInput\\n\\nThe only line contains two integers n and m (2 \u2264 n \u2264 4 \u22c5 10^6; 10^8 < m < 10^9; m is a prime number) \u2014 the length of the strip and the modulo.\\n\\nOutput\\n\\nPrint the number of ways to move the token from cell n to cell 1, modulo m.\\n\\nExamples\\n\\nInput\\n\\n\\n3 998244353\\n\\n\\nOutput\\n\\n\\n5\\n\\n\\nInput\\n\\n\\n5 998244353\\n\\n\\nOutput\\n\\n\\n25\\n\\n\\nInput\\n\\n\\n42 998244353\\n\\n\\nOutput\\n\\n\\n793019428\\n\\n\\nInput\\n\\n\\n787788 100000007\\n\\n\\nOutput\\n\\n\\n94810539\\n\\nNote\\n\\nIn the first test, there are three ways to move the token from cell 3 to cell 1 in one shift: using subtraction of y = 2, or using division by z = 2 or z = 3.\\n\\nThere are also two ways to move the token from cell 3 to cell 1 via cell 2: first subtract y = 1, and then either subtract y = 1 again or divide by z = 2.\\n\\nTherefore, there are five ways in total.\\nThe above is tricky. Write me a correct solution in JAVA.\",\"targets\":\"import java.util.*;\\nimport java.io.*;\\n\\npublic class Main {\\n\\n static long startTime = System.currentTimeMillis();\\n\\n \\/\\/ for global initializations and methods starts here\\n\\n \\/\\/ global initialisations and methods end here\\n\\n static void run() {\\n boolean tc = false;\\n AdityaFastIO r = new AdityaFastIO();\\n \\/\\/FastReader r = new FastReader();\\n\\n try (OutputStream out = new BufferedOutputStream(System.out)) {\\n\\n \\/\\/long startTime = System.currentTimeMillis();\\n\\n int testcases = tc ? r.ni() : 1;\\n int tcCounter = 1;\\n \\/\\/ Hold Here Sparky------------------->>>\\n \\/\\/ Solution Starts Here\\n\\n start:\\n while (testcases-- > 0) {\\n\\n int n = r.ni();\\n int mod = r.ni();\\n\\n int[] dp = new int[n + 2];\\n int[] temp = new int[n + 2];\\n dp[n] = temp[n] = 1;\\n for (int i = n - 1; i > 0; i--) {\\n dp[i] = temp[i + 1];\\n for (int j = 2; i * j <= n; j++) {\\n int ind = Math.min(n + 1, (i + 1) * j);\\n dp[i] = ((dp[i] + temp[i * j]) % mod - temp[ind] + mod) % mod;\\n }\\n temp[i] = (temp[i + 1] + dp[i]) % mod;\\n }\\n\\n out.write((dp[1] + \\\" \\\").getBytes());\\n }\\n \\/\\/ Solution Ends Here\\n } catch (IOException e) {\\n e.printStackTrace();\\n }\\n }\\n\\n static class AdityaFastIO {\\n final private int BUFFER_SIZE = 1 << 16;\\n private final DataInputStream din;\\n private final byte[] buffer;\\n private int bufferPointer, bytesRead;\\n public BufferedReader br;\\n public StringTokenizer st;\\n\\n public AdityaFastIO() {\\n br = new BufferedReader(new InputStreamReader(System.in));\\n din = new DataInputStream(System.in);\\n buffer = new byte[BUFFER_SIZE];\\n bufferPointer = bytesRead = 0;\\n }\\n\\n public...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"An atom of element X can exist in n distinct states with energies E1 < E2 < ... < En. Arkady wants to build a laser on this element, using a three-level scheme. Here is a simplified description of the scheme. \\n\\nThree distinct states i, j and k are selected, where i < j < k. After that the following process happens: \\n\\n 1. initially the atom is in the state i,\\n 2. we spend Ek - Ei energy to put the atom in the state k,\\n 3. the atom emits a photon with useful energy Ek - Ej and changes its state to the state j,\\n 4. the atom spontaneously changes its state to the state i, losing energy Ej - Ei,\\n 5. the process repeats from step 1. \\n\\n\\n\\nLet's define the energy conversion efficiency as , i. e. the ration between the useful energy of the photon and spent energy.\\n\\nDue to some limitations, Arkady can only choose such three states that Ek - Ei \u2264 U.\\n\\nHelp Arkady to find such the maximum possible energy conversion efficiency within the above constraints.\\n\\nInput\\n\\nThe first line contains two integers n and U (3 \u2264 n \u2264 105, 1 \u2264 U \u2264 109) \u2014 the number of states and the maximum possible difference between Ek and Ei.\\n\\nThe second line contains a sequence of integers E1, E2, ..., En (1 \u2264 E1 < E2... < En \u2264 109). It is guaranteed that all Ei are given in increasing order.\\n\\nOutput\\n\\nIf it is not possible to choose three states that satisfy all constraints, print -1.\\n\\nOtherwise, print one real number \u03b7 \u2014 the maximum possible energy conversion efficiency. Your answer is considered correct its absolute or relative error does not exceed 10 - 9.\\n\\nFormally, let your answer be a, and the jury's answer be b. Your answer is considered correct if .\\n\\nExamples\\n\\nInput\\n\\n4 4\\n1 3 5 7\\n\\n\\nOutput\\n\\n0.5\\n\\n\\nInput\\n\\n10 8\\n10 13 15 16 17 19 20 22 24 25\\n\\n\\nOutput\\n\\n0.875\\n\\n\\nInput\\n\\n3 1\\n2 5 10\\n\\n\\nOutput\\n\\n-1\\n\\nNote\\n\\nIn the first example choose states 1, 2 and 3, so that the energy conversion efficiency becomes equal to .\\n\\nIn the second example choose states 4, 5 and 9, so that the energy conversion efficiency becomes equal to .\",\"targets\":\"#include \\nusing namespace std;\\nnamespace {\\nnamespace aimi {\\ntemplate \\nvoid _input(T &x) {\\n cin >> x;\\n}\\nvoid _input(int &x) { scanf(\\\"%d\\\", &x); }\\nvoid _input(int64_t &x) { scanf(\\\"%\\\" SCNd64, &x); }\\nvoid _input(double &x) { scanf(\\\"%lf\\\", &x); }\\nvoid _input(char &x) { scanf(\\\" %c\\\", &x); }\\nvoid _input(char *x) { scanf(\\\"%s\\\", x); }\\nvoid input() {}\\nvoid input(char *x) { scanf(\\\"%s\\\", x); }\\ntemplate \\nvoid input(T &head, U &...tail) {\\n _input(head);\\n input(tail...);\\n}\\ntemplate \\nvoid _print(const T &x) {\\n cout << x;\\n}\\nvoid _print(const int &x) { printf(\\\"%d\\\", x); }\\nvoid _print(const int64_t &x) { printf(\\\"%\\\" PRId64, x); }\\nvoid _print(const double &x) { printf(\\\"%.16f\\\", x); }\\nvoid _print(const char &x) { putchar(x); }\\nvoid _print(const char *x) { printf(\\\"%s\\\", x); }\\ntemplate \\nvoid _print(const vector &x) {\\n for (auto i = cbegin(x); i != cend(x); _print(*i++))\\n if (i != cbegin(x)) putchar(' ');\\n}\\nvoid print() {}\\ntemplate \\nvoid print(const T &head, const U &...tail) {\\n _print(head);\\n putchar(sizeof...(tail) ? ' ' : '\\\\n');\\n print(tail...);\\n}\\ntemplate >\\nvoid sort_unique(vector &v, F f = F()) {\\n sort(begin(v), end(v), f);\\n v.resize(unique(begin(v), end(v)) - begin(v));\\n}\\ntemplate \\ninline T get_bit(T x, int i) {\\n return (x >> i) & 1;\\n}\\ntemplate \\ninline bool chkmax(T &a, const T &b) {\\n return b > a ? a = b, true : false;\\n}\\ntemplate \\ninline bool chkmin(T &a, const T &b) {\\n return b < a ? a = b, true : false;\\n}\\ntemplate \\nusing MaxHeap = priority_queue;\\ntemplate \\nusing MinHeap = priority_queue, greater>;\\nconst int MAX = 100005;\\nint n, u;\\nint a[MAX];\\nvoid main() {\\n input(n, u);\\n for (int i = 0; i < int(n); ++i) input(a[i]);\\n double ans = -1e+100;\\n for (int i = 0; i < int(n); ++i) {\\n int k = int(prev(lower_bound(a + i, a + n, a[i] + u + 1)) - a);\\n if (k - i < 2) continue;\\n chkmax(ans, double(a[k] - a[i + 1]) \\/ double(a[k] - a[i]));\\n ...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You had n positive integers a_1, a_2, ..., a_n arranged in a circle. For each pair of neighboring numbers (a_1 and a_2, a_2 and a_3, ..., a_{n - 1} and a_n, and a_n and a_1), you wrote down: are the numbers in the pair equal or not.\\n\\nUnfortunately, you've lost a piece of paper with the array a. Moreover, you are afraid that even information about equality of neighboring elements may be inconsistent. So, you are wondering: is there any array a which is consistent with information you have about equality or non-equality of corresponding pairs?\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases. Next t cases follow.\\n\\nThe first and only line of each test case contains a non-empty string s consisting of characters E and\\/or N. The length of s is equal to the size of array n and 2 \u2264 n \u2264 50. For each i from 1 to n: \\n\\n * if s_i = E then a_i is equal to a_{i + 1} (a_n = a_1 for i = n); \\n * if s_i = N then a_i is not equal to a_{i + 1} (a_n \u2260 a_1 for i = n). \\n\\nOutput\\n\\nFor each test case, print YES if it's possible to choose array a that are consistent with information from s you know. Otherwise, print NO.\\n\\nIt can be proved, that if there exists some array a, then there exists an array a of positive integers with values less or equal to 10^9.\\n\\nExample\\n\\nInput\\n\\n\\n4\\nEEE\\nEN\\nENNEENE\\nNENN\\n\\n\\nOutput\\n\\n\\nYES\\nNO\\nYES\\nYES\\n\\nNote\\n\\nIn the first test case, you can choose, for example, a_1 = a_2 = a_3 = 5.\\n\\nIn the second test case, there is no array a, since, according to s_1, a_1 is equal to a_2, but, according to s_2, a_2 is not equal to a_1.\\n\\nIn the third test case, you can, for example, choose array a = [20, 20, 4, 50, 50, 50, 20].\\n\\nIn the fourth test case, you can, for example, choose a = [1, 3, 3, 7].\\nThe above is tricky. Write me a correct solution in JAVA.\",\"targets\":\"import java.util.Scanner;\\nimport java.util.List;\\npublic class t1 {\\n public static void main(String[] args) {\\n Scanner in = new Scanner(System.in);\\n var n=in.nextInt();\\n for (var i=0; i1 && k==1){\\n System.out.println(\\\"NO\\\");\\n }\\n else System.out.println(\\\"YES\\\");\\n\\n }\\n }\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"n towns are arranged in a circle sequentially. The towns are numbered from 1 to n in clockwise order. In the i-th town, there lives a singer with a repertoire of a_i minutes for each i \u2208 [1, n].\\n\\nEach singer visited all n towns in clockwise order, starting with the town he lives in, and gave exactly one concert in each town. In addition, in each town, the i-th singer got inspired and came up with a song that lasts a_i minutes. The song was added to his repertoire so that he could perform it in the rest of the cities.\\n\\nHence, for the i-th singer, the concert in the i-th town will last a_i minutes, in the (i + 1)-th town the concert will last 2 \u22c5 a_i minutes, ..., in the ((i + k) mod n + 1)-th town the duration of the concert will be (k + 2) \u22c5 a_i, ..., in the town ((i + n - 2) mod n + 1) \u2014 n \u22c5 a_i minutes.\\n\\nYou are given an array of b integer numbers, where b_i is the total duration of concerts in the i-th town. Reconstruct any correct sequence of positive integers a or say that it is impossible.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10^3) \u2014 the number of test cases. Then the test cases follow.\\n\\nEach test case consists of two lines. The first line contains a single integer n (1 \u2264 n \u2264 4 \u22c5 10^4) \u2014 the number of cities. The second line contains n integers b_1, b_2, ..., b_n (1 \u2264 b_i \u2264 10^{9}) \u2014 the total duration of concerts in i-th city.\\n\\nThe sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, print the answer as follows:\\n\\nIf there is no suitable sequence a, print NO. Otherwise, on the first line print YES, on the next line print the sequence a_1, a_2, ..., a_n of n integers, where a_i (1 \u2264 a_i \u2264 10^{9}) is the initial duration of repertoire of the i-th singer. If there are multiple answers, print any of them.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n3\\n12 16 14\\n1\\n1\\n3\\n1 2 3\\n6\\n81 75 75 93 93 87\\n\\n\\nOutput\\n\\n\\nYES\\n3 1 3 \\nYES\\n1 \\nNO\\nYES\\n5 5 4 1 4 5 \\n\\nNote\\n\\nLet's consider the 1-st test case of the example:\\n\\n 1. the 1-st singer in the 1-st city will give a concert for 3 minutes, in the 2-nd \u2014...\\nSolve the task in JAVA.\",\"targets\":\"import java.util.*;\\nimport java.io.*;\\n\\n\\/\\/\\/\\/***************************************************************************\\n \\/* public class E_Gardener_and_Tree implements Runnable{\\n\\n public static void main(String[] args) throws Exception {\\n new Thread(null, new E_Gardener_and_Tree(), \\\"E_Gardener_and_Tree\\\", 1<<28).start();\\n }\\n public void run(){\\n WRITE YOUR CODE HERE!!!!\\n JUST WRITE EVERYTHING HERE WHICH YOU WRITE IN MAIN!!!\\n }\\n\\n }\\n*\\/\\n\\/\\/\\/\\/\\/**************************************************************************\\n\\n\\npublic class E_Singers_Tour{\\n public static void main(String[] args) {\\n FastScanner s= new FastScanner();\\n \\/\\/PrintWriter out=new PrintWriter(System.out);\\n \\/\\/end of program\\n \\/\\/out.println(answer);\\n \\/\\/out.close();\\n StringBuilder res = new StringBuilder();\\n int t=s.nextInt();\\n int p=0;\\n while(p\\nusing namespace std;\\nconst long long mod = 1e9 + 7;\\nconst long long m1 = 1000000123;\\nconst long long m2 = 1000000321;\\ninline long long modMul(long long a, long long b) {\\n return ((a % mod) * (b % mod)) % mod;\\n}\\ninline long long modAdd(long long a, long long b) {\\n return ((a % mod) + (b % mod)) % mod;\\n}\\ninline long long modPow(long long b, long long p) {\\n long long r = 1;\\n while (p) {\\n if (p & 1) r = modMul(r, b);\\n b = modMul(b, b);\\n p >>= 1;\\n }\\n return r;\\n}\\ninline long long modInverse(long long a) { return modPow(a, mod - 2); }\\ninline long long modDiv(long long a, long long b) {\\n return modMul(a, modInverse(b));\\n}\\nlong long const maxn = 1000000 + 1;\\nlong long fact[1000006];\\nlong long inv[1000006];\\nlong long gcd(long long a, long long b) {\\n if (b == 0) {\\n return a;\\n }\\n return gcd(b, a % b);\\n}\\nbool comp(long long a, long long b) { return a > b; }\\nlong long power(long long a, long long n) {\\n long long res = 1;\\n while (n) {\\n if (n % 2 == 0) {\\n a = ((a) * (a));\\n n = n \\/ 2;\\n } else {\\n n--;\\n res = ((a) * (res));\\n }\\n }\\n return res;\\n}\\nvoid solve() {\\n long long n;\\n cin >> n;\\n long long a = 0;\\n long long b = 0;\\n if (n % 3 == 0) {\\n long long x = n \\/ 3;\\n cout << x << \\\" \\\" << x << \\\"\\\\n\\\";\\n } else {\\n long long r = n % 3;\\n a = n \\/ 3;\\n b = n \\/ 3;\\n if (r == 2) {\\n b++;\\n } else {\\n a++;\\n }\\n cout << a << \\\" \\\";\\n ;\\n cout << b << \\\"\\\\n\\\";\\n ;\\n }\\n}\\nint32_t main() {\\n ios::sync_with_stdio(false);\\n cin.tie(NULL);\\n long long test;\\n test = 1;\\n cin >> test;\\n while (test--) {\\n solve();\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nPetya recently found a game \\\"Choose a Square\\\". In this game, there are n points numbered from 1 to n on an infinite field. The i-th point has coordinates (x_i, y_i) and cost c_i.\\n\\nYou have to choose a square such that its sides are parallel to coordinate axes, the lower left and upper right corners belong to the line y = x, and all corners have integer coordinates.\\n\\nThe score you get is the sum of costs of the points covered by the selected square minus the length of the side of the square. Note that the length of the side can be zero.\\n\\nPetya asks you to calculate the maximum possible score in the game that can be achieved by placing exactly one square.\\n\\nInput\\n\\nThe first line of the input contains one integer n (1 \u2264 n \u2264 5 \u22c5 10^5) \u2014 the number of points on the field.\\n\\nEach of the following n lines contains three integers x_i, y_i, c_i (0 \u2264 x_i, y_i \u2264 10^9, -10^6 \u2264 c_i \u2264 10^6) \u2014 coordinates of the i-th point and its cost, respectively.\\n\\nOutput\\n\\nIn the first line print the maximum score Petya can achieve.\\n\\nIn the second line print four integers x_1, y_1, x_2, y_2 (0 \u2264 x_1, y_1, x_2, y_2 \u2264 2 \u22c5 10^9, x_1 = y_1, x_2 = y_2, x_1 \u2264 x_2) separated by spaces \u2014 the coordinates of the lower left and upper right corners of the square which Petya has to select in order to achieve the maximum score.\\n\\nExamples\\n\\nInput\\n\\n\\n6\\n0 0 2\\n1 0 -5\\n1 1 3\\n2 3 4\\n1 4 -4\\n3 1 -1\\n\\n\\nOutput\\n\\n\\n4\\n1 1 3 3\\n\\n\\nInput\\n\\n\\n5\\n3 3 0\\n3 3 -3\\n0 2 -1\\n3 1 3\\n0 0 -2\\n\\n\\nOutput\\n\\n\\n0\\n1 1 1 1\\n\\nNote\\n\\nThe field corresponding to the first example: \",\"targets\":\"#include \\nusing namespace std;\\nusing LL = long long;\\nusing PLI = pair;\\nconst LL INF = 1e18;\\nclass SegmentTree {\\n int sz;\\n vector tree;\\n vector lazy;\\n void split(int node) {\\n tree[2 * node].first += lazy[node];\\n lazy[2 * node] += lazy[node];\\n tree[2 * node + 1].first += lazy[node];\\n lazy[2 * node + 1] += lazy[node];\\n lazy[node] = 0;\\n }\\n void merge(int node) { tree[node] = max(tree[2 * node], tree[2 * node + 1]); }\\n\\n public:\\n SegmentTree(int n) {\\n for (sz = 1; sz < n; sz <<= 1)\\n ;\\n tree.resize(2 * sz);\\n for (int i = 0; i < sz; i++) {\\n tree[sz + i].second = i;\\n }\\n for (int i = sz - 1; i >= 1; i--) {\\n merge(i);\\n }\\n lazy.resize(2 * sz, 0);\\n }\\n void update(int l, int r, LL delta, int node = 1, int x = 0, int y = -1) {\\n if (y == -1) y = sz;\\n if (r <= x || l >= y) return;\\n if (l <= x && y <= r) {\\n tree[node].first += delta;\\n lazy[node] += delta;\\n return;\\n }\\n split(node);\\n update(l, r, delta, 2 * node, x, (x + y) \\/ 2);\\n update(l, r, delta, 2 * node + 1, (x + y) \\/ 2, y);\\n merge(node);\\n }\\n PLI query(int l, int r, int node = 1, int x = 0, int y = -1) {\\n if (y == -1) y = sz;\\n if (r <= x || l >= y) return {-INF, -1};\\n if (l <= x && y <= r) return tree[node];\\n return max(query(l, r, 2 * node, x, (x + y) \\/ 2),\\n query(l, r, 2 * node + 1, (x + y) \\/ 2, y));\\n }\\n};\\nint main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n int n;\\n cin >> n;\\n vector>> pts;\\n vector ys;\\n for (int i = 0; i < n; i++) {\\n int x, y, c;\\n cin >> x >> y >> c;\\n if (x > y) swap(x, y);\\n pts.emplace_back(x, make_pair(y, c));\\n ys.push_back(y);\\n ;\\n }\\n SegmentTree tree(n);\\n sort(ys.begin(), ys.end());\\n ys.resize(unique(ys.begin(), ys.end()) - ys.begin());\\n map idy;\\n int m = 0;\\n for (int y : ys) {\\n idy[y] = m++;\\n tree.update(idy[y], idy[y] + 1, -y);\\n }\\n sort(pts.rbegin(), pts.rend());\\n const int MAXC = 2e9;\\n pair\\nconst long long mod = 1e9 + 7;\\nconst long long N = 2e5 + 5;\\nconst long long MAXN = 10000001;\\nlong long spf[MAXN];\\nlong long fact[N], invfact[N];\\nusing namespace std;\\nbool is_prime(long long n) {\\n if (n == 1) {\\n return false;\\n }\\n long long i = 2;\\n while (i * i <= n) {\\n if (n % i == 0) {\\n return false;\\n }\\n i += 1;\\n }\\n return true;\\n}\\nlong long pow(long long a, long long b, long long m) {\\n long long ans = 1;\\n while (b) {\\n if (b & 1) ans = (ans * a) % m;\\n b \\/= 2;\\n a = (a * a) % m;\\n }\\n return ans;\\n}\\nlong long modinv(long long k) { return pow(k, mod - 2, mod); }\\nvoid precompute() {\\n fact[0] = fact[1] = 1;\\n for (long long i = 2; i < N; i++) {\\n fact[i] = fact[i - 1] * i;\\n fact[i] %= mod;\\n }\\n invfact[N - 1] = modinv(fact[N - 1]);\\n for (long long i = N - 2; i >= 0; i--) {\\n invfact[i] = invfact[i + 1] * (i + 1);\\n invfact[i] %= mod;\\n }\\n}\\nlong long nCr(long long x, long long y) {\\n if (y > x) return 0;\\n long long num = fact[x];\\n num *= invfact[y];\\n num %= mod;\\n num *= invfact[x - y];\\n num %= mod;\\n return num;\\n}\\nbool sortbysec(const pair &a,\\n const pair &b) {\\n return (a.second < b.second);\\n}\\nstring toBinary(long long n) {\\n string r;\\n while (n != 0) {\\n r = (n % 2 == 0 ? \\\"0\\\" : \\\"1\\\") + r;\\n n \\/= 2;\\n }\\n return r;\\n}\\nvoid sieve() {\\n spf[1] = 1;\\n for (long long i = 2; i < MAXN; i++) spf[i] = i;\\n for (long long i = 4; i < MAXN; i += 2) spf[i] = 2;\\n for (long long i = 3; i * i < MAXN; i++) {\\n if (spf[i] == i) {\\n for (long long j = i * i; j < MAXN; j += i)\\n if (spf[j] == j) spf[j] = i;\\n }\\n }\\n}\\nlong long getFactorization(long long x) {\\n long long ret = 0;\\n while (x != 1) {\\n ret++;\\n x = x \\/ spf[x];\\n }\\n return ret;\\n}\\nvoid solve(long long in) {\\n long long n;\\n cin >> n;\\n vector a(n);\\n multimap m;\\n multiset> s;\\n long long sum = 0;\\n long long zc = 0;\\n for (long long i = 0; i < n; i++) {\\n ...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"'Twas the night before Christmas, and Santa's frantically setting up his new Christmas tree! There are n nodes in the tree, connected by n-1 edges. On each edge of the tree, there's a set of Christmas lights, which can be represented by an integer in binary representation.\\n\\n\\n\\nHe has m elves come over and admire his tree. Each elf is assigned two nodes, a and b, and that elf looks at all lights on the simple path between the two nodes. After this, the elf's favorite number becomes the [bitwise XOR](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#XOR) of the values of the lights on the edges in that path.\\n\\nHowever, the North Pole has been recovering from a nasty bout of flu. Because of this, Santa forgot some of the configurations of lights he had put on the tree, and he has already left the North Pole! Fortunately, the elves came to the rescue, and each one told Santa what pair of nodes he was assigned (a_i, b_i), as well as the parity of the number of set bits in his favorite number. In other words, he remembers whether the number of 1's when his favorite number is written in binary is odd or even.\\n\\nHelp Santa determine if it's possible that the memories are consistent, and if it is, remember what his tree looked like, and maybe you'll go down in history!\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 2 \u22c5 10^4) \u2014 the number of test cases. Then t cases follow.\\n\\nThe first line of each test case contains two integers, n and m (2 \u2264 n \u2264 2 \u22c5 10^5; 1 \u2264 m \u2264 2 \u22c5 10^5) \u2014 the size of tree and the number of elves respectively.\\n\\nThe next n-1 lines of each test case each contains three integers, x, y, and v (1 \u2264 x, y \u2264 n; -1 \u2264 v < 2^{30}) \u2014 meaning that there's an edge between nodes x and y. If \\n\\n * v = -1: Santa doesn't remember what the set of lights were on for this edge. \\n * v \u2265 0: The set of lights on the edge is v. \\n\\n\\n\\nThe next m lines of each test case each contains three integers, a, b, and p (1 \u2264 a, b \u2264 n; a \u2260 b; 0 \u2264 p \u2264 1) \u2014 the nodes that the elf was assigned to, and the parity of the number of...\\nSolve the task in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nlong long i, i1, j, k, k1, t, n, m, res, flag[10], a, b;\\nlong long c[200010], w, dist[200010];\\nbool vis[200010];\\nvector> adj[200010], gr[200010];\\nvoid dfs(long long s) {\\n vis[s] = true;\\n for (auto [u, w] : adj[s]) {\\n if (vis[u]) continue;\\n if (w != -1) {\\n w = __builtin_popcountll(w) % 2;\\n gr[s].push_back({u, w});\\n gr[u].push_back({s, w});\\n }\\n dist[u] = dist[s] + 1;\\n dfs(u);\\n }\\n}\\nvoid bip(long long s) {\\n vis[s] = true;\\n for (auto [u, w] : gr[s]) {\\n if (vis[u] == true && c[u] != (c[s] ^ w)) {\\n flag[0] = 0;\\n break;\\n }\\n if (vis[u]) continue;\\n c[u] = c[s] ^ w;\\n bip(u);\\n }\\n}\\nvoid fns(long long s) {\\n vis[s] = true;\\n for (auto &u : adj[s]) {\\n if (vis[u[0]]) continue;\\n if (u[1] == -1) u[1] = c[u[0]] ^ c[s];\\n fns(u[0]);\\n }\\n}\\nvoid rst() {\\n long long i;\\n flag[0] = 1;\\n for (i = 1; i <= n; i++) {\\n adj[i].clear();\\n gr[i].clear();\\n vis[i] = false;\\n }\\n}\\nint main() {\\n ios::sync_with_stdio(0);\\n cin.tie(0);\\n cin >> t;\\n while (t--) {\\n cin >> n >> m;\\n rst();\\n for (i = 1; i <= n - 1; i++) {\\n cin >> a >> b >> w;\\n adj[a].push_back({b, w});\\n adj[b].push_back({a, w});\\n }\\n for (i = 1; i <= m; i++) {\\n cin >> a >> b >> w;\\n gr[a].push_back({b, w});\\n gr[b].push_back({a, w});\\n }\\n dfs(1);\\n for (i = 1; i <= n; i++) vis[i] = false;\\n for (i = 1; i <= n; i++) {\\n if (vis[i]) continue;\\n bip(i);\\n }\\n if (flag[0] == 0) {\\n cout << \\\"NO\\\"\\n << \\\"\\\\n\\\";\\n continue;\\n }\\n for (i = 1; i <= n; i++) vis[i] = false;\\n fns(1);\\n cout << \\\"YES\\\"\\n << \\\"\\\\n\\\";\\n for (i = 1; i <= n; i++) {\\n for (auto [u, w] : adj[i]) {\\n if (dist[u] < dist[i]) continue;\\n cout << i << ' ' << u << ' ' << w << \\\"\\\\n\\\";\\n }\\n }\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CQXYM wants to create a connected undirected graph with n nodes and m edges, and the diameter of the graph must be strictly less than k-1. Also, CQXYM doesn't want a graph that contains self-loops or multiple edges (i.e. each edge connects two different vertices and between each pair of vertices there is at most one edge).\\n\\nThe diameter of a graph is the maximum distance between any two nodes.\\n\\nThe distance between two nodes is the minimum number of the edges on the path which endpoints are the two nodes.\\n\\nCQXYM wonders whether it is possible to create such a graph.\\n\\nInput\\n\\nThe input consists of multiple test cases. \\n\\nThe first line contains an integer t (1 \u2264 t \u2264 10^5) \u2014 the number of test cases. The description of the test cases follows.\\n\\nOnly one line of each test case contains three integers n(1 \u2264 n \u2264 10^9), m, k (0 \u2264 m,k \u2264 10^9).\\n\\nOutput\\n\\nFor each test case, print YES if it is possible to create the graph, or print NO if it is impossible. You can print each letter in any case (upper or lower).\\n\\nExample\\n\\nInput\\n\\n\\n5\\n1 0 3\\n4 5 3\\n4 6 3\\n5 4 1\\n2 1 1\\n\\n\\nOutput\\n\\n\\nYES\\nNO\\nYES\\nNO\\nNO\\n\\nNote\\n\\nIn the first test case, the graph's diameter equal to 0.\\n\\nIn the second test case, the graph's diameter can only be 2.\\n\\nIn the third test case, the graph's diameter can only be 1.\\nSolve the task in JAVA.\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.FileReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.util.StringTokenizer;\\nimport java.util.Arrays;\\nimport java.util.Random;\\nimport java.io.FileWriter;\\nimport java.io.PrintWriter;\\n\\/*\\n Solution Created: 14:02:15 30\\/09\\/2021\\n Custom Competitive programming helper.\\n*\\/\\npublic class Main {\\n\\tpublic static void solve() {\\n\\t\\tlong n = in.nextInt(), m = in.nextInt(), k = in.nextInt();\\n\\t\\tlong maxEdges = n*(n-1)\\/2, minEdges = n-1, maxD = k-2;\\n\\t\\tboolean can = (minEdges<=m && m <= maxEdges);\\n\\t\\tif(!can) {\\n\\t\\t\\tout.yesNo(false);\\n\\t\\t\\treturn;\\n\\t\\t}\\n\\t\\tlong bestD = m==maxEdges?1:2;\\n\\t\\tif(n==1) bestD = 0;\\n\\t\\tcan &= bestD<=maxD;\\n\\t\\tout.yesNo(can);\\n\\t}\\n\\t\\n\\tpublic static void main(String[] args) {\\n\\t\\tin = new Reader();\\n\\t\\tout = new Writer();\\n\\t\\tint t = in.nextInt();\\n\\t\\twhile(t-->0) solve();\\n\\t\\tout.exit();\\n\\t}\\n\\tstatic Reader in; static Writer out;\\n\\nstatic class Reader {\\n\\tstatic BufferedReader br;\\n\\tstatic StringTokenizer st;\\n\\t\\n\\tpublic Reader() {\\n\\t\\tthis.br = new BufferedReader(new InputStreamReader(System.in));\\n\\t}\\n\\t\\n\\tpublic Reader(String f){\\n\\t\\ttry {\\n\\t\\t\\tthis.br = new BufferedReader(new FileReader(f));\\n\\t\\t} catch (IOException e) {\\n\\t\\t\\te.printStackTrace();\\n\\t\\t}\\n\\t}\\n\\t\\n\\tpublic int[] na(int n) {\\n\\t\\tint[] a = new int[n];\\n\\t\\tfor (int i = 0; i < n; i++) a[i] = nextInt();\\n\\t\\treturn a;\\n\\t}\\n\\n\\tpublic double[] nd(int n) {\\n\\t\\tdouble[] a = new double[n];\\n\\t\\tfor (int i = 0; i < n; i++) a[i] = nextDouble();\\n\\t\\treturn a;\\n\\t}\\n\\t\\n\\tpublic long[] nl(int n) {\\n\\t\\tlong[] a = new long[n];\\n\\t\\tfor (int i = 0; i < n; i++) a[i] = nextLong();\\n\\t\\treturn a;\\n\\t}\\n\\n\\tpublic char[] nca() {\\n\\t\\treturn next().toCharArray();\\n\\t}\\n\\n\\tpublic String[] ns(int n) {\\n\\t\\tString[] a = new String[n];\\n\\t\\tfor (int i = 0; i < n; i++) a[i] = next();\\n\\t\\treturn a;\\n\\t}\\n\\n\\tpublic int nextInt() {\\n\\t\\tensureNext();\\n\\t\\treturn Integer.parseInt(st.nextToken());\\n\\t}\\n\\n\\tpublic double nextDouble() {\\n\\t\\tensureNext();\\n\\t\\treturn Double.parseDouble(st.nextToken());\\n\\t}\\n\\n\\tpublic Long nextLong() {\\n\\t\\tensureNext();\\n\\t\\treturn Long.parseLong(st.nextToken());\\n\\t}\\n\\n\\tpublic String...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Omkar is hosting tours of his country, Omkarland! There are n cities in Omkarland, and, rather curiously, there are exactly n-1 bidirectional roads connecting the cities to each other. It is guaranteed that you can reach any city from any other city through the road network.\\n\\nEvery city has an enjoyment value e. Each road has a capacity c, denoting the maximum number of vehicles that can be on it, and an associated toll t. However, the toll system in Omkarland has an interesting quirk: if a vehicle travels on multiple roads on a single journey, they pay only the highest toll of any single road on which they traveled. (In other words, they pay max t over all the roads on which they traveled.) If a vehicle traverses no roads, they pay 0 toll.\\n\\nOmkar has decided to host q tour groups. Each tour group consists of v vehicles starting at city x. (Keep in mind that a tour group with v vehicles can travel only on roads with capacity \u2265 v.) Being the tour organizer, Omkar wants his groups to have as much fun as they possibly can, but also must reimburse his groups for the tolls that they have to pay. Thus, for each tour group, Omkar wants to know two things: first, what is the enjoyment value of the city y with maximum enjoyment value that the tour group can reach from their starting city, and second, how much per vehicle will Omkar have to pay to reimburse the entire group for their trip from x to y? (This trip from x to y will always be on the shortest path from x to y.)\\n\\nIn the case that there are multiple reachable cities with the maximum enjoyment value, Omkar will let his tour group choose which one they want to go to. Therefore, to prepare for all possible scenarios, he wants to know the amount of money per vehicle that he needs to guarantee that he can reimburse the group regardless of which city they choose.\\n\\nInput\\n\\nThe first line contains two integers n and q (2 \u2264 n \u2264 2 \u22c5 10^5, 1 \u2264 q \u2264 2 \u22c5 10^5), representing the number of cities and the number of groups, respectively.\\n\\nThe next line contains n integers e_1,...\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\n#pragma GCC optimize(2, 3, \\\"Ofast\\\")\\nusing namespace std;\\ntemplate \\nvoid ckmin(T1 &a, T2 b) {\\n if (a > b) a = b;\\n}\\ntemplate \\nvoid ckmax(T1 &a, T2 b) {\\n if (a < b) a = b;\\n}\\nint read() {\\n int x = 0, f = 0;\\n char ch = getchar();\\n while (!isdigit(ch)) f |= ch == '-', ch = getchar();\\n while (isdigit(ch)) x = 10 * x + ch - '0', ch = getchar();\\n return f ? -x : x;\\n}\\ntemplate \\nvoid print(T x) {\\n if (x < 0) putchar('-'), x = -x;\\n if (x >= 10) print(x \\/ 10);\\n putchar(x % 10 + '0');\\n}\\ntemplate \\nvoid print(T x, char let) {\\n print(x), putchar(let);\\n}\\nconst int N = 200005;\\nstruct Edge {\\n int to, nxt, val;\\n} edge[N << 1];\\nint head[N], tot;\\nvoid add(int u, int v, int val) {\\n edge[++tot] = {v, head[u], val};\\n head[u] = tot;\\n}\\nint a[N], ans1[N], ans2[N];\\nint _u[N], _v[N], _c[N], _t[N], ide[N];\\nint _qc[N], _qx[N], idq[N];\\nint n, q;\\nint jp[N][20], mx[N][20], dep[N];\\nvoid dfs1(int u, int fa) {\\n dep[u] = dep[fa] + 1;\\n for (int i = 1; i < 20; i++) {\\n jp[u][i] = jp[jp[u][i - 1]][i - 1];\\n mx[u][i] = max(mx[u][i - 1], mx[jp[u][i - 1]][i - 1]);\\n }\\n for (int i = head[u]; i; i = edge[i].nxt) {\\n int v = edge[i].to;\\n if (v == fa) continue;\\n jp[v][0] = u, mx[v][0] = edge[i].val;\\n dfs1(v, u);\\n }\\n}\\nint query(int u, int v) {\\n if (dep[u] < dep[v]) swap(u, v);\\n int k = 0;\\n for (int i = 19; i >= 0; i--) {\\n if (dep[jp[u][i]] >= dep[v]) ckmax(k, mx[u][i]), u = jp[u][i];\\n }\\n if (u == v) return k;\\n for (int i = 19; i >= 0; i--) {\\n if (jp[u][i] != jp[v][i]) {\\n ckmax(k, max(mx[u][i], mx[v][i]));\\n u = jp[u][i];\\n v = jp[v][i];\\n }\\n }\\n return max(k, max(mx[u][0], mx[v][0]));\\n}\\nint f[N], dot[N], maxx[N];\\nint find(int x) { return f[x] == x ? x : f[x] = find(f[x]); }\\nvoid merge(int x, int y) {\\n x = find(x), y = find(y);\\n if (x == y) return;\\n f[x] = y;\\n if (a[dot[x]] > a[dot[y]]) {\\n dot[y] = dot[x];\\n maxx[y] = maxx[x];\\n } else if (a[dot[x]] == a[dot[y]]) {\\n ckmax(maxx[y],...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Morning desert sun horizon\\n\\nRise above the sands of time...\\n\\nFates Warning, \\\"Exodus\\\"\\n\\nAfter crossing the Windswept Wastes, Ori has finally reached the Windtorn Ruins to find the Heart of the Forest! However, the ancient repository containing this priceless Willow light did not want to open!\\n\\nOri was taken aback, but the Voice of the Forest explained to him that the cunning Gorleks had decided to add protection to the repository.\\n\\nThe Gorleks were very fond of the \\\"string expansion\\\" operation. They were also very fond of increasing subsequences.\\n\\nSuppose a string s_1s_2s_3 \u2026 s_n is given. Then its \\\"expansion\\\" is defined as the sequence of strings s_1, s_1 s_2, ..., s_1 s_2 \u2026 s_n, s_2, s_2 s_3, ..., s_2 s_3 \u2026 s_n, s_3, s_3 s_4, ..., s_{n-1} s_n, s_n. For example, the \\\"expansion\\\" the string 'abcd' will be the following sequence of strings: 'a', 'ab', 'abc', 'abcd', 'b', 'bc', 'bcd', 'c', 'cd', 'd'. \\n\\nTo open the ancient repository, Ori must find the size of the largest increasing subsequence of the \\\"expansion\\\" of the string s. Here, strings are compared lexicographically.\\n\\nHelp Ori with this task!\\n\\nA string a is lexicographically smaller than a string b if and only if one of the following holds:\\n\\n * a is a prefix of b, but a \u2260 b;\\n * in the first position where a and b differ, the string a has a letter that appears earlier in the alphabet than the corresponding letter in b.\\n\\nInput\\n\\nEach test contains multiple test cases.\\n\\nThe first line contains one positive integer t (1 \u2264 t \u2264 10^3), denoting the number of test cases. Description of the test cases follows.\\n\\nThe first line of each test case contains one positive integer n (1 \u2264 n \u2264 5000) \u2014 length of the string.\\n\\nThe second line of each test case contains a non-empty string of length n, which consists of lowercase latin letters.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 10^4.\\n\\nOutput\\n\\nFor every test case print one non-negative integer \u2014 the answer to the...\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nconst int INF = 0x3f3f3f3f;\\nconst long long INF64 = 0x3f3f3f3f3f3f3f3f;\\nconst double PI = acos(-1);\\ntypedef std::priority_queue, greater> small_pq;\\ntypedef std::priority_queue, less> big_pq;\\ntemplate \\nostream &operator<<(ostream &os, const pair &p) {\\n return os << '(' << p.first << \\\", \\\" << p.second << ')';\\n}\\ntemplate ::value,\\n typename T_container::value_type>::type>\\nostream &operator<<(ostream &os, const T_container &v) {\\n os << '{';\\n string sep;\\n for (const T &x : v) os << sep << x, sep = \\\", \\\";\\n return os << '}';\\n}\\nvoid dbg_out() {}\\ntemplate \\nvoid dbg_out(Head H, Tail... T) {\\n cerr << \\\" \\\" << H;\\n if (sizeof...(T) > 0) cerr << \\\" ,\\\";\\n dbg_out(T...);\\n}\\nvoid dbg_name(const string &s) {\\n string ss = s;\\n replace(ss.begin(), ss.end(), ',', ' ');\\n cerr << \\\" ( \\\" << ss << \\\" ) \\\";\\n}\\ntemplate \\ninline void setmin(T &a, const T &b) {\\n if (b < a) a = b;\\n}\\ntemplate \\ninline void setmax(T &a, const T &b) {\\n if (b > a) a = b;\\n}\\nstruct custom_hash {\\n static uint64_t splitmix64(uint64_t x) {\\n x += 0x9e3779b97f4a7c15;\\n x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;\\n x = (x ^ (x >> 27)) * 0x94d049bb133111eb;\\n return x ^ (x >> 31);\\n }\\n size_t operator()(uint64_t x) const {\\n static const uint64_t FIXED_RANDOM =\\n chrono::steady_clock::now().time_since_epoch().count();\\n return splitmix64(x + FIXED_RANDOM);\\n }\\n};\\nunordered_map safe_map;\\nmt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());\\nmt19937_64 rnd64(chrono::steady_clock::now().time_since_epoch().count());\\nconst int MOD = 998244353;\\nint mul(int x, int y) { return 1ll * x * y % MOD; }\\nint add(int x, int y) { return ((x + y) % MOD + MOD) % MOD; }\\nint sub(int x, int y) {...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Polycarp likes squares and cubes of positive integers. Here is the beginning of the sequence of numbers he likes: 1, 4, 8, 9, ....\\n\\nFor a given number n, count the number of integers from 1 to n that Polycarp likes. In other words, find the number of such x that x is a square of a positive integer number or a cube of a positive integer number (or both a square and a cube simultaneously).\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 20) \u2014 the number of test cases.\\n\\nThen t lines contain the test cases, one per line. Each of the lines contains one integer n (1 \u2264 n \u2264 10^9).\\n\\nOutput\\n\\nFor each test case, print the answer you are looking for \u2014 the number of integers from 1 to n that Polycarp likes.\\n\\nExample\\n\\nInput\\n\\n\\n6\\n10\\n1\\n25\\n1000000000\\n999999999\\n500000000\\n\\n\\nOutput\\n\\n\\n4\\n1\\n6\\n32591\\n32590\\n23125\\nUsing python3 can you solve the prior task?\",\"targets\":\"import sys\\nimport math\\nimport itertools\\nimport functools\\nimport collections\\nimport operator\\nimport fileinput\\nimport copy\\nimport string\\n\\nORDA = 97 # a\\n\\n\\ndef ii(): return int(input())\\n\\n\\ndef mi(): return map(int, input().split())\\n\\n\\ndef li(): return list(map(int, input().split()))\\n\\n\\ndef lcm(a, b): return abs(a * b) \\/\\/ math.gcd(a, b)\\n\\n\\ndef revn(n): return str(n)[::-1]\\n\\n\\ndef dd(): return collections.defaultdict(int)\\n\\n\\ndef ddl(): return collections.defaultdict(list)\\n\\n\\ndef sieve(n):\\n if n < 2: return list()\\n prime = [True for _ in range(n + 1)]\\n p = 3\\n while p * p <= n:\\n if prime[p]:\\n for i in range(p * 2, n + 1, p):\\n prime[i] = False\\n p += 2\\n r = [2]\\n for p in range(3, n + 1, 2):\\n if prime[p]:\\n r.append(p)\\n return r\\n\\n\\ndef divs(n, start=2):\\n r = []\\n for i in range(start, int(math.sqrt(n) + 1)):\\n if (n % i == 0):\\n if (n \\/\\/ i == i):\\n r.append(i)\\n else:\\n r.extend([i, n \\/\\/ i])\\n return r\\n\\n\\ndef divn(n, primes):\\n divs_number = 1\\n for i in primes:\\n if n == 1:\\n return divs_number\\n t = 1\\n while n % i == 0:\\n t += 1\\n n \\/\\/= i\\n divs_number *= t\\n\\n\\ndef prime(n):\\n if n == 2: return True\\n if n % 2 == 0 or n <= 1: return False\\n sqr = int(math.sqrt(n)) + 1\\n for d in range(3, sqr, 2):\\n if n % d == 0: return False\\n return True\\n\\n\\ndef convn(number, base):\\n new_number = 0\\n while number > 0:\\n new_number += number % base\\n number \\/\\/= base\\n return new_number\\n\\n\\ndef cdiv(n, k): return n \\/\\/ k + (n % k != 0)\\n\\n\\ndef ispal(s):\\n for i in range(len(s) \\/\\/ 2 + 1):\\n if s[i] != s[-i - 1]:\\n return False\\n return True\\n\\n\\nfor _ in range(ii()):\\n n = ii()\\n ans = 0\\n i = 1\\n while i ** 2 <= n:\\n ans += 1\\n i += 1\\n i = 1\\n while i ** 3 <= n:\\n ans += 1\\n i += 1\\n i = 1\\n while i ** 6 <= n:\\n ans -= 1\\n i += 1\\n print(ans)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Ehab has an array a of length n. He has just enough free time to make a new array consisting of n copies of the old array, written back-to-back. What will be the length of the new array's longest increasing subsequence?\\n\\nA sequence a is a subsequence of an array b if a can be obtained from b by deletion of several (possibly, zero or all) elements. The longest increasing subsequence of an array is the longest subsequence such that its elements are ordered in strictly increasing order.\\n\\nInput\\n\\nThe first line contains an integer t \u2014 the number of test cases you need to solve. The description of the test cases follows.\\n\\nThe first line of each test case contains an integer n (1 \u2264 n \u2264 10^5) \u2014 the number of elements in the array a.\\n\\nThe second line contains n space-separated integers a_1, a_2, \u2026, a_{n} (1 \u2264 a_i \u2264 10^9) \u2014 the elements of the array a.\\n\\nThe sum of n across the test cases doesn't exceed 10^5.\\n\\nOutput\\n\\nFor each testcase, output the length of the longest increasing subsequence of a if you concatenate it to itself n times.\\n\\nExample\\n\\nInput\\n\\n\\n2\\n3\\n3 2 1\\n6\\n3 1 4 1 5 9\\n\\n\\nOutput\\n\\n\\n3\\n5\\n\\nNote\\n\\nIn the first sample, the new array is [3,2,1,3,2,1,3,2,1]. The longest increasing subsequence is marked in bold.\\n\\nIn the second sample, the longest increasing subsequence will be [1,3,4,5,9].\\nSolve the task in JAVA.\",\"targets\":\"import java.util.*;\\npublic class Solution\\n{\\n public static void main(String[] args) \\n {\\n Scanner sc=new Scanner(System.in);\\n int t=sc.nextInt();\\n for(int z=0;z0)\\n {\\n count++;\\n }\\n }\\n \\n System.out.println(count);\\n \\n }\\n }\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"There is a city park represented as a tree with n attractions as its vertices and n - 1 rails as its edges. The i-th attraction has happiness value a_i.\\n\\nEach rail has a color. It is either black if t_i = 0, or white if t_i = 1. Black trains only operate on a black rail track, and white trains only operate on a white rail track. If you are previously on a black train and want to ride a white train, or you are previously on a white train and want to ride a black train, you need to use 1 ticket.\\n\\nThe path of a tour must be a simple path \u2014 it must not visit an attraction more than once. You do not need a ticket the first time you board a train. You only have k tickets, meaning you can only switch train types at most k times. In particular, you do not need a ticket to go through a path consisting of one rail color.\\n\\nDefine f(u, v) as the sum of happiness values of the attractions in the tour (u, v), which is a simple path that starts at the u-th attraction and ends at the v-th attraction. Find the sum of f(u,v) for all valid tours (u, v) (1 \u2264 u \u2264 v \u2264 n) that does not need more than k tickets, modulo 10^9 + 7.\\n\\nInput\\n\\nThe first line contains two integers n and k (2 \u2264 n \u2264 2 \u22c5 10^5, 0 \u2264 k \u2264 n-1) \u2014 the number of attractions in the city park and the number of tickets you have.\\n\\nThe second line contains n integers a_1, a_2,\u2026, a_n (0 \u2264 a_i \u2264 10^9) \u2014 the happiness value of each attraction.\\n\\nThe i-th of the next n - 1 lines contains three integers u_i, v_i, and t_i (1 \u2264 u_i, v_i \u2264 n, 0 \u2264 t_i \u2264 1) \u2014 an edge between vertices u_i and v_i with color t_i. The given edges form a tree.\\n\\nOutput\\n\\nOutput an integer denoting the total happiness value for all valid tours (u, v) (1 \u2264 u \u2264 v \u2264 n), modulo 10^9 + 7.\\n\\nExamples\\n\\nInput\\n\\n\\n5 0\\n1 3 2 6 4\\n1 2 1\\n1 4 0\\n3 2 1\\n2 5 0\\n\\n\\nOutput\\n\\n\\n45\\n\\n\\nInput\\n\\n\\n3 1\\n1 1 1\\n1 2 1\\n3 2 0\\n\\n\\nOutput\\n\\n\\n10\\\":\",\"targets\":\"#include \\nusing namespace std;\\nconst int N = 200000 + 9;\\nconst int P = 1000000000 + 7;\\nconst int inv2 = (P + 1) \\/ 2;\\ninline int add(int a, int b) { return a + b < P ? a + b : a + b - P; }\\ninline int sub(int a, int b) { return a - b < 0 ? a - b + P : a - b; }\\ninline int mul(int a, int b) { return (long long)a * b % P; }\\nint n, K, a[N], ans;\\nvector> G[N];\\nint rt, tot, msz, top, sz[N];\\nbool vis[N];\\nvoid dfs1(int u, int p) {\\n int _max = 0;\\n sz[u] = 1;\\n for (auto [v, w] : G[u])\\n if (!vis[v] && v != p) {\\n dfs1(v, u);\\n sz[u] += sz[v];\\n _max = max(_max, sz[v]);\\n }\\n _max = max(_max, tot - sz[u]);\\n if (_max < msz) {\\n msz = _max;\\n rt = u;\\n }\\n}\\nvector cnt[N], C[2], sum[N], S[2];\\nvoid dfs3(int u, int p, int c, int k, int ans) {\\n if (k > K) return;\\n cnt[top][k] = add(cnt[top][k], 1);\\n sum[top][k] = add(sum[top][k], ans);\\n for (auto [v, w] : G[u])\\n if (!vis[v] && v != p) {\\n dfs3(v, u, w, k + (c != w), add(ans, a[v]));\\n }\\n}\\nvoid dfs2(int u, int _tot) {\\n tot = _tot;\\n msz = tot + 1;\\n dfs1(u, 0);\\n vis[rt] = true;\\n int _sz = sz[rt];\\n C[0].resize(min(K + 1, _tot));\\n fill(C[0].begin(), C[0].end(), 0);\\n C[1].resize(min(K + 1, _tot));\\n fill(C[1].begin(), C[1].end(), 0);\\n S[0].resize(min(K + 1, _tot));\\n fill(S[0].begin(), S[0].end(), 0);\\n S[1].resize(min(K + 1, _tot));\\n fill(S[1].begin(), S[1].end(), 0);\\n for (auto [v, w] : G[rt])\\n if (!vis[v]) {\\n top = v;\\n cnt[v].resize(min(K + 1, sz[v] < _sz ? sz[v] : _tot - _sz));\\n fill(cnt[v].begin(), cnt[v].end(), 0);\\n sum[v].resize(min(K + 1, sz[v] < _sz ? sz[v] : _tot - _sz));\\n fill(sum[v].begin(), sum[v].end(), 0);\\n dfs3(v, rt, w, 0, a[v]);\\n for (int i = 0, ed = cnt[v].size(); i < ed; ++i) {\\n C[w][i] = add(C[w][i], cnt[v][i]);\\n S[w][i] = add(S[w][i], sum[v][i]);\\n }\\n }\\n ans = add(ans, a[rt]);\\n for (int i = 0, ed = C[0].size(); i < ed; ++i) {\\n ans = add(ans, add(mul(a[rt], C[0][i]), S[0][i]));\\n ans = add(ans, add(mul(a[rt],...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Chef likes to watch movies very much.A movie of his favorite actress has recently released and he wants to go to cinema hall with his friends to watch the movie.\\nBut he will book tickets for him and his friends only if he gets the seats in his desired block size. eg. if he has 9 friends, then he has to book 10 tickets, and wants the seats to be in a rectangular block to 2 X 5. i.e if Chef has to book n number of seats, then the block of seats he would want is p X q where p * q = n\\nYou are given the status of all the seats(booked or not) and you have tell the Chef the number of blocks of exact size, in which all the seats in the block are not booked, and the seat number of the top left corner of the block, so that Chef could chose one of the them.(The seat number of the seats is same as the indices of 2D matrix with base index 0)\\n.\\nIt might be possible that no such block of empty seats is available\\n\\n\\nInput\\n\\nThe first line contains the number of test cases ( 1 <= t <= 10).\\nFirst line of each test contains n and m( 1 <= n,m <= 1000) which is the size of cinema hall. Cinema hall contains (n X m) no. of seats. The next line contains by p and q separated by a space which tells the block size non-booked seats that Chef wants.\\nIt is followed by n lines where each line contains m characters. A booked seat is denoted by '.' and an available seat is denoted by '#' . \\n\\n\\nOutput\\n\\nThe first line of output of each test case should consist of the number of available blocks of empty seats( e ) i.e the number of blocks of p X q that have no booked seats.\\nIt should be followed by e number of lines where each line contains a and b (0 <= a < n , 0 <= b < m) denoting the top left corner of the block of size p X q having all seats non-booked. \\nExample\\nInput:\\n1\\n2 6\\n2 3\\n.####.\\n.#####\\nOutput:\\n2\\n0 1\\n0 2\\nSolve the task in PYTHON.\",\"targets\":\"import sys\\ntimes=input()\\nwhile times:\\n times-=1 \\n a,b=[int(x) for x in sys.stdin.readline().strip().split()]\\n c,d=[int(x) for x in sys.stdin.readline().strip().split()]\\n p=a\\n t=[]\\n while p:\\n p=p-1\\n l=list(sys.stdin.readline().strip())\\n t+=[l]\\n i=0\\n count=0\\n count2=[]\\n while i\\nusing namespace std;\\ntemplate \\nvoid chkMax(T &x, T y) {\\n if (y > x) x = y;\\n}\\ntemplate \\nvoid chkMin(T &x, T y) {\\n if (y < x) x = y;\\n}\\ntemplate \\nvoid inline read(T &x) {\\n int f = 1;\\n x = 0;\\n char s = getchar();\\n while (s < '0' || s > '9') {\\n if (s == '-') f = -1;\\n s = getchar();\\n }\\n while (s <= '9' && s >= '0') x = x * 10 + (s ^ 48), s = getchar();\\n x *= f;\\n}\\nconst int N = 2e5 + 5, L = 18;\\nint n, q, a[N], r1[N], r2[N], pre[N], dep[N], dfn[N], dfncnt, fa[N][L],\\n mx[N][L], sz[N];\\nstruct E {\\n int v, c, t;\\n};\\nstruct Ed {\\n int u, v, w;\\n bool operator<(const Ed &b) const { return w < b.w; }\\n} ed[N];\\nvector g[N];\\nstruct Q {\\n int v, x, id;\\n bool operator<(const Q &b) const { return v < b.v; }\\n} e[N];\\nvoid dfs(int u) {\\n dep[u] = dep[fa[u][0]] + 1;\\n dfn[u] = ++dfncnt;\\n pre[dfn[u]] = u;\\n for (int i = 1; i < L; i++) {\\n mx[u][i] = max(mx[u][i - 1], mx[fa[u][i - 1]][i - 1]);\\n fa[u][i] = fa[fa[u][i - 1]][i - 1];\\n }\\n sz[u] = 1;\\n for (E t : g[u]) {\\n int v = t.v;\\n if (v == fa[u][0]) continue;\\n mx[v][0] = t.t;\\n fa[v][0] = u;\\n dfs(v);\\n sz[u] += sz[v];\\n }\\n}\\nint inline lca(int x, int y) {\\n if (dep[x] < dep[y]) swap(x, y);\\n for (int i = L - 1; ~i; i--)\\n if (dep[x] - (1 << i) >= dep[y]) x = fa[x][i];\\n if (x == y) return x;\\n for (int i = L - 1; ~i; i--)\\n if (fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];\\n return x;\\n}\\nint inline qv(int x, int y) {\\n if (dep[x] < dep[y]) swap(x, y);\\n int res = 0;\\n for (int i = L - 1; ~i; i--)\\n if (dep[x] - (1 << i) >= dep[y]) chkMax(res, mx[x][i]), x = fa[x][i];\\n if (x == y) return res;\\n for (int i = L - 1; ~i; i--)\\n if (fa[x][i] != fa[y][i])\\n chkMax(res, mx[x][i]), chkMax(res, mx[y][i]), x = fa[x][i], y = fa[y][i];\\n chkMax(res, mx[x][0]), chkMax(res, mx[y][0]);\\n return res;\\n}\\nint w[N], d[N], f[N], p[N];\\nset s[N];\\nint find(int x) { return x == f[x] ? x : f[x] = find(f[x]); }\\nvoid merge(int x, int y) {\\n x = find(x), y = find(y);\\n if (sz[x] > sz[y])...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"The only difference between this problem and D2 is that you don't have to provide the way to construct the answer in this problem, but you have to do it in D2.\\n\\nThere's a table of n \u00d7 m cells (n rows and m columns). The value of n \u22c5 m is even.\\n\\nA domino is a figure that consists of two cells having a common side. It may be horizontal (one of the cells is to the right of the other) or vertical (one of the cells is above the other).\\n\\nYou need to find out whether it is possible to place nm\\/2 dominoes on the table so that exactly k of them are horizontal and all the other dominoes are vertical. The dominoes cannot overlap and must fill the whole table.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of a single line. The line contains three integers n, m, k (1 \u2264 n,m \u2264 100, 0 \u2264 k \u2264 nm\\/2, n \u22c5 m is even) \u2014 the number of rows, columns and horizontal dominoes, respectively.\\n\\nOutput\\n\\nFor each test case output \\\"YES\\\", if it is possible to place dominoes in the desired way, or \\\"NO\\\" otherwise.\\n\\nYou may print each letter in any case (YES, yes, Yes will all be recognized as positive answer, NO, no and nO will all be recognized as negative answer).\\n\\nExample\\n\\nInput\\n\\n\\n8\\n4 4 2\\n2 3 0\\n3 2 3\\n1 2 0\\n2 4 2\\n5 2 2\\n2 17 16\\n2 1 1\\n\\n\\nOutput\\n\\n\\nYES\\nYES\\nYES\\nNO\\nYES\\nNO\\nYES\\nNO\",\"targets\":\"def f(n,m,k):\\n if n*m<2*k:\\n return \\\"NO\\\"\\n if n%2==0 and m%2==0:\\n return \\\"YES\\\" if k%2==0 else \\\"NO\\\"\\n elif n%2==0:\\n return f(n,m-1,k)\\n else:\\n return f(m,n,n*m\\/\\/2 -k)\\nt=int(input())\\nfor test in range(t):\\n n,m,k=map(int,input().split())\\n print(f(n,m,k))\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"An n \u00d7 n table a is defined as follows:\\n\\n * The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. \\n * Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. \\n\\n\\n\\nThese conditions define all the values in the table.\\n\\nYou are given a number n. You need to determine the maximum value in the n \u00d7 n table defined by the rules above.\\n\\nInput\\n\\nThe only line of input contains a positive integer n (1 \u2264 n \u2264 10) \u2014 the number of rows and columns of the table.\\n\\nOutput\\n\\nPrint a single line containing a positive integer m \u2014 the maximum value in the table.\\n\\nExamples\\n\\nInput\\n\\n1\\n\\n\\nOutput\\n\\n1\\n\\nInput\\n\\n5\\n\\n\\nOutput\\n\\n70\\n\\nNote\\n\\nIn the second test the rows of the table look as follows: \\n\\n{1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}, {1, 3, 6, 10, 15}, {1, 4, 10, 20, 35}, {1, 5, 15, 35, 70}.\\nSolve the task in PYTHON3.\",\"targets\":\"n = int(input())\\na = [[i for i in range(n)] for j in range(n)]\\n\\nfor i in range(n):\\n for j in range(n):\\n if i == 0 or j == 0:\\n a[i][j] = 1\\n else:\\n a[i][j] = a[i-1][j]+a[i][j-1]\\n\\nprint(a[n-1][n-1])\",\"language\":\"python\",\"split\":\"train\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Ehab has an array a of n integers. He likes the [bitwise-xor operation](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#XOR) and he likes to bother Mahmoud so he came up with a problem. He gave Mahmoud q queries. In each of them, he gave Mahmoud 2 integers l and x, and asked him to find the number of subsequences of the first l elements of the array such that their bitwise-xor sum is x. Can you help Mahmoud answer the queries?\\n\\nA subsequence can contain elements that are not neighboring.\\n\\nInput\\n\\nThe first line contains integers n and q (1 \u2264 n, q \u2264 105), the number of elements in the array and the number of queries.\\n\\nThe next line contains n integers a1, a2, ..., an (0 \u2264 ai < 220), the elements of the array.\\n\\nThe next q lines, each contains integers l and x (1 \u2264 l \u2264 n, 0 \u2264 x < 220), representing the queries.\\n\\nOutput\\n\\nFor each query, output its answer modulo 109 + 7 in a newline.\\n\\nExamples\\n\\nInput\\n\\n5 5\\n0 1 2 3 4\\n4 3\\n2 0\\n3 7\\n5 7\\n5 8\\n\\n\\nOutput\\n\\n4\\n2\\n0\\n4\\n0\\n\\n\\nInput\\n\\n3 2\\n1 1 1\\n3 1\\n2 0\\n\\n\\nOutput\\n\\n4\\n2\\n\\nNote\\n\\nThe bitwise-xor sum of the empty set is 0 and the bitwise-xor sum of a set containing one element is that element itself.\\nSolve the task in JAVA.\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.io.PrintWriter;\\nimport java.util.ArrayList;\\nimport java.util.List;\\nimport java.util.StringTokenizer;\\n\\n\\/**\\n * @author Don Li\\n *\\/\\npublic class XorTask {\\n \\n int N = 1 << 20;\\n int MOD = (int) 1e9 + 7;\\n \\n boolean[] in_set = new boolean[N];\\n List set = new ArrayList<>();\\n \\n void solve() {\\n int n = in.nextInt(), m = in.nextInt();\\n int[] a = new int[n];\\n for (int i = 0; i < n; i++) a[i] = in.nextInt();\\n int[] l = new int[m], x = new int[m];\\n for (int i = 0; i < m; i++) {\\n l[i] = in.nextInt();\\n x[i] = in.nextInt();\\n }\\n \\n int[] cnt = new int[n + 1];\\n for (int i = 0; i < m; i++) {\\n cnt[l[i]]++;\\n }\\n int[][][] grp = new int[n + 1][][];\\n for (int i = 0; i <= n; i++) grp[i] = new int[cnt[i]][];\\n for (int i = 0; i < m; i++) {\\n grp[l[i]][--cnt[l[i]]] = new int[]{x[i], i};\\n }\\n \\n int[] res = new int[m];\\n set.add(0);\\n in_set[0] = true;\\n int ans = 1;\\n for (int i = 0; i < n; i++) {\\n if (in_set[a[i]]) {\\n ans = ans * 2 % MOD;\\n } else {\\n int sz = set.size();\\n for (int j = 0; j < sz; j++) {\\n int v = set.get(j) ^ a[i];\\n set.add(v);\\n in_set[v] = true;\\n }\\n }\\n for (int[] t : grp[i + 1]) {\\n if (in_set[t[0]]) res[t[1]] = ans;\\n }\\n }\\n \\n for (int i = 0; i < m; i++) {\\n out.println(res[i]);\\n }\\n }\\n \\n public static void main(String[] args) {\\n in = new FastScanner(new BufferedReader(new InputStreamReader(System.in)));\\n out = new PrintWriter(System.out);\\n new XorTask().solve();\\n out.close();\\n }\\n \\n static FastScanner in;\\n static PrintWriter out;\\n \\n static...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"This is a simplified version of the problem B2. Perhaps you should read the problem B2 before you start solving B1.\\n\\nPaul and Mary have a favorite string s which consists of lowercase letters of the Latin alphabet. They want to paint it using pieces of chalk of two colors: red and green. Let's call a coloring of a string wonderful if the following conditions are met:\\n\\n 1. each letter of the string is either painted in exactly one color (red or green) or isn't painted; \\n 2. each two letters which are painted in the same color are different; \\n 3. the number of letters painted in red is equal to the number of letters painted in green; \\n 4. the number of painted letters of this coloring is maximum among all colorings of the string which meet the first three conditions. \\n\\n\\n\\nE. g. consider a string s equal to \\\"kzaaa\\\". One of the wonderful colorings of the string is shown in the figure.\\n\\n The example of a wonderful coloring of the string \\\"kzaaa\\\".\\n\\nPaul and Mary want to learn by themselves how to find a wonderful coloring of the string. But they are very young, so they need a hint. Help them find k \u2014 the number of red (or green, these numbers are equal) letters in a wonderful coloring.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of one non-empty string s which consists of lowercase letters of the Latin alphabet. The number of characters in the string doesn't exceed 50.\\n\\nOutput\\n\\nFor each test case, output a separate line containing one non-negative integer k \u2014 the number of letters which will be painted in red in a wonderful coloring.\\n\\nExample\\n\\nInput\\n\\n\\n5\\nkzaaa\\ncodeforces\\narchive\\ny\\nxxxxxx\\n\\n\\nOutput\\n\\n\\n2\\n5\\n3\\n0\\n1\\n\\nNote\\n\\nThe first test case contains the string from the statement. One of the wonderful colorings is shown in the figure. There's no wonderful coloring containing 3 or more red letters because the total number of painted symbols will exceed the string's length.\\n\\nThe string from the second test case can be...\\nThe above is tricky. Write me a correct solution in PYTHON3.\",\"targets\":\"t=int(input())\\nfor i in range(t):\\n s=input()\\n mp={}\\n lst=[]\\n uniq=0\\n ans=0\\n if(len(s)==1):\\n print(0)\\n else: \\n for i in range(len(s)):\\n if(s[i] not in mp.keys()):\\n mp[s[i]]=1\\n lst.append(s[i])\\n else:\\n mp[s[i]]+=1\\n \\n if(len(mp)==1):\\n print(1)\\n else:\\n for i in range(len(lst)):\\n if(mp[lst[i]]>1):\\n ans+=1\\n else:\\n uniq+=1\\n ans+=uniq\\/\\/2\\n print(ans)\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"It is the hard version of the problem. The only difference is that in this version 1 \u2264 n \u2264 300.\\n\\nIn the cinema seats can be represented as the table with n rows and m columns. The rows are numbered with integers from 1 to n. The seats in each row are numbered with consecutive integers from left to right: in the k-th row from m (k - 1) + 1 to m k for all rows 1 \u2264 k \u2264 n.\\n\\n1| 2| \u22c5\u22c5\u22c5| m - 1| m \\n---|---|---|---|--- \\nm + 1| m + 2| \u22c5\u22c5\u22c5| 2 m - 1| 2 m \\n2m + 1| 2m + 2| \u22c5\u22c5\u22c5| 3 m - 1| 3 m \\n\\\\vdots| \\\\vdots| \\\\ddots| \\\\vdots| \\\\vdots \\nm (n - 1) + 1| m (n - 1) + 2| \u22c5\u22c5\u22c5| n m - 1| n m \\nThe table with seats indices\\n\\nThere are nm people who want to go to the cinema to watch a new film. They are numbered with integers from 1 to nm. You should give exactly one seat to each person.\\n\\nIt is known, that in this cinema as lower seat index you have as better you can see everything happening on the screen. i-th person has the level of sight a_i. Let's define s_i as the seat index, that will be given to i-th person. You want to give better places for people with lower sight levels, so for any two people i, j such that a_i < a_j it should be satisfied that s_i < s_j.\\n\\nAfter you will give seats to all people they will start coming to their seats. In the order from 1 to nm, each person will enter the hall and sit in their seat. To get to their place, the person will go to their seat's row and start moving from the first seat in this row to theirs from left to right. While moving some places will be free, some will be occupied with people already seated. The inconvenience of the person is equal to the number of occupied seats he or she will go through.\\n\\nLet's consider an example: m = 5, the person has the seat 4 in the first row, the seats 1, 3, 5 in the first row are already occupied, the seats 2 and 4 are free. The inconvenience of this person will be 2, because he will go through occupied seats 1 and 3.\\n\\nFind the minimal total inconvenience (the sum of inconveniences of all people), that is possible to have by giving places for all...\\nimpor\",\"targets\":\"t java.util.*;\\nimport java.lang.*;\\nimport java.io.*;\\n\\npublic class Main\\n{\\n\\tPrintWriter out = new PrintWriter(System.out);\\n\\tBufferedReader in = new BufferedReader(new InputStreamReader(System.in));\\n StringTokenizer tok = new StringTokenizer(\\\"\\\");\\n String next() throws IOException {\\n if (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); }\\n return tok.nextToken();\\n }\\n int ni() throws IOException { return Integer.parseInt(next()); }\\n long nl() throws IOException { return Long.parseLong(next()); }\\n \\n long mod=1000000007;\\n \\n void solve() throws IOException {\\n for (int tc=ni();tc>0;tc--) {\\n int n=ni(),m=ni();\\n HashMap>H=new HashMap();\\n ArrayListA=new ArrayList();\\n for (int i=0;i0) {\\n if (left>m-y) {\\n int pos=m-1;\\n while (pos>=y) {\\n int v=H.get(u).get(p);\\n B[v][0]=x;\\n B[v][1]=pos;\\n pos--;\\n p++;\\n left--;\\n }\\n y=0;\\n x++;\\n }\\n else {\\n int pos=y+left-1;\\n while (pos>=y) {\\n int v=H.get(u).get(p);\\n B[v][0]=x;\\n B[v][1]=pos;\\n pos--;\\n p++;\\n }\\n ...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Ivan is playing yet another roguelike computer game. He controls a single hero in the game. The hero has n equipment slots. There is a list of c_i items for the i-th slot, the j-th of them increases the hero strength by a_{i,j}. The items for each slot are pairwise distinct and are listed in the increasing order of their strength increase. So, a_{i,1} < a_{i,2} < ... < a_{i,c_i}.\\n\\nFor each slot Ivan chooses exactly one item. Let the chosen item for the i-th slot be the b_i-th item in the corresponding list. The sequence of choices [b_1, b_2, ..., b_n] is called a build.\\n\\nThe strength of a build is the sum of the strength increases of the items in it. Some builds are banned from the game. There is a list of m pairwise distinct banned builds. It's guaranteed that there's at least one build that's not banned.\\n\\nWhat is the build with the maximum strength that is not banned from the game? If there are multiple builds with maximum strength, print any of them.\\n\\nInput\\n\\nThe first line contains a single integer n (1 \u2264 n \u2264 10) \u2014 the number of equipment slots.\\n\\nThe i-th of the next n lines contains the description of the items for the i-th slot. First, one integer c_i (1 \u2264 c_i \u2264 2 \u22c5 10^5) \u2014 the number of items for the i-th slot. Then c_i integers a_{i,1}, a_{i,2}, ..., a_{i,c_i} (1 \u2264 a_{i,1} < a_{i,2} < ... < a_{i,c_i} \u2264 10^8).\\n\\nThe sum of c_i doesn't exceed 2 \u22c5 10^5.\\n\\nThe next line contains a single integer m (0 \u2264 m \u2264 10^5) \u2014 the number of banned builds.\\n\\nEach of the next m lines contains a description of a banned build \u2014 a sequence of n integers b_1, b_2, ..., b_n (1 \u2264 b_i \u2264 c_i).\\n\\nThe builds are pairwise distinct, and there's at least one build that's not banned.\\n\\nOutput\\n\\nPrint the build with the maximum strength that is not banned from the game. If there are multiple builds with maximum strength, print any of them.\\n\\nExamples\\n\\nInput\\n\\n\\n3\\n3 1 2 3\\n2 1 5\\n3 2 4 6\\n2\\n3 2 3\\n3 2 2\\n\\n\\nOutput\\n\\n\\n2 2 3 \\n\\n\\nInput\\n\\n\\n3\\n3 1 2 3\\n2 1 5\\n3 2 4 6\\n2\\n3 2 3\\n2 2 3\\n\\n\\nOutput\\n\\n\\n1 2 3\\n\\n\\nInput\\n\\n\\n3\\n3 1 2 3\\n2 1 5\\n3 2 4 6\\n2\\n3 2 3\\n2 2 3\\n\\n\\nOutput\\n\\n\\n3 2...\\nSolve the task in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nconst int maxn = 15, maxm = 100005;\\nint n, m;\\nlong long sum, res;\\nlong long tot[maxm];\\nvector ans, v[maxn], w[maxm];\\nset > s;\\nint main() {\\n scanf(\\\"%d\\\", &n), ans.resize(n);\\n for (int i = 1, k, x; i <= n; i++) {\\n scanf(\\\"%d\\\", &k), v[i].resize(k);\\n for (int j = 0; j < k; j++) scanf(\\\"%d\\\", &v[i][j]);\\n sum += v[i][k - 1], ans[i - 1] = k;\\n }\\n scanf(\\\"%d\\\", &m);\\n for (int i = 1; i <= m; i++) {\\n vector p;\\n p.clear(), p.resize(n);\\n for (int j = 0; j < n; j++)\\n scanf(\\\"%d\\\", &p[j]), tot[i] += v[j + 1][p[j] - 1];\\n s.insert(p), w[i] = p;\\n }\\n if (s.find(ans) != s.end())\\n for (int i = 1; i <= m; i++) {\\n vector p = w[i];\\n for (int j = 1; j <= n; j++)\\n if (p[j - 1] != 1) {\\n p[j - 1]--;\\n if (s.find(p) == s.end()) {\\n long long now =\\n tot[i] - v[j][p[j - 1] + 1 - 1] + v[j][p[j - 1] - 1];\\n if (now > res) ans = p, res = now;\\n }\\n p[j - 1]++;\\n }\\n }\\n for (int i = 0; i < n; i++) printf(\\\"%d%c\\\", ans[i], i == n - 1 ? '\\\\n' : ' ');\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A total of n depots are located on a number line. Depot i lies at the point x_i for 1 \u2264 i \u2264 n.\\n\\nYou are a salesman with n bags of goods, attempting to deliver one bag to each of the n depots. You and the n bags are initially at the origin 0. You can carry up to k bags at a time. You must collect the required number of goods from the origin, deliver them to the respective depots, and then return to the origin to collect your next batch of goods.\\n\\nCalculate the minimum distance you need to cover to deliver all the bags of goods to the depots. You do not have to return to the origin after you have delivered all the bags.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10 500). Description of the test cases follows.\\n\\nThe first line of each test case contains two integers n and k (1 \u2264 k \u2264 n \u2264 2 \u22c5 10^5).\\n\\nThe second line of each test case contains n integers x_1, x_2, \u2026, x_n (-10^9 \u2264 x_i \u2264 10^9). It is possible that some depots share the same position.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, output a single integer denoting the minimum distance you need to cover to deliver all the bags of goods to the depots. \\n\\nExample\\n\\nInput\\n\\n\\n4\\n5 1\\n1 2 3 4 5\\n9 3\\n-5 -10 -15 6 5 8 3 7 4\\n5 3\\n2 2 3 3 3\\n4 2\\n1000000000 1000000000 1000000000 1000000000\\n\\n\\nOutput\\n\\n\\n25\\n41\\n7\\n3000000000\\n\\nNote\\n\\nIn the first test case, you can carry only one bag at a time. Thus, the following is a solution sequence that gives a minimum travel distance: 0 \u2192 2 \u2192 0 \u2192 4 \u2192 0 \u2192 3 \u2192 0 \u2192 1 \u2192 0 \u2192 5, where each 0 means you go the origin and grab one bag, and each positive integer means you deliver the bag to a depot at this coordinate, giving a total distance of 25 units. It must be noted that there are other sequences that give the same distance.\\n\\nIn the second test case, you can follow the following sequence, among multiple such sequences, to travel minimum distance: 0 \u2192 6 \u2192 8 \u2192 7 \u2192 0 \u2192 5 \u2192 4 \u2192 3 \u2192 0 \u2192 (-5) \u2192 (-10) \u2192 (-15), with distance...\\nThe above is tricky. Write me a correct solution in PYTHON3.\",\"targets\":\"from __future__ import print_function\\nfrom math import *\\nfrom collections import deque\\nimport os\\nimport sys\\nfrom io import BytesIO, IOBase\\n#import time\\n \\ndef main():\\n pass\\n \\n# region fastio\\n \\nBUFSIZE = 8192\\n \\n \\nclass FastIO(IOBase):\\n newlines = 0\\n \\n def __init__(self, file):\\n self._fd = file.fileno()\\n self.buffer = BytesIO()\\n self.writable = \\\"x\\\" in file.mode or \\\"r\\\" not in file.mode\\n self.write = self.buffer.write if self.writable else None\\n \\n def read(self):\\n while True:\\n b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))\\n if not b:\\n break\\n ptr = self.buffer.tell()\\n self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)\\n self.newlines = 0\\n return self.buffer.read()\\n \\n def readline(self):\\n while self.newlines == 0:\\n b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))\\n self.newlines = b.count(b\\\"\\\\n\\\") + (not b)\\n ptr = self.buffer.tell()\\n self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)\\n self.newlines -= 1\\n return self.buffer.readline()\\n \\n def flush(self):\\n if self.writable:\\n os.write(self._fd, self.buffer.getvalue())\\n self.buffer.truncate(0), self.buffer.seek(0)\\n \\n \\nclass IOWrapper(IOBase):\\n def __init__(self, file):\\n self.buffer = FastIO(file)\\n self.flush = self.buffer.flush\\n self.writable = self.buffer.writable\\n self.write = lambda s: self.buffer.write(s.encode(\\\"ascii\\\"))\\n self.read = lambda: self.buffer.read().decode(\\\"ascii\\\")\\n self.readline = lambda: self.buffer.readline().decode(\\\"ascii\\\")\\n \\n \\nsys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)\\n#sys.stdin, sys.stdout =open(\\\"test.txt\\\",\\\"r\\\"),open(\\\"result.txt\\\",\\\"w\\\")\\n#ini=time.time()\\ninput = lambda: sys.stdin.readline().rstrip(\\\"\\\\r\\\\n\\\")\\nmod=10**9+7\\n############ ---- Input Functions ---- ############\\ndef inp():\\n return(int(input()))\\ndef...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Alice and Brown are brothers in a family and each receives pocket money in celebration of the coming year. They are very close and share the total amount of the money fifty-fifty. The pocket money each receives is a multiple of 1,000 yen.\\n\\nWrite a program to calculate each one\u2019s share given the amount of money Alice and Brown received.\\n\\n\\n\\nInput\\n\\nThe input is given in the following format.\\n\\n\\na b\\n\\n\\nA line of data is given that contains two values of money: a (1000 \u2264 a \u2264 50000) for Alice and b (1000 \u2264 b \u2264 50000) for Brown.\\n\\nOutput\\n\\nOutput the amount of money each of Alice and Brown receive in a line.\\n\\nExamples\\n\\nInput\\n\\n1000 3000\\n\\n\\nOutput\\n\\n2000\\n\\n\\nInput\\n\\n5000 5000\\n\\n\\nOutput\\n\\n5000\\n\\n\\nInput\\n\\n1000 2000\\n\\n\\nOutput\\n\\n1500\",\"targets\":\"#include \\n#include \\n\\nusing namespace std;\\n\\nint main()\\n{\\n\\tint i;\\n\\tint n;\\n\\tint s;\\n\\tcin >> i;\\n\\tcin >> n;\\n\\ts = (i + n)\\/2;\\n\\tcout << s << endl;\\n\\treturn 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given two integers n and m. Find the \\\\operatorname{MEX} of the sequence n \u2295 0, n \u2295 1, \u2026, n \u2295 m. Here, \u2295 is the [bitwise XOR operator](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#XOR).\\n\\n\\\\operatorname{MEX} of the sequence of non-negative integers is the smallest non-negative integer that doesn't appear in this sequence. For example, \\\\operatorname{MEX}(0, 1, 2, 4) = 3, and \\\\operatorname{MEX}(1, 2021) = 0. \\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 30 000) \u2014 the number of test cases.\\n\\nThe first and only line of each test case contains two integers n and m (0 \u2264 n, m \u2264 10^9).\\n\\nOutput\\n\\nFor each test case, print a single integer \u2014 the answer to the problem.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n3 5\\n4 6\\n3 2\\n69 696\\n123456 654321\\n\\n\\nOutput\\n\\n\\n4\\n3\\n0\\n640\\n530866\\n\\nNote\\n\\nIn the first test case, the sequence is 3 \u2295 0, 3 \u2295 1, 3 \u2295 2, 3 \u2295 3, 3 \u2295 4, 3 \u2295 5, or 3, 2, 1, 0, 7, 6. The smallest non-negative integer which isn't present in the sequence i. e. the \\\\operatorname{MEX} of the sequence is 4.\\n\\nIn the second test case, the sequence is 4 \u2295 0, 4 \u2295 1, 4 \u2295 2, 4 \u2295 3, 4 \u2295 4, 4 \u2295 5, 4 \u2295 6, or 4, 5, 6, 7, 0, 1, 2. The smallest non-negative integer which isn't present in the sequence i. e. the \\\\operatorname{MEX} of the sequence is 3.\\n\\nIn the third test case, the sequence is 3 \u2295 0, 3 \u2295 1, 3 \u2295 2, or 3, 2, 1. The smallest non-negative integer which isn't present in the sequence i. e. the \\\\operatorname{MEX} of the sequence is 0.\\nSolve the task in PYTHON3.\",\"targets\":\"#!\\/usr\\/bin\\/env python3\\n\\ndef msb(x):\\n\\ti = 0\\n\\tp = 1\\n\\t\\n\\tassert x != 0\\n\\n\\twhile (p < x):\\n\\t\\ti += 1\\n\\t\\tp = p << 1\\n\\n\\treturn i\\n\\ndef solve():\\n\\tn, m = map(int, input().split(\\\" \\\"))\\n\\tM = m + 1\\n\\n\\tmex = 0\\n\\tfor bit in range(29, -1, -1):\\n\\t\\tl_bit = ((n >> bit) & 1) > 0\\n\\t\\tr_bit = ((M >> bit) & 1) > 0\\n\\t\\t\\n\\t\\tset_this_bit = False\\n\\t\\tif r_bit and (not l_bit):\\n\\t\\t\\tset_this_bit = True\\n\\t\\telif l_bit and not r_bit:\\n\\t\\t\\treturn mex\\n\\n\\t\\tif set_this_bit:\\n\\t\\t\\tmex = mex | 1 << bit\\n\\n\\treturn mex\\n\\ndef main():\\n\\tt = int(input())\\n\\tfor tt in range(t):\\n\\t\\tprint(solve())\\n\\nmain()\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"\\n\\nInput\\n\\nThe first line of the input is a string (between 1 and 50 characters long, inclusive). Each character will be a letter of English alphabet, lowercase or uppercase.\\n\\nThe second line of the input is an integer between 0 and 26, inclusive.\\n\\nOutput\\n\\nOutput the required string.\\n\\nExamples\\n\\nInput\\n\\nAprilFool\\n14\\n\\n\\nOutput\\n\\nAprILFooL\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nint main() {\\n string str_27;\\n getline(cin, str_27);\\n int i16;\\n cin >> i16;\\n string res = \\\"\\\";\\n for (int i26 = 0; i26 < str_27.size(); i26++) {\\n char c19 = tolower(str_27[i26]);\\n if (c19 < i16 + 97) {\\n res.push_back(toupper(c19));\\n } else {\\n res.push_back(tolower(c19));\\n }\\n }\\n cout << res;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in PYTHON3?\\nYou are given a string s, consisting of n letters, each letter is either 'a' or 'b'. The letters in the string are numbered from 1 to n.\\n\\ns[l; r] is a continuous substring of letters from index l to r of the string inclusive. \\n\\nA string is called balanced if the number of letters 'a' in it is equal to the number of letters 'b'. For example, strings \\\"baba\\\" and \\\"aabbab\\\" are balanced and strings \\\"aaab\\\" and \\\"b\\\" are not.\\n\\nFind any non-empty balanced substring s[l; r] of string s. Print its l and r (1 \u2264 l \u2264 r \u2264 n). If there is no such substring, then print -1 -1.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 1000) \u2014 the number of testcases.\\n\\nThen the descriptions of t testcases follow.\\n\\nThe first line of the testcase contains a single integer n (1 \u2264 n \u2264 50) \u2014 the length of the string.\\n\\nThe second line of the testcase contains a string s, consisting of n letters, each letter is either 'a' or 'b'.\\n\\nOutput\\n\\nFor each testcase print two integers. If there exists a non-empty balanced substring s[l; r], then print l r (1 \u2264 l \u2264 r \u2264 n). Otherwise, print -1 -1.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n1\\na\\n6\\nabbaba\\n6\\nabbaba\\n9\\nbabbabbaa\\n\\n\\nOutput\\n\\n\\n-1 -1\\n1 6\\n3 6\\n2 5\\n\\nNote\\n\\nIn the first testcase there are no non-empty balanced subtrings.\\n\\nIn the second and third testcases there are multiple balanced substrings, including the entire string \\\"abbaba\\\" and substring \\\"baba\\\".\",\"targets\":\"t=int(input())\\nfor _ in range(t):\\n n=int(input())\\n s=input()\\n flag=False\\n if(n==1):\\n flag=True\\n print('-1 -1')\\n else:\\n for i in range(len(s)-1):\\n if(s[i]!=s[i+1]):\\n flag=True\\n print(str(i+1)+' '+str(i+2))\\n break\\n if(flag==False):\\n print('-1 -1')\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Alice gave Bob two integers a and b (a > 0 and b \u2265 0). Being a curious boy, Bob wrote down an array of non-negative integers with \\\\operatorname{MEX} value of all elements equal to a and \\\\operatorname{XOR} value of all elements equal to b.\\n\\nWhat is the shortest possible length of the array Bob wrote?\\n\\nRecall that the \\\\operatorname{MEX} (Minimum EXcluded) of an array is the minimum non-negative integer that does not belong to the array and the \\\\operatorname{XOR} of an array is the [bitwise XOR](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#XOR) of all the elements of the array.\\n\\nInput\\n\\nThe input consists of multiple test cases. The first line contains an integer t (1 \u2264 t \u2264 5 \u22c5 10^4) \u2014 the number of test cases. The description of the test cases follows.\\n\\nThe only line of each test case contains two integers a and b (1 \u2264 a \u2264 3 \u22c5 10^5; 0 \u2264 b \u2264 3 \u22c5 10^5) \u2014 the \\\\operatorname{MEX} and \\\\operatorname{XOR} of the array, respectively.\\n\\nOutput\\n\\nFor each test case, output one (positive) integer \u2014 the length of the shortest array with \\\\operatorname{MEX} a and \\\\operatorname{XOR} b. We can show that such an array always exists.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n1 1\\n2 1\\n2 0\\n1 10000\\n2 10000\\n\\n\\nOutput\\n\\n\\n3\\n2\\n3\\n2\\n3\\n\\nNote\\n\\nIn the first test case, one of the shortest arrays with \\\\operatorname{MEX} 1 and \\\\operatorname{XOR} 1 is [0, 2020, 2021].\\n\\nIn the second test case, one of the shortest arrays with \\\\operatorname{MEX} 2 and \\\\operatorname{XOR} 1 is [0, 1].\\n\\nIt can be shown that these arrays are the shortest arrays possible.\\nSolve the task in PYTHON3.\",\"targets\":\"import sys\\nimport math\\nfrom bisect import bisect_left\\nimport heapq\\nfrom collections import deque\\nfrom itertools import product, permutations\\nimport random\\ndef II():\\n\\treturn int(sys.stdin.readline())\\n \\ndef LI():\\n\\treturn list(map(int, sys.stdin.readline().split()))\\n \\ndef MI():\\n\\treturn map(int, sys.stdin.readline().split())\\n \\ndef SI():\\n\\treturn sys.stdin.readline().strip()\\n \\ndef C(n, k, mod):\\n return (FACT(n,mod) * pow((FACT(k,mod)*FACT(n-k,mod))%mod,mod-2, mod))%mod\\n \\ndef lcm(a,b):\\n return abs(a*b) \\/\\/ math.gcd(a, b)\\n\\nx = []\\nxor = 0\\nfor i in range(10**6):\\n\\txor^=i\\n\\tx.append(xor)\\n \\nfor _ in range(II()):\\n\\ta,b = MI()\\n\\txor = x[a-1]\\n\\tif xor == b:\\n\\t\\tprint(a)\\n\\telif xor^b == a:\\n\\t\\tprint(a+2)\\n\\telse:\\n\\t\\tprint(a+1)\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in PYTHON3?\\nA chess tournament will be held soon, where n chess players will take part. Every participant will play one game against every other participant. Each game ends in either a win for one player and a loss for another player, or a draw for both players.\\n\\nEach of the players has their own expectations about the tournament, they can be one of two types:\\n\\n 1. a player wants not to lose any game (i. e. finish the tournament with zero losses); \\n 2. a player wants to win at least one game. \\n\\n\\n\\nYou have to determine if there exists an outcome for all the matches such that all the players meet their expectations. If there are several possible outcomes, print any of them. If there are none, report that it's impossible.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 200) \u2014 the number of test cases.\\n\\nThe first line of each test case contains one integer n (2 \u2264 n \u2264 50) \u2014 the number of chess players.\\n\\nThe second line contains the string s (|s| = n; s_i \u2208 \\\\{1, 2\\\\}). If s_i = 1, then the i-th player has expectations of the first type, otherwise of the second type.\\n\\nOutput\\n\\nFor each test case, print the answer in the following format:\\n\\nIn the first line, print NO if it is impossible to meet the expectations of all players.\\n\\nOtherwise, print YES, and the matrix of size n \u00d7 n in the next n lines.\\n\\nThe matrix element in the i-th row and j-th column should be equal to:\\n\\n * +, if the i-th player won in a game against the j-th player; \\n * -, if the i-th player lost in a game against the j-th player; \\n * =, if the i-th and j-th players' game resulted in a draw; \\n * X, if i = j. \\n\\nExample\\n\\nInput\\n\\n\\n3\\n3\\n111\\n2\\n21\\n4\\n2122\\n\\n\\nOutput\\n\\n\\nYES\\nX==\\n=X=\\n==X\\nNO\\nYES\\nX--+\\n+X++\\n+-X-\\n--+X\",\"targets\":\"# \\nfrom os import path\\nfrom sys import stdin, stdout\\nif path.exists('tc.txt'):\\n stdin = open('tc.txt', 'r')\\nfrom collections import defaultdict\\ndef gmi(): return map(int, stdin.readline().strip().split())\\ndef gms(): return map(str, stdin.readline().strip().split())\\ndef gari(): return list(map(int, stdin.readline().strip().split()))\\ndef gart(): return tuple(map(int, stdin.readline().strip().split()))\\ndef gars(): return list(map(str, stdin.readline().strip().split()))\\ndef gs(): return stdin.readline().strip()\\ndef gls(): return list(stdin.readline().strip())\\ndef gi(): return int(stdin.readline())\\n# <\\/editor-fold>\\n\\n\\ndef solve():\\n n, s = gi(), gs()\\n mat = [['X']*n for _ in range(n)]\\n\\n for i in range(n):\\n si = s[i] == '1'\\n already = False\\n for j in range(i+1, n):\\n sj = s[j] == '1'\\n if si and sj: mat[i][j] = mat[j][i] = '='\\n elif si or sj: mat[i][j] = mat[j][i] = '='\\n else:\\n if not already:\\n mat[i][j], mat[j][i] = '+', '-'\\n already = True\\n else:\\n mat[i][j], mat[j][i] = '-', '+'\\n\\n check = []\\n for i in range(n):\\n if s[i] == '1':\\n check.append(False if '-' in mat[i] else True)\\n else:\\n check.append(True if '+' in mat[i] else False)\\n\\n if all(check):\\n print(\\\"YES\\\")\\n for i in mat: print(\\\"\\\".join(i))\\n else:\\n print(\\\"NO\\\")\\n\\n\\n# \\ntc = gi()\\nwhile tc:\\n tc -= 1\\n solve()\\n# <\\/editor-fold>\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Example\\n\\nInput\\n\\n6 3\\n1 0 0 1 0 1\\n1 3 2\\n\\n\\nOutput\\n\\n1\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#define _USE_MATH_DEFINES\\n\\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n\\nusing namespace std;\\n\\ntypedef pair P;\\n\\nlong long int INF = 1e18;\\nlong long int MOD = 1e9 + 7;\\n\\nlong long int cnt[100000];\\n\\nint main(){\\n\\t\\n\\tint N, M;\\n\\tcin >> N >> M;\\n\\t\\n\\tint num = 0;\\n\\t\\n\\tfor(int i = 0; i < N; i++){\\n\\t\\tint p;\\n\\t\\tcin >> p;\\n\\t\\tnum *= 2;\\n\\t\\tnum += p;\\n\\t}\\n\\tqueue que;\\n\\tque.push(num);\\n\\t\\n\\tfor(int i = 0; i < (1 << N); i++){\\n\\t\\tcnt[i] = INF;\\n\\t}\\n\\t\\n\\tfor(int loop = 0; loop < (1 << N); loop++){\\n\\t\\tint sz = que.size();\\n\\t\\tif(sz == 0){\\n\\t\\t\\tbreak;\\n\\t\\t}\\n\\t\\tfor(int i = 0; i < sz; i++){\\n\\t\\t\\tnum = que.front();\\n\\t\\t\\tque.pop();\\n\\t\\t\\tif(cnt[num] != INF){\\n\\t\\t\\t\\tcontinue;\\n\\t\\t\\t}\\n\\t\\t\\tcnt[num] = loop;\\n\\t\\t\\tfor(int j = 0; j < N - 1; j++){\\n\\t\\t\\t\\tint d1 = (num & (1 << j));\\n\\t\\t\\t\\tint d2 = (num & (1 << (j + 1)));\\n\\t\\t\\t\\tque.push(num + d1 - d2 \\/ 2);\\n\\t\\t\\t}\\n\\t\\t}\\n\\t}\\n\\t\\n\\tnum = 0;\\n\\tint bin = 0;\\n\\tfor(int i = 0; i < M; i++){\\n\\t\\tint p;\\n\\t\\tcin >> p;\\n\\t\\tfor(int j = 0; j < p; j++){\\n\\t\\t\\tnum *= 2;\\n\\t\\t\\tnum += bin;\\n\\t\\t}\\n\\t\\tbin++;\\n\\t\\tbin %= 2;\\n\\t}\\n\\t\\n\\tlong long int ans = cnt[num];\\n\\t\\n\\tfor(int i = 0; i < N; i++){\\n\\t\\tif(num & (1 << i)){\\n\\t\\t\\tnum -= (1 << i);\\n\\t\\t}else{\\n\\t\\t\\tnum += (1 << i);\\n\\t\\t}\\n\\t}\\n\\t\\n\\tcout << min(ans, cnt[num]) << endl;\\n\\t\\n\\treturn 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Two players, Red and Blue, are at it again, and this time they're playing with crayons! The mischievous duo is now vandalizing a rooted tree, by coloring the nodes while playing their favorite game.\\n\\nThe game works as follows: there is a tree of size n, rooted at node 1, where each node is initially white. Red and Blue get one turn each. Red goes first. \\n\\nIn Red's turn, he can do the following operation any number of times: \\n\\n * Pick any subtree of the rooted tree, and color every node in the subtree red. \\n\\nHowever, to make the game fair, Red is only allowed to color k nodes of the tree. In other words, after Red's turn, at most k of the nodes can be colored red.\\n\\nThen, it's Blue's turn. Blue can do the following operation any number of times: \\n\\n * Pick any subtree of the rooted tree, and color every node in the subtree blue. However, he's not allowed to choose a subtree that contains a node already colored red, as that would make the node purple and no one likes purple crayon. \\n\\nNote: there's no restriction on the number of nodes Blue can color, as long as he doesn't color a node that Red has already colored.\\n\\nAfter the two turns, the score of the game is determined as follows: let w be the number of white nodes, r be the number of red nodes, and b be the number of blue nodes. The score of the game is w \u22c5 (r - b).\\n\\nRed wants to maximize this score, and Blue wants to minimize it. If both players play optimally, what will the final score of the game be?\\n\\nInput\\n\\nThe first line contains two integers n and k (2 \u2264 n \u2264 2 \u22c5 10^5; 1 \u2264 k \u2264 n) \u2014 the number of vertices in the tree and the maximum number of red nodes.\\n\\nNext n - 1 lines contains description of edges. The i-th line contains two space separated integers u_i and v_i (1 \u2264 u_i, v_i \u2264 n; u_i \u2260 v_i) \u2014 the i-th edge of the tree.\\n\\nIt's guaranteed that given edges form a tree.\\n\\nOutput\\n\\nPrint one integer \u2014 the resulting score if both Red and Blue play optimally.\\n\\nExamples\\n\\nInput\\n\\n\\n4 2\\n1 2\\n1 3\\n1 4\\n\\n\\nOutput\\n\\n\\n1\\n\\n\\nInput\\n\\n\\n5 2\\n1 2\\n2 3\\n3 4\\n4 5\\n\\n\\nOutput\\n\\n\\n6\\n\\n\\nInput\\n\\n\\n7...\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nint n, k, dfn[200011], rk[200011], dep[200011], siz[200011], fa[200011], clk;\\nlong long ans = -1e18;\\nbool vis[200011];\\nstruct edge {\\n int v, next;\\n edge() {}\\n edge(int _v, int _next) {\\n v = _v;\\n next = _next;\\n }\\n} e[400011];\\nint head[200011], sz;\\nvoid init() {\\n memset(head, -1, sizeof(head));\\n sz = 0;\\n}\\nvoid insert(int u, int v) {\\n e[++sz] = edge(v, head[u]);\\n head[u] = sz;\\n}\\nstruct node {\\n int l, r, mx, id, tag;\\n node() {\\n mx = -1e9;\\n id = 0;\\n tag = 0;\\n }\\n} tree[800011];\\nnode merge(node a, node b) {\\n node c;\\n c.l = a.l;\\n c.r = b.r;\\n c.mx = max(a.mx, b.mx);\\n if (c.mx == a.mx)\\n c.id = a.id;\\n else\\n c.id = b.id;\\n return c;\\n}\\nvoid pushup(int x) { tree[x] = merge(tree[(x << 1)], tree[(x << 1 | 1)]); }\\nvoid apply(int x, int p) {\\n tree[x].tag += p;\\n tree[x].mx += p;\\n}\\nvoid pushdown(int x) {\\n if (tree[x].tag)\\n apply((x << 1), tree[x].tag), apply((x << 1 | 1), tree[x].tag),\\n tree[x].tag = 0;\\n}\\nvoid build(int l, int r, int x) {\\n tree[x].l = l;\\n tree[x].r = r;\\n if (l == r) {\\n tree[x].mx = dep[rk[l]];\\n tree[x].id = l;\\n return;\\n }\\n build(l, l + r >> 1, (x << 1));\\n build((l + r >> 1) + 1, r, (x << 1 | 1));\\n pushup(x);\\n}\\nvoid add(int l, int r, int p, int x) {\\n if (l <= tree[x].l && tree[x].r <= r) {\\n apply(x, p);\\n return;\\n }\\n pushdown(x);\\n if (l <= tree[x].l + tree[x].r >> 1) add(l, r, p, (x << 1));\\n if (r > tree[x].l + tree[x].r >> 1) add(l, r, p, (x << 1 | 1));\\n pushup(x);\\n}\\nvoid dfs(int u, int f) {\\n siz[u] = 1;\\n dfn[u] = ++clk;\\n rk[clk] = u;\\n fa[u] = f;\\n dep[u] = dep[f] + 1;\\n for (int i = head[u]; ~i; i = e[i].next)\\n if (e[i].v ^ f) dfs(e[i].v, u), siz[u] += siz[e[i].v];\\n}\\nint main() {\\n scanf(\\\"%d%d\\\", &n, &k);\\n init();\\n for (int i = 1; i < n; ++i) {\\n int u, v;\\n scanf(\\\"%d%d\\\", &u, &v);\\n insert(u, v);\\n insert(v, u);\\n }\\n dfs(1, 0);\\n ans = max(ans, -1ll * (n \\/ 2) * (n - n \\/ 2));\\n int cnt = n;\\n build(1, n, 1);\\n for (int i = 1; i <= k; ++i) {\\n int x = rk[tree[1].id];\\n ...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Given n, find any array a_1, a_2, \u2026, a_n of integers such that all of the following conditions hold: \\n\\n * 1 \u2264 a_i \u2264 10^9 for every i from 1 to n.\\n\\n * a_1 < a_2 < \u2026 \\nusing namespace std;\\nconst long long mod = 1e9 + 7;\\nusing ii = pair;\\nlong long power(long long x, long long y) {\\n long long res = 1;\\n while (y) {\\n if (y & 1) res = (res * x) % mod;\\n y = y \\/ 2, x = (x * x) % mod;\\n }\\n return res % mod;\\n}\\nvoid solve() {\\n long long n;\\n cin >> n;\\n for (long long i = 2; i <= n + 1; i++) {\\n cout << i << \\\" \\\";\\n }\\n cout << \\\"\\\\n\\\";\\n}\\nsigned main() {\\n ios_base::sync_with_stdio(0);\\n cin.tie(0);\\n cout.tie(0);\\n int t;\\n cin >> t;\\n while (t--) {\\n solve();\\n }\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"When you play the game of thrones, you win, or you die. There is no middle ground.\\n\\nCersei Lannister, A Game of Thrones by George R. R. Martin\\n\\nThere are n nobles, numbered from 1 to n. Noble i has a power of i. There are also m \\\"friendships\\\". A friendship between nobles a and b is always mutual.\\n\\nA noble is defined to be vulnerable if both of the following conditions are satisfied: \\n\\n * the noble has at least one friend, and \\n * all of that noble's friends have a higher power. \\n\\n\\n\\nYou will have to process the following three types of queries. \\n\\n 1. Add a friendship between nobles u and v. \\n 2. Remove a friendship between nobles u and v. \\n 3. Calculate the answer to the following process. \\n\\n\\n\\nThe process: all vulnerable nobles are simultaneously killed, and all their friendships end. Then, it is possible that new nobles become vulnerable. The process repeats itself until no nobles are vulnerable. It can be proven that the process will end in finite time. After the process is complete, you need to calculate the number of remaining nobles.\\n\\nNote that the results of the process are not carried over between queries, that is, every process starts with all nobles being alive!\\n\\nInput\\n\\nThe first line contains the integers n and m (1 \u2264 n \u2264 2\u22c5 10^5, 0 \u2264 m \u2264 2\u22c5 10^5) \u2014 the number of nobles and number of original friendships respectively.\\n\\nThe next m lines each contain the integers u and v (1 \u2264 u,v \u2264 n, u \u2260 v), describing a friendship. No friendship is listed twice.\\n\\nThe next line contains the integer q (1 \u2264 q \u2264 2\u22c5 {10}^{5}) \u2014 the number of queries. \\n\\nThe next q lines contain the queries themselves, each query has one of the following three formats. \\n\\n * 1 u v (1 \u2264 u,v \u2264 n, u \u2260 v) \u2014 add a friendship between u and v. It is guaranteed that u and v are not friends at this moment. \\n * 2 u v (1 \u2264 u,v \u2264 n, u \u2260 v) \u2014 remove a friendship between u and v. It is guaranteed that u and v are friends at this moment. \\n * 3 \u2014 print the answer to the process described in the statement. \\n\\nOutput\\n\\nFor each type 3 query print one...\\n#incl\",\"targets\":\"ude \\nusing namespace std;\\nusing ll = long long;\\nconst int MXN = 2e5;\\nint curans;\\nvector > adj(MXN);\\nint g[MXN];\\nint main() {\\n int n, m;\\n cin >> n >> m;\\n curans = n;\\n for (int x = 0; x < m; x++) {\\n int a, b;\\n cin >> a >> b;\\n --a;\\n --b;\\n adj[a].insert(b);\\n adj[b].insert(a);\\n ++g[min(a, b)];\\n if (g[min(a, b)] == 1) --curans;\\n }\\n int q;\\n cin >> q;\\n while (q--) {\\n int qt;\\n cin >> qt;\\n if (qt == 1) {\\n int a, b;\\n cin >> a >> b;\\n --a;\\n --b;\\n adj[a].insert(b);\\n adj[b].insert(a);\\n ++g[min(a, b)];\\n if (g[min(a, b)] == 1) --curans;\\n } else if (qt == 2) {\\n int a, b;\\n cin >> a >> b;\\n --a;\\n --b;\\n adj[a].erase(b);\\n adj[b].erase(a);\\n --g[min(a, b)];\\n if (g[min(a, b)] == 0) ++curans;\\n } else {\\n cout << curans << endl;\\n }\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed.\\n\\nTo get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity.\\n\\nHitagi's sequence a has a length of n. Lost elements in it are denoted by zeros. Kaiki provides another sequence b, whose length k equals the number of lost elements in a (i.e. the number of zeros). Hitagi is to replace each zero in a with an element from b so that each element in b should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in a and b more than once in total.\\n\\nIf the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in a with an integer from b so that each integer from b is used exactly once, and the resulting sequence is not increasing.\\n\\nInput\\n\\nThe first line of input contains two space-separated positive integers n (2 \u2264 n \u2264 100) and k (1 \u2264 k \u2264 n) \u2014 the lengths of sequence a and b respectively.\\n\\nThe second line contains n space-separated integers a1, a2, ..., an (0 \u2264 ai \u2264 200) \u2014 Hitagi's broken sequence with exactly k zero elements.\\n\\nThe third line contains k space-separated integers b1, b2, ..., bk (1 \u2264 bi \u2264 200) \u2014 the elements to fill into Hitagi's sequence.\\n\\nInput guarantees that apart from 0, no integer occurs in a and b more than once in total.\\n\\nOutput\\n\\nOutput \\\"Yes\\\" if it's possible to replace zeros in a with elements in b and make the resulting sequence not increasing, and \\\"No\\\" otherwise.\\n\\nExamples\\n\\nInput\\n\\n4 2\\n11 0 0 14\\n5 4\\n\\n\\nOutput\\n\\nYes\\n\\n\\nInput\\n\\n6 1\\n2 3 0 8 9 10\\n5\\n\\n\\nOutput\\n\\nNo\\n\\n\\nInput\\n\\n4 1\\n8 94 0 4\\n89\\n\\n\\nOutput\\n\\nYes\\n\\n\\nInput\\n\\n7 7\\n0 0 0 0 0 0 0\\n1 2 3 4 5 6...\\nSolve the task in JAVA.\",\"targets\":\"import java.util.*;\\nimport java.io.*;\\n\\npublic class CF418A {\\n\\tpublic static void main(String args[]) {\\n\\t\\tInputReader in = new InputReader(System.in);\\n\\t\\tOutputStream outputStream = System.out;\\n\\t\\tPrintWriter out = new PrintWriter(outputStream);\\n\\t\\t\\/*------------------------------My Code starts here------------------------------*\\/\\n\\t\\tint n=in.nextInt(),k=in.nextInt(),i;\\n\\t\\tint[] a=nextIntArray(in, n);\\n\\t\\tint[] b=nextIntArray(in, k);\\n\\t\\tif(k>1)\\n\\t\\t{\\n\\t\\t\\tout.println(\\\"Yes\\\");\\n\\t\\t\\tout.close();\\n\\t\\t\\treturn ;\\n\\t\\t}\\n\\t\\tfor(i=0;ia[i])\\n\\t\\t\\t\\tans=false;\\n\\t\\t\\ti++;\\n\\t\\t}\\n\\t\\tif(ans)\\n\\t\\t\\tout.println(\\\"No\\\");\\n\\t\\telse\\n\\t\\t\\tout.println(\\\"Yes\\\");\\n\\t\\tout.close();\\n\\t\\t\\/*------------------------------The End------------------------------------------*\\/\\n\\t}\\n\\n\\tpublic static final long l = (int) (1e9 + 7);\\n\\n\\tprivate static int[] nextIntArray(InputReader in, int n) {\\n\\t\\tint[] a = new int[n];\\n\\t\\tfor (int i = 0; i < n; i++)\\n\\t\\t\\ta[i] = in.nextInt();\\n\\t\\treturn a;\\n\\t}\\n\\n\\tprivate static long[] nextLongArray(InputReader in, int n) {\\n\\t\\tlong[] a = new long[n];\\n\\t\\tfor (int i = 0; i < n; i++)\\n\\t\\t\\ta[i] = in.nextLong();\\n\\t\\treturn a;\\n\\t}\\n\\n\\tprivate static int[][] nextIntMatrix(InputReader in, int n, int m) {\\n\\t\\tint[][] a = new int[n][m];\\n\\t\\tfor (int i = 0; i < n; i++) {\\n\\t\\t\\tfor (int j = 0; j < m; j++)\\n\\t\\t\\t\\ta[i][j] = in.nextInt();\\n\\t\\t}\\n\\t\\treturn a;\\n\\t}\\n\\n\\tprivate static void show(int[] a) {\\n\\t\\tfor (int i = 0; i < a.length; i++)\\n\\t\\t\\tSystem.out.print(a[i] + \\\" \\\");\\n\\t\\tSystem.out.println();\\n\\t}\\n\\n\\tprivate static void show2DArray(char[][] a) {\\n\\t\\tfor (int i = 0; i < a.length; i++) {\\n\\t\\t\\tfor (int j = 0; j < a[0].length; j++)\\n\\t\\t\\t\\tSystem.out.print(a[i][j]);\\n\\t\\t\\tSystem.out.println();\\n\\t\\t}\\n\\t}\\n\\n\\tstatic class Pair {\\n\\t\\tprivate int first;\\n\\t\\tprivate int second;\\n\\n\\t\\tpublic Pair(int i, int j) {\\n\\t\\t\\tthis.first = i;\\n\\t\\t\\tthis.second = j;\\n\\t\\t}\\n\\n\\t\\tpublic int getFirst() {\\n\\t\\t\\treturn first;\\n\\t\\t}\\n\\n\\t\\tpublic int getSecond() {\\n\\t\\t\\treturn second;\\n\\t\\t}\\n\\n\\t\\tpublic void setFirst(int k) {\\n\\t\\t\\tthis.first = k;\\n\\t\\t}\\n\\n\\t\\tpublic void setSecond(int k)...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in JAVA?\\nThe problem statement looms below, filling you with determination.\\n\\nConsider a grid in which some cells are empty and some cells are filled. Call a cell in this grid exitable if, starting at that cell, you can exit the grid by moving up and left through only empty cells. This includes the cell itself, so all filled in cells are not exitable. Note that you can exit the grid from any leftmost empty cell (cell in the first column) by going left, and from any topmost empty cell (cell in the first row) by going up.\\n\\nLet's call a grid determinable if, given only which cells are exitable, we can exactly determine which cells are filled in and which aren't.\\n\\nYou are given a grid a of dimensions n \u00d7 m , i. e. a grid with n rows and m columns. You need to answer q queries (1 \u2264 q \u2264 2 \u22c5 10^5). Each query gives two integers x_1, x_2 (1 \u2264 x_1 \u2264 x_2 \u2264 m) and asks whether the subgrid of a consisting of the columns x_1, x_1 + 1, \u2026, x_2 - 1, x_2 is determinable.\\n\\nInput\\n\\nThe first line contains two integers n, m (1 \u2264 n, m \u2264 10^6, nm \u2264 10^6) \u2014 the dimensions of the grid a.\\n\\nn lines follow. The y-th line contains m characters, the x-th of which is 'X' if the cell on the intersection of the the y-th row and x-th column is filled and \\\".\\\" if it is empty.\\n\\nThe next line contains a single integer q (1 \u2264 q \u2264 2 \u22c5 10^5) \u2014 the number of queries.\\n\\nq lines follow. Each line contains two integers x_1 and x_2 (1 \u2264 x_1 \u2264 x_2 \u2264 m), representing a query asking whether the subgrid of a containing the columns x_1, x_1 + 1, \u2026, x_2 - 1, x_2 is determinable.\\n\\nOutput\\n\\nFor each query, output one line containing \\\"YES\\\" if the subgrid specified by the query is determinable and \\\"NO\\\" otherwise. The output is case insensitive (so \\\"yEs\\\" and \\\"No\\\" will also be accepted).\\n\\nExample\\n\\nInput\\n\\n\\n4 5\\n..XXX\\n...X.\\n...X.\\n...X.\\n5\\n1 3\\n3 3\\n4 5\\n5 5\\n1 5\\n\\n\\nOutput\\n\\n\\nYES\\nYES\\nNO\\nYES\\nNO\\n\\nNote\\n\\nFor each query of the example, the corresponding subgrid is displayed twice below: first in its input format, then with each cell marked as \\\"E\\\" if it is exitable and \\\"N\\\" otherwise.\\n\\nFor the...\",\"targets\":\"\\/\\/Praise our lord and saviour qlf9\\n\\/\\/DecimalFormat f = new DecimalFormat(\\\"##.00\\\");\\n\\nimport java.util.*;\\nimport java.io.*;\\nimport java.math.*;\\nimport java.text.*;\\npublic class CCorrect{\\npublic static void main(String[] omkar) throws Exception\\n{\\n BufferedReader in = new BufferedReader(new InputStreamReader(System.in));\\n StringTokenizer st = new StringTokenizer(in.readLine());\\n StringBuilder sb = new StringBuilder();\\n int n = Integer.parseInt(st.nextToken());\\n int m = Integer.parseInt(st.nextToken());\\n int[][] grid = new int[n][m];\\n String s;\\n char cc;\\n for(int i = 0; i < n; i++)\\n {\\n s = in.readLine();\\n for(int j = 0; j < m; j++)\\n {\\n if(s.charAt(j) == 'X')\\n {\\n grid[i][j] = 1;\\n }\\n else\\n {\\n grid[i][j] = 0;\\n }\\n }\\n }\\n int[] numBad = new int[m+1]; \\n int total = 0;\\n for(int j = 0; j < m-1; j++)\\n {\\n for(int i = 1; i< n; i++)\\n {\\n if(grid[i][j] == 1 && grid[i-1][j+1] == 1)\\n {\\n total++;\\n }\\n }\\n numBad[j+1] = total;\\n } \\n numBad[m] = total;\\n int q = Integer.parseInt(in.readLine());\\n int a, b;\\n for(int i = 0; i < q; i++)\\n {\\n st = new StringTokenizer(in.readLine());\\n a = Integer.parseInt(st.nextToken())-1;\\n b = Integer.parseInt(st.nextToken())-1;\\n if(numBad[b]-numBad[a] == 0)\\n {\\n sb.append(\\\"yes\\\\n\\\");\\n }\\n else\\n {\\n sb.append(\\\"no\\\\n\\\");\\n }\\n }\\n System.out.println(sb);\\n }\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Monocarp is the coach of the Berland State University programming teams. He decided to compose a problemset for a training session for his teams.\\n\\nMonocarp has n problems that none of his students have seen yet. The i-th problem has a topic a_i (an integer from 1 to n) and a difficulty b_i (an integer from 1 to n). All problems are different, that is, there are no two tasks that have the same topic and difficulty at the same time.\\n\\nMonocarp decided to select exactly 3 problems from n problems for the problemset. The problems should satisfy at least one of two conditions (possibly, both):\\n\\n * the topics of all three selected problems are different; \\n * the difficulties of all three selected problems are different. \\n\\n\\n\\nYour task is to determine the number of ways to select three problems for the problemset.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 50000) \u2014 the number of testcases.\\n\\nThe first line of each testcase contains an integer n (3 \u2264 n \u2264 2 \u22c5 10^5) \u2014 the number of problems that Monocarp have.\\n\\nIn the i-th of the following n lines, there are two integers a_i and b_i (1 \u2264 a_i, b_i \u2264 n) \u2014 the topic and the difficulty of the i-th problem.\\n\\nIt is guaranteed that there are no two problems that have the same topic and difficulty at the same time.\\n\\nThe sum of n over all testcases doesn't exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nPrint the number of ways to select three training problems that meet either of the requirements described in the statement.\\n\\nExample\\n\\nInput\\n\\n\\n2\\n4\\n2 4\\n3 4\\n2 1\\n1 3\\n5\\n1 5\\n2 4\\n3 3\\n4 2\\n5 1\\n\\n\\nOutput\\n\\n\\n3\\n10\\n\\nNote\\n\\nIn the first example, you can take the following sets of three problems:\\n\\n * problems 1, 2, 4; \\n * problems 1, 3, 4; \\n * problems 2, 3, 4. \\n\\n\\n\\nThus, the number of ways is equal to three.\",\"targets\":\"#include \\nusing namespace std;\\nint main() {\\n int t;\\n cin >> t;\\n while (t--) {\\n int n;\\n cin >> n;\\n vector a(n), b(n);\\n for (int i = 0; i < n; i++) {\\n cin >> a[i];\\n cin >> b[i];\\n a[i] -= 1;\\n b[i] -= 1;\\n }\\n vector ca(n), cb(n);\\n for (int i = 0; i < n; i++) {\\n ca[a[i]] += 1;\\n cb[b[i]] += 1;\\n }\\n long long ans = (long long)n * (n - 1) * (n - 2) \\/ 6;\\n for (int i = 0; i < n; i++) {\\n ans -= 1LL * (ca[a[i]] - 1) * (cb[b[i]] - 1);\\n }\\n cout << ans << '\\\\n';\\n }\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given two integers l and r, l\u2264 r. Find the largest possible value of a mod b over all pairs (a, b) of integers for which r\u2265 a \u2265 b \u2265 l.\\n\\nAs a reminder, a mod b is a remainder we get when dividing a by b. For example, 26 mod 8 = 2.\\n\\nInput\\n\\nEach test contains multiple test cases.\\n\\nThe first line contains one positive integer t (1\u2264 t\u2264 10^4), denoting the number of test cases. Description of the test cases follows.\\n\\nThe only line of each test case contains two integers l, r (1\u2264 l \u2264 r \u2264 10^9).\\n\\nOutput\\n\\nFor every test case, output the largest possible value of a mod b over all pairs (a, b) of integers for which r\u2265 a \u2265 b \u2265 l.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n1 1\\n999999999 1000000000\\n8 26\\n1 999999999\\n\\n\\nOutput\\n\\n\\n0\\n1\\n12\\n499999999\\n\\nNote\\n\\nIn the first test case, the only allowed pair is (a, b) = (1, 1), for which a mod b = 1 mod 1 = 0.\\n\\nIn the second test case, the optimal choice is pair (a, b) = (1000000000, 999999999), for which a mod b = 1.\",\"targets\":\"#include \\nusing namespace std;\\nvoid solve() {\\n long long int a, b;\\n cin >> a >> b;\\n if (b % 2 == 1) {\\n if ((b + 1) \\/ 2 >= a)\\n cout << b \\/ 2 << endl;\\n else\\n cout << b - a << endl;\\n } else {\\n if ((b \\/ 2) + 1 >= a)\\n cout << (b \\/ 2) - 1 << endl;\\n else\\n cout << b - a << endl;\\n }\\n}\\nint main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n long long int t;\\n cin >> t;\\n while (t--) solve();\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Luntik came out for a morning stroll and found an array a of length n. He calculated the sum s of the elements of the array (s= \u2211_{i=1}^{n} a_i). Luntik calls a subsequence of the array a nearly full if the sum of the numbers in that subsequence is equal to s-1.\\n\\nLuntik really wants to know the number of nearly full subsequences of the array a. But he needs to come home so he asks you to solve that problem!\\n\\nA sequence x is a subsequence of a sequence y if x can be obtained from y by deletion of several (possibly, zero or all) elements.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases. The next 2 \u22c5 t lines contain descriptions of test cases. The description of each test case consists of two lines.\\n\\nThe first line of each test case contains a single integer n (1 \u2264 n \u2264 60) \u2014 the length of the array.\\n\\nThe second line contains n integers a_1, a_2, \u2026, a_n (0 \u2264 a_i \u2264 10^9) \u2014 the elements of the array a.\\n\\nOutput\\n\\nFor each test case print the number of nearly full subsequences of the array.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n5\\n1 2 3 4 5\\n2\\n1000 1000\\n2\\n1 0\\n5\\n3 0 2 1 1\\n5\\n2 1 0 3 0\\n\\n\\nOutput\\n\\n\\n1\\n0\\n2\\n4\\n4\\n\\nNote\\n\\nIn the first test case, s=1+2+3+4+5=15, only (2,3,4,5) is a nearly full subsequence among all subsequences, the sum in it is equal to 2+3+4+5=14=15-1.\\n\\nIn the second test case, there are no nearly full subsequences.\\n\\nIn the third test case, s=1+0=1, the nearly full subsequences are (0) and () (the sum of an empty subsequence is 0).\\\":\",\"targets\":\"#include \\nusing namespace std;\\ninline void pisz(int n) { printf(\\\"%d\\\\n\\\", n); }\\nconst int dr[4] = {-1, 0, 1, 0};\\nconst int dc[4] = {0, -1, 0, 1};\\nconst int drr[8] = {-1, -1, 0, 1, 1, 1, 0, -1};\\nconst int dcc[8] = {0, -1, -1, -1, 0, 1, 1, 1};\\ntemplate \\nostream& operator<<(ostream& s, pair t) {\\n return s << \\\"(\\\" << t.first << \\\",\\\" << t.second << \\\")\\\";\\n}\\ntemplate \\nostream& operator<<(ostream& s, vector t) {\\n for (int i = 0; i < ((int)((t).size())); i++) s << t[i] << \\\" \\\";\\n return s;\\n}\\nclass UnionFind {\\n private:\\n vector rank, p;\\n\\n public:\\n UnionFind(int n) {\\n for (int i = 0; i < n; i++) p.push_back(i);\\n rank.assign(n, 0);\\n }\\n int findSet(int s) { return (p[s] == s) ? s : (p[s] = findSet(p[s])); }\\n bool isSameSet(int i, int j) { return findSet(i) == findSet(j); }\\n void unionSet(int i, int j) {\\n if (isSameSet(i, j)) return;\\n int x = findSet(i), y = findSet(j);\\n if (rank[x] > rank[y])\\n p[y] = x;\\n else {\\n p[x] = y;\\n if (rank[x] == rank[y]) rank[y]++;\\n }\\n }\\n};\\nbool fcomp(double A, double B) {\\n double EPSILON = numeric_limits::epsilon();\\n double diff = A - B;\\n return fabs(diff) < EPSILON;\\n}\\ndouble x_y(int x1, int y1, int x2, int y2) {\\n return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));\\n}\\nint main() {\\n int(testow);\\n scanf(\\\"%d\\\", &(testow));\\n while (testow--) {\\n long long ct[2];\\n memset(ct, 0, sizeof(ct));\\n int(n);\\n scanf(\\\"%d\\\", &(n));\\n int dt[n];\\n for (int i = 0; i < n; i++) {\\n scanf(\\\"%d\\\", &dt[i]);\\n if (dt[i] == 0 || dt[i] == 1) ct[dt[i]]++;\\n }\\n long long mul = 1;\\n for (int i = 1; i <= ct[0]; i++) mul *= 2;\\n cout << ct[1] * mul << endl;\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Arpa has found a list containing n numbers. He calls a list bad if and only if it is not empty and gcd (see notes section for more information) of numbers in the list is 1.\\n\\nArpa can perform two types of operations:\\n\\n * Choose a number and delete it with cost x. \\n * Choose a number and increase it by 1 with cost y. \\n\\n\\n\\nArpa can apply these operations to as many numbers as he wishes, and he is allowed to apply the second operation arbitrarily many times on the same number.\\n\\nHelp Arpa to find the minimum possible cost to make the list good.\\n\\nInput\\n\\nFirst line contains three integers n, x and y (1 \u2264 n \u2264 5\u00b7105, 1 \u2264 x, y \u2264 109) \u2014 the number of elements in the list and the integers x and y.\\n\\nSecond line contains n integers a1, a2, ..., an (1 \u2264 ai \u2264 106) \u2014 the elements of the list.\\n\\nOutput\\n\\nPrint a single integer: the minimum possible cost to make the list good.\\n\\nExamples\\n\\nInput\\n\\n4 23 17\\n1 17 17 16\\n\\n\\nOutput\\n\\n40\\n\\n\\nInput\\n\\n10 6 2\\n100 49 71 73 66 96 8 60 41 63\\n\\n\\nOutput\\n\\n10\\n\\nNote\\n\\nIn example, number 1 must be deleted (with cost 23) and number 16 must increased by 1 (with cost 17).\\n\\nA gcd (greatest common divisor) of a set of numbers is the maximum integer that divides all integers in the set. Read more about gcd [here](https:\\/\\/en.wikipedia.org\\/wiki\\/Greatest_common_divisor).\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nconst int N = 2e6 + 5, INF = 1e12;\\nint a[N];\\nlong long s[N];\\nint main() {\\n int n, x, y;\\n cin >> n >> x >> y;\\n int p = x \\/ y;\\n for (int i = 0; i < n; i++) {\\n int l;\\n cin >> l;\\n a[l]++;\\n s[l] += l;\\n }\\n for (int i = 1; i <= 2000000; i++) {\\n a[i] += a[i - 1], s[i] += s[i - 1];\\n }\\n long long ans = (long long)1e18;\\n for (int i = 2; i <= 1000000; i++) {\\n long long t = 0;\\n for (int j = i; j <= 1000000 + i && t < ans; j += i) {\\n int k = max(j - i + 1, j - p);\\n t += ((a[j] - a[k - 1]) * 1LL * j - (s[j] - s[k - 1])) * 1LL * y;\\n t += (a[k - 1] - a[j - i]) * 1LL * x;\\n }\\n ans = min(ans, t);\\n }\\n cout << ans << endl;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A total of n depots are located on a number line. Depot i lies at the point x_i for 1 \u2264 i \u2264 n.\\n\\nYou are a salesman with n bags of goods, attempting to deliver one bag to each of the n depots. You and the n bags are initially at the origin 0. You can carry up to k bags at a time. You must collect the required number of goods from the origin, deliver them to the respective depots, and then return to the origin to collect your next batch of goods.\\n\\nCalculate the minimum distance you need to cover to deliver all the bags of goods to the depots. You do not have to return to the origin after you have delivered all the bags.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10 500). Description of the test cases follows.\\n\\nThe first line of each test case contains two integers n and k (1 \u2264 k \u2264 n \u2264 2 \u22c5 10^5).\\n\\nThe second line of each test case contains n integers x_1, x_2, \u2026, x_n (-10^9 \u2264 x_i \u2264 10^9). It is possible that some depots share the same position.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, output a single integer denoting the minimum distance you need to cover to deliver all the bags of goods to the depots. \\n\\nExample\\n\\nInput\\n\\n\\n4\\n5 1\\n1 2 3 4 5\\n9 3\\n-5 -10 -15 6 5 8 3 7 4\\n5 3\\n2 2 3 3 3\\n4 2\\n1000000000 1000000000 1000000000 1000000000\\n\\n\\nOutput\\n\\n\\n25\\n41\\n7\\n3000000000\\n\\nNote\\n\\nIn the first test case, you can carry only one bag at a time. Thus, the following is a solution sequence that gives a minimum travel distance: 0 \u2192 2 \u2192 0 \u2192 4 \u2192 0 \u2192 3 \u2192 0 \u2192 1 \u2192 0 \u2192 5, where each 0 means you go the origin and grab one bag, and each positive integer means you deliver the bag to a depot at this coordinate, giving a total distance of 25 units. It must be noted that there are other sequences that give the same distance.\\n\\nIn the second test case, you can follow the following sequence, among multiple such sequences, to travel minimum distance: 0 \u2192 6 \u2192 8 \u2192 7 \u2192 0 \u2192 5 \u2192 4 \u2192 3 \u2192 0 \u2192 (-5) \u2192 (-10) \u2192 (-15), with distance...\\nThe above is tricky. Write me a correct solution in PYTHON3.\",\"targets\":\"from collections import defaultdict, Counter,deque\\nfrom math import sqrt, log10, log, floor, factorial,gcd\\nfrom bisect import bisect_left, bisect_right,insort\\nfrom itertools import permutations,combinations\\nimport sys, io, os\\ninput = sys.stdin.readline\\ninput=io.BytesIO(os.read(0,os.fstat(0).st_size)).readline\\n# sys.setrecursionlimit(10000)\\ninf = float('inf')\\nmod = 10 ** 9 + 7\\ndef yn(a): print(\\\"YES\\\" if a else \\\"NO\\\")\\nceil = lambda a, b: (a + b - 1) \\/\\/ b\\ndef get(pos):\\n arr = []\\n while pos:\\n arr.append(pos.pop())\\n for i in range(k-1):\\n if pos:\\n pos.pop()\\n return arr\\nt = int(input())\\nfor i in range(t):\\n n,k=[int(i) for i in input().split()]\\n l=[int(i) for i in input().split()]\\n pos=[i for i in l if i>0]\\n neg=[-i for i in l if i<0]\\n pos.sort()\\n neg.sort()\\n arr1=get(pos)\\n arr2=get(neg)\\n arr=sorted(arr1+arr2)\\n counter=0\\n if arr:\\n counter=arr.pop()\\n for i in arr:\\n counter+=i*2\\n print(counter)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Alice and Borys are playing tennis.\\n\\nA tennis match consists of games. In each game, one of the players is serving and the other one is receiving.\\n\\nPlayers serve in turns: after a game where Alice is serving follows a game where Borys is serving, and vice versa.\\n\\nEach game ends with a victory of one of the players. If a game is won by the serving player, it's said that this player holds serve. If a game is won by the receiving player, it's said that this player breaks serve.\\n\\nIt is known that Alice won a games and Borys won b games during the match. It is unknown who served first and who won which games.\\n\\nFind all values of k such that exactly k breaks could happen during the match between Alice and Borys in total.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10^3). Description of the test cases follows.\\n\\nEach of the next t lines describes one test case and contains two integers a and b (0 \u2264 a, b \u2264 10^5; a + b > 0) \u2014 the number of games won by Alice and Borys, respectively.\\n\\nIt is guaranteed that the sum of a + b over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case print two lines.\\n\\nIn the first line, print a single integer m (1 \u2264 m \u2264 a + b + 1) \u2014 the number of values of k such that exactly k breaks could happen during the match.\\n\\nIn the second line, print m distinct integers k_1, k_2, \u2026, k_m (0 \u2264 k_1 < k_2 < \u2026 < k_m \u2264 a + b) \u2014 the sought values of k in increasing order.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n2 1\\n1 1\\n0 5\\n\\n\\nOutput\\n\\n\\n4\\n0 1 2 3\\n2\\n0 2\\n2\\n2 3\\n\\nNote\\n\\nIn the first test case, any number of breaks between 0 and 3 could happen during the match: \\n\\n * Alice holds serve, Borys holds serve, Alice holds serve: 0 breaks; \\n * Borys holds serve, Alice holds serve, Alice breaks serve: 1 break; \\n * Borys breaks serve, Alice breaks serve, Alice holds serve: 2 breaks; \\n * Alice breaks serve, Borys breaks serve, Alice breaks serve: 3 breaks. \\n\\n\\n\\nIn the second test case, the players could either both hold serves (0 breaks) or both break serves (2...\\ndef s\",\"targets\":\"olve():\\n a,b=map(int,input().split())\\n if a==b:\\n print((a+b)\\/\\/2+1)\\n for i in range(0,a+b+1,2):\\n print(i,end=' ')\\n print()\\n elif abs(a-b)==1:\\n print(a+b+1)\\n for i in range(a+b+1):\\n print(i,end=' ')\\n print()\\n elif a==0 or b==0:\\n if (a==0 and b%2==0):\\n print(1)\\n print(b\\/\\/2)\\n elif (b==0 and a%2==0):\\n print(1)\\n print(a\\/\\/2)\\n else:\\n print(2)\\n if a==0:\\n print(b\\/\\/2,b\\/\\/2+1,end=' ')\\n else:\\n print(a\\/\\/2,a\\/\\/2+1,end=' ')\\n print()\\n else:\\n if (a+b)%2==0:\\n x=abs(a-b)\\/\\/2\\n y=a+b-abs(a-b)\\/\\/2\\n print((y-x)\\/\\/2+1)\\n for i in range(x,y+1,2):\\n print(i,end=' ')\\n print()\\n else:\\n print(a+b-abs(a-b)\\/\\/2+1-abs(a-b)\\/\\/2)\\n for i in range(abs(a-b)\\/\\/2,a+b-abs(a-b)\\/\\/2+1):\\n print(i,end=' ')\\n print()\\nt=int(input())\\nwhile(t):\\n solve()\\n t-=1\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"One day, early in the morning, you decided to buy yourself a bag of chips in the nearby store. The store has chips of n different flavors. A bag of the i-th flavor costs a_i burles.\\n\\nThe store may run out of some flavors, so you'll decide which one to buy after arriving there. But there are two major flaws in this plan: \\n\\n 1. you have only coins of 1, 2 and 3 burles; \\n 2. since it's morning, the store will ask you to pay in exact change, i. e. if you choose the i-th flavor, you'll have to pay exactly a_i burles. \\n\\n\\n\\nCoins are heavy, so you'd like to take the least possible number of coins in total. That's why you are wondering: what is the minimum total number of coins you should take with you, so you can buy a bag of chips of any flavor in exact change?\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases.\\n\\nThe first line of each test case contains the single integer n (1 \u2264 n \u2264 100) \u2014 the number of flavors in the store.\\n\\nThe second line of each test case contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^9) \u2014 the cost of one bag of each flavor.\\n\\nOutput\\n\\nFor each test case, print one integer \u2014 the minimum number of coins you need to buy one bag of any flavor you'll choose in exact change.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n1\\n1337\\n3\\n10 8 10\\n5\\n1 2 3 4 5\\n3\\n7 77 777\\n\\n\\nOutput\\n\\n\\n446\\n4\\n3\\n260\\n\\nNote\\n\\nIn the first test case, you should, for example, take with you 445 coins of value 3 and 1 coin of value 2. So, 1337 = 445 \u22c5 3 + 1 \u22c5 2.\\n\\nIn the second test case, you should, for example, take 2 coins of value 3 and 2 coins of value 2. So you can pay either exactly 8 = 2 \u22c5 3 + 1 \u22c5 2 or 10 = 2 \u22c5 3 + 2 \u22c5 2.\\n\\nIn the third test case, it's enough to take 1 coin of value 3 and 2 coins of value 1.\\nimpor\",\"targets\":\"t java.lang.reflect.Array;\\nimport java.util.*;\\nimport java.io.*;\\n\\npublic class A {\\n static final int INF = (int) 1e9;\\n\\n public static int isValid(int val, int ones, int twos) {\\n int ans = (int) 1e9;\\n for (int j = 0; j <= ones; j++) {\\n for (int k = 0; k <= twos; k++) {\\n int newVal = val - j - 2 * k;\\n if (newVal >= 0 && newVal % 3 == 0) {\\n ans = Math.min(ans, newVal \\/ 3);\\n }\\n }\\n }\\n return ans;\\n }\\n\\n public static void main(String[] args) throws IOException {\\n Scanner sc = new Scanner(System.in);\\n PrintWriter pw = new PrintWriter(System.out);\\n int t = sc.nextInt();\\n while (t-- > 0) {\\n int n = sc.nextInt();\\n int[] arr = new int[n];\\n int ans = (int) 1e9;\\n for (int i = 0; i < n; i++) {\\n arr[i] = sc.nextInt();\\n }\\n for (int ones = 0; ones <= 3; ones++) {\\n for (int twos = 0; twos <= 3; twos++) {\\n int cand = 0;\\n for (int x : arr) {\\n cand = Math.max(cand, isValid(x, ones, twos));\\n }\\n ans = Math.min(ans, cand + ones + twos);\\n }\\n }\\n pw.println(ans);\\n }\\n pw.close();\\n }\\n\\n static class Scanner {\\n BufferedReader br;\\n StringTokenizer st;\\n\\n public Scanner(InputStream s) {\\n br = new BufferedReader(new InputStreamReader(s));\\n }\\n\\n public Scanner(FileReader f) {\\n br = new BufferedReader(f);\\n }\\n\\n public String next() throws IOException {\\n while (st == null || !st.hasMoreTokens())\\n st = new StringTokenizer(br.readLine());\\n return st.nextToken();\\n }\\n\\n public int nextInt() throws IOException {\\n return Integer.parseInt(next());\\n }\\n\\n public long nextLong() throws IOException {\\n return...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Polycarp has found a table having an infinite number of rows and columns. The rows are numbered from 1, starting from the topmost one. The columns are numbered from 1, starting from the leftmost one.\\n\\nInitially, the table hasn't been filled and Polycarp wants to fix it. He writes integers from 1 and so on to the table as follows.\\n\\n The figure shows the placement of the numbers from 1 to 10. The following actions are denoted by the arrows.\\n\\nThe leftmost topmost cell of the table is filled with the number 1. Then he writes in the table all positive integers beginning from 2 sequentially using the following algorithm.\\n\\nFirst, Polycarp selects the leftmost non-filled cell in the first row and fills it. Then, while the left neighbor of the last filled cell is filled, he goes down and fills the next cell. So he goes down until the last filled cell has a non-filled neighbor to the left (look at the vertical arrow going down in the figure above).\\n\\nAfter that, he fills the cells from the right to the left until he stops at the first column (look at the horizontal row in the figure above). Then Polycarp selects the leftmost non-filled cell in the first row, goes down, and so on.\\n\\nA friend of Polycarp has a favorite number k. He wants to know which cell will contain the number. Help him to find the indices of the row and the column, such that the intersection of the row and the column is the cell containing the number k.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 100) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of one line containing one integer k (1 \u2264 k \u2264 10^9) which location must be found.\\n\\nOutput\\n\\nFor each test case, output in a separate line two integers r and c (r, c \u2265 1) separated by spaces \u2014 the indices of the row and the column containing the cell filled by the number k, respectively.\\n\\nExample\\n\\nInput\\n\\n\\n7\\n11\\n14\\n5\\n4\\n1\\n2\\n1000000000\\n\\n\\nOutput\\n\\n\\n2 4\\n4 3\\n1 3\\n2 1\\n1 1\\n1 2\\n31623 14130\\nUsing java can you solve the prior task?\",\"targets\":\"\\/* package codechef; \\/\\/ don't place package name! *\\/\\n\\nimport java.util.*;\\nimport java.lang.*;\\nimport java.io.*;\\n\\n\\/* Name of the class has to be \\\"Main\\\" only if the class is public. *\\/\\npublic class Codechef {\\n\\tstatic int max = 200020;\\n\\tstatic long mod = 1000000007l;\\n\\tstatic long prime[] = new long[max];\\n\\tstatic long fac[] = new long[max];\\n\\tstatic long invfac[] = new long[max];\\n\\n\\tstatic void init() {\\n\\n\\t\\tprime[1] = 1;\\n\\t\\tfac[1] = 1;\\n\\t\\tinvfac[1] = 1;\\n\\n\\t\\tfor (int i = 2; i < max; i++) {\\n\\t\\t\\tfac[i] = multiply(fac[i - 1], i);\\n\\t\\t\\tinvfac[i] = power(fac[i], mod - 2l);\\n\\t\\t\\t\\/*\\n\\t\\t\\tif(prime[i] == 0)\\n\\t\\t\\t{\\n\\t\\t\\t\\tfor(int j = i;j 0) {\\n\\t\\t\\t--t;\\n\\t\\t int k = in.nextInt();\\n\\t\\t if(k == 1)\\n\\t\\t {\\n\\t\\t\\t sb.append(\\\"1 1\\\\n\\\");\\n\\t\\t }\\n\\t\\t else if(k == 2)\\n\\t\\t\\t sb.append(\\\"1 2\\\\n\\\");\\n\\t\\t else if(k == 3)\\n\\t\\t\\t sb.append(\\\"2 2\\\\n\\\");\\n\\t\\t else if(k == 4)\\n\\t\\t\\t sb.append(\\\"2 1\\\\n\\\");\\n\\t\\t else {\\n\\t\\t int l1 = (int)Math.sqrt(k-1);\\n\\t\\t int s = l1*l1;\\n\\t\\t int l = 2*(l1+1);\\n\\t\\t if(s+(l\\/2) == k)\\n\\t\\t\\t sb.append((l1+1)+\\\" \\\"+(l1+1)+\\\"\\\\n\\\");\\n\\t\\t else if(k>s+(l\\/2))\\n\\t\\t {\\n\\t\\t\\t int x = s+l-1-k;\\n\\t\\t\\t sb.append((l1+1)+\\\" \\\"+(1+x)+\\\"\\\\n\\\");\\n\\t\\t }\\n\\t\\t else \\n\\t\\t {\\n\\t\\t\\t int y = s+1;\\n\\t\\t\\t int x = k-y;\\n\\t\\t\\t sb.append((1+x)+\\\" \\\"+(l1+1)+\\\"\\\\n\\\");\\n\\t\\t }\\n\\t\\t }\\n\\t\\t}\\n\\t\\tSystem.out.print(sb);\\n\\t}\\n\\n\\tstatic long gcd(long a, long b) {\\n\\t\\tif (a == 0)\\n\\t\\t\\treturn b;\\n\\t\\telse\\n\\t\\t\\treturn gcd(b % a, a);\\n\\t}\\n\\n\\tstatic long lcm(long a, long b) {\\n\\t\\treturn (a \\/ gcd(a, b)) * b;\\n\\t}\\n\\n\\tstatic long power(long a, long n) {\\n\\t\\tif (n == 0)\\n\\t\\t\\treturn 1l;\\n\\t\\tlong res = 1;\\n\\n\\t\\twhile (n > 0) {\\n\\t\\t\\tif (n % 2 == 1) {\\n\\t\\t\\t\\tres = ((res % mod) * (a % mod)) % mod;\\n\\t\\t\\t\\t--n;\\n\\t\\t\\t}\\n\\t\\t\\ta = ((a % mod) * (a % mod))...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given n integers a_1, a_2, \u2026, a_n and an integer k. Find the maximum value of i \u22c5 j - k \u22c5 (a_i | a_j) over all pairs (i, j) of integers with 1 \u2264 i < j \u2264 n. Here, | is the [bitwise OR operator](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#OR).\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10 000) \u2014 the number of test cases.\\n\\nThe first line of each test case contains two integers n (2 \u2264 n \u2264 10^5) and k (1 \u2264 k \u2264 min(n, 100)).\\n\\nThe second line of each test case contains n integers a_1, a_2, \u2026, a_n (0 \u2264 a_i \u2264 n).\\n\\nIt is guaranteed that the sum of n over all test cases doesn't exceed 3 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, print a single integer \u2014 the maximum possible value of i \u22c5 j - k \u22c5 (a_i | a_j).\\n\\nExample\\n\\nInput\\n\\n\\n4\\n3 3\\n1 1 3\\n2 2\\n1 2\\n4 3\\n0 1 2 3\\n6 6\\n3 2 0 0 5 6\\n\\n\\nOutput\\n\\n\\n-1\\n-4\\n3\\n12\\n\\nNote\\n\\nLet f(i, j) = i \u22c5 j - k \u22c5 (a_i | a_j).\\n\\nIn the first test case, \\n\\n * f(1, 2) = 1 \u22c5 2 - k \u22c5 (a_1 | a_2) = 2 - 3 \u22c5 (1 | 1) = -1. \\n * f(1, 3) = 1 \u22c5 3 - k \u22c5 (a_1 | a_3) = 3 - 3 \u22c5 (1 | 3) = -6. \\n * f(2, 3) = 2 \u22c5 3 - k \u22c5 (a_2 | a_3) = 6 - 3 \u22c5 (1 | 3) = -3. \\n\\n\\n\\nSo the maximum is f(1, 2) = -1.\\n\\nIn the fourth test case, the maximum is f(3, 4) = 12.\\nfrom\",\"targets\":\"sys import stdin, gettrace\\n\\nif gettrace():\\n def inputi():\\n return input()\\nelse:\\n def input():\\n return next(stdin)[:-1]\\n\\n\\n def inputi():\\n return stdin.buffer.readline()\\n\\n\\ndef solve():\\n n,k = map(int, input().split())\\n aa = [int(a) for a in input().split()]\\n mnv = n*(n-1) - 200*n\\n def minj(i):\\n return max(i+1, mnv\\/\\/(i+1))\\n res = max(i*j - k*(a|b) for i,a in enumerate(aa[:-1],1)\\n for j,b in enumerate(aa[minj(i)-1:], minj(i)))\\n print(res)\\n\\n\\ndef main():\\n t = int(input())\\n for _ in range(t):\\n solve()\\n\\n\\nif __name__ == \\\"__main__\\\":\\n main()\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A magic number is a number formed by concatenation of numbers 1, 14 and 144. We can use each of these numbers any number of times. Therefore 14144, 141414 and 1411 are magic numbers but 1444, 514 and 414 are not.\\n\\nYou're given a number. Determine if it is a magic number or not.\\n\\nInput\\n\\nThe first line of input contains an integer n, (1 \u2264 n \u2264 109). This number doesn't contain leading zeros.\\n\\nOutput\\n\\nPrint \\\"YES\\\" if n is a magic number or print \\\"NO\\\" if it's not.\\n\\nExamples\\n\\nInput\\n\\n114114\\n\\n\\nOutput\\n\\nYES\\n\\n\\nInput\\n\\n1111\\n\\n\\nOutput\\n\\nYES\\n\\n\\nInput\\n\\n441231\\n\\n\\nOutput\\n\\nNO\\nSolve the task in PYTHON3.\",\"targets\":\"s=input()\\ni=0\\nflag=1\\nwhile(i\\n#define maxn 1010\\n#define modn 1000000007\\nusing namespace std;\\nint f[maxn][maxn],a[maxn],b[maxn],n,m,i,t1=1,t2=1,ans=1;\\nint getnum()\\n{\\n\\tint s=0;\\n\\tchar c=getchar();\\n\\tfor (;!isdigit(c);c=getchar());\\n\\tfor (;isdigit(c);c=getchar())\\n\\t\\ts=s*10+c-'0';\\n\\treturn s;\\n}\\nbool cmp(int x,int y)\\n{\\n\\treturn x>y;\\n}\\nint main()\\n{\\n\\tn=getnum();\\n\\tm=getnum();\\n\\tfor (i=1;i<=n;i++)\\n\\t\\ta[i]=getnum();\\n\\tfor (i=1;i<=m;i++)\\n\\t\\tb[i]=getnum();\\n\\tsort(a+1,a+n+1,cmp);\\n\\tsort(b+1,b+m+1,cmp);\\n\\tfor (i=n*m;i;i--)\\n\\t{\\n\\t\\tif ((t1<=n) && (a[t1]>i)) break;\\n\\t\\tif ((t2<=m) && (b[t2]>i)) break;\\n\\t\\tif ((a[t1]==i) && (b[t2]==i)) t1++,t2++;\\n\\t\\t\\telse if (a[t1]==i) t1++,ans=1LL*ans*(t2-1)%modn;\\n\\t\\t\\t\\telse if (b[t2]==i) t2++,ans=1LL*ans*(t1-1)%modn;\\n\\t\\t\\t\\t\\telse ans=1LL*ans*((t1-1)*(t2-1)-(n*m-i))%modn;\\n\\t}\\n\\tif (i) printf(\\\"0\\\");\\n\\t\\telse printf(\\\"%d\\\",ans);\\n\\treturn 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"As meticulous Gerald sets the table and caring Alexander sends the postcards, Sergey makes snowmen. Each showman should consist of three snowballs: a big one, a medium one and a small one. Sergey's twins help him: they've already made n snowballs with radii equal to r1, r2, ..., rn. To make a snowman, one needs any three snowballs whose radii are pairwise different. For example, the balls with radii 1, 2 and 3 can be used to make a snowman but 2, 2, 3 or 2, 2, 2 cannot. Help Sergey and his twins to determine what maximum number of snowmen they can make from those snowballs.\\n\\nInput\\n\\nThe first line contains integer n (1 \u2264 n \u2264 105) \u2014 the number of snowballs. The next line contains n integers \u2014 the balls' radii r1, r2, ..., rn (1 \u2264 ri \u2264 109). The balls' radii can coincide.\\n\\nOutput\\n\\nPrint on the first line a single number k \u2014 the maximum number of the snowmen. Next k lines should contain the snowmen's descriptions. The description of each snowman should consist of three space-separated numbers \u2014 the big ball's radius, the medium ball's radius and the small ball's radius. It is allowed to print the snowmen in any order. If there are several solutions, print any of them.\\n\\nExamples\\n\\nInput\\n\\n7\\n1 2 3 4 5 6 7\\n\\n\\nOutput\\n\\n2\\n3 2 1\\n6 5 4\\n\\n\\nInput\\n\\n3\\n2 2 3\\n\\n\\nOutput\\n\\n0\",\"targets\":\"import java.io.*;\\nimport java.util.*;\\n\\npublic class C {\\n\\n\\tpublic C () throws IOException {\\n\\t\\tString input = r.readLine();\\n\\t\\tint N = Integer.parseInt(input);\\n\\t\\tint [] R = new int [N];\\n\\t\\tString [] S = r.readLine().split(\\\" \\\");\\n\\t\\tfor (int i = 0; i < N; ++i)\\n\\t\\t\\tR[i] = Integer.parseInt(S[i]);\\n\\t\\tsolve(N, R);\\n\\t}\\n\\t\\n\\tpublic void solve (int N, int [] R) {\\n\\t\\tt = millis();\\n\\t\\tArrays.sort(R);\\n\\t\\t\\n\\t\\tint [] Q = new int [N];\\n\\t\\t\\n\\t\\tQ[0] = 1;\\n\\t\\tint Z = 1;\\n\\t\\tfor (int i = 1; i < N; ++i)\\n\\t\\t\\tif (R[i] == R[i-1]) {\\n\\t\\t\\t\\tQ[i] = Q[i-1]+1;\\n\\t\\t\\t\\tQ[i-1] = -1;\\n\\t\\t\\t} else {\\n\\t\\t\\t\\tQ[i] = 1;\\n\\t\\t\\t\\t++Z;\\n\\t\\t\\t}\\n\\n\\t\\tif (Z < 3)\\n\\t\\t\\tprint(0);\\n\\t\\t\\n\\t\\tMap M = new HashMap();\\n\\t\\tfor (int i = 0; i < N; ++i)\\n\\t\\t\\tif (Q[i] > 0)\\n\\t\\t\\t\\tM.put(R[i], Q[i]);\\n\\t\\t\\n\\t\\tInteger [] U = M.values().toArray(new Integer[Z]);\\n\\t\\tArrays.sort(U);\\t\\t\\n\\t\\tint M1 = U[Z-1], M2 = U[Z-2];\\n\\t\\t\\n\\t\\tint M3 = N - M1 - M2;\\n\\t\\tint C = Math.min(M3, (M3+M2)\\/2);\\n\\t\\tC = Math.min(C, N\\/3);\\n\\t\\t\\n\\t\\tif (C == 0)\\n\\t\\t\\tprint(0);\\n\\t\\t\\n\\t\\tint [][] B = new int[C][3];\\n\\t\\tint c = 0, b = 0;\\n\\t\\tfor (int m : M.keySet()) {\\n\\t\\t\\tint z = Math.min(M.get(m), C);\\n\\t\\t\\tfor (int i = 0; i < z && b < 3; ++i) {\\n\\t\\t\\t\\tB[c++][b] = m;\\n\\t\\t\\t\\tif (c == C) {\\n\\t\\t\\t\\t\\tc = 0; ++b;\\n\\t\\t\\t\\t}\\n\\t\\t\\t}\\n\\t\\t}\\n\\t\\t\\t\\t\\n\\t\\tprint2(C);\\n\\t\\tfor (c = 0; c < C; ++c) {\\n\\t\\t\\tArrays.sort(B[c]);\\n\\t\\t\\tprint2(B[c][2] + \\\" \\\" + B[c][1] + \\\" \\\" + B[c][0]);\\n\\t\\t}\\n\\t}\\n\\n\\t\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\n\\n\\tstatic BufferedReader r;\\n\\tstatic long t;\\n\\t\\n\\tstatic void print2 (Object o) {\\n\\t\\tSystem.out.println(o);\\n\\t}\\n\\t\\n\\tstatic void print (Object o) {\\n\\t\\tprint2(o);\\n\\t\\t\\/\\/print2((millis() - t) \\/ 1000.0);\\n\\t\\tSystem.exit(0);\\n\\t}\\n\\t\\n\\tstatic void run () throws IOException {\\n\\t\\tr = new BufferedReader(new InputStreamReader(System.in));\\n\\t\\tnew C();\\n\\t}\\n\\t\\n\\tpublic static void main(String[] args) throws IOException {\\n\\t\\trun();\\n\\t}\\n\\t\\n\\tstatic long millis() {\\n\\t\\treturn System.currentTimeMillis();\\n\\t}\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given a keyboard that consists of 26 keys. The keys are arranged sequentially in one row in a certain order. Each key corresponds to a unique lowercase Latin letter.\\n\\nYou have to type the word s on this keyboard. It also consists only of lowercase Latin letters.\\n\\nTo type a word, you need to type all its letters consecutively one by one. To type each letter you must position your hand exactly over the corresponding key and press it.\\n\\nMoving the hand between the keys takes time which is equal to the absolute value of the difference between positions of these keys (the keys are numbered from left to right). No time is spent on pressing the keys and on placing your hand over the first letter of the word.\\n\\nFor example, consider a keyboard where the letters from 'a' to 'z' are arranged in consecutive alphabetical order. The letters 'h', 'e', 'l' and 'o' then are on the positions 8, 5, 12 and 15, respectively. Therefore, it will take |5 - 8| + |12 - 5| + |12 - 12| + |15 - 12| = 13 units of time to type the word \\\"hello\\\". \\n\\nDetermine how long it will take to print the word s.\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases.\\n\\nThe next 2t lines contain descriptions of the test cases.\\n\\nThe first line of a description contains a keyboard \u2014 a string of length 26, which consists only of lowercase Latin letters. Each of the letters from 'a' to 'z' appears exactly once on the keyboard.\\n\\nThe second line of the description contains the word s. The word has a length from 1 to 50 letters inclusive and consists of lowercase Latin letters.\\n\\nOutput\\n\\nPrint t lines, each line containing the answer to the corresponding test case. The answer to the test case is the minimal time it takes to type the word s on the given keyboard.\\n\\nExample\\n\\nInput\\n\\n\\n5\\nabcdefghijklmnopqrstuvwxyz\\nhello\\nabcdefghijklmnopqrstuvwxyz\\ni\\nabcdefghijklmnopqrstuvwxyz\\ncodeforces\\nqwertyuiopasdfghjklzxcvbnm\\nqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq\\nqwertyuiopasdfghjklzxcvbnm\\nabacaba\\n\\n\\nOutput\\n\\n\\n13\\n0\\n68\\n0\\n74\\nSolve the task in JAVA.\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.util.HashMap;\\nimport java.util.Map;\\nimport java.util.StringTokenizer;\\n\\npublic class Main {\\n\\n public static void main(String[] args) {\\n MyScanner myScanner = new MyScanner();\\n int t = myScanner.nextInt();\\n while (t-- > 0) {\\n String s = myScanner.nextLine();\\n Map map = new HashMap<>();\\n for(int i=0; i\\n\\nWe see that the third way gives the maximum number of intersections, namely 4.\\n\\nIn the second test case, there are no more chords to draw. Of course, with only one chord present there are no intersections.\\n\\nIn the third test case, we can make at most one intersection by drawing chords 1-3 and 2-4, as...\\nimpor\",\"targets\":\"t java.io.OutputStream;\\nimport java.io.IOException;\\nimport java.io.InputStream;\\nimport java.io.PrintWriter;\\nimport java.io.BufferedReader;\\nimport java.io.InputStreamReader;\\nimport java.util.*;\\n\\npublic class Main {\\n public static void main(String[] args){\\n InputStream inputStream = System.in;\\n OutputStream outputStream = System.out;\\n InputReader in = new InputReader(inputStream);\\n PrintWriter out = new PrintWriter(outputStream);\\n solve(in, out);\\n out.close();\\n }\\n\\n static String reverse(String s) {\\n return (new StringBuilder(s)).reverse().toString();\\n }\\n\\n static void sieveOfEratosthenes(int n, int factors[], ArrayList ar) \\n { \\n factors[1]=1;\\n int p;\\n for(p = 2; p*p <=n; p++) \\n { \\n if(factors[p] == 0) \\n { \\n ar.add(p);\\n factors[p]=p;\\n for(int i = p*p; i <= n; i += p) \\n if(factors[i]==0)\\n factors[i] = p; \\n } \\n } \\n for(;p<=n;p++){\\n if(factors[p] == 0) \\n { \\n factors[p] = p;\\n ar.add(p);\\n } \\n }\\n }\\n\\n static void sort(int ar[]) {\\n int n = ar.length;\\n ArrayList a = new ArrayList<>();\\n for (int i = 0; i < n; i++)\\n a.add(ar[i]);\\n Collections.sort(a);\\n for (int i = 0; i < n; i++)\\n ar[i] = a.get(i);\\n }\\n\\n static void sort1(long ar[]) {\\n int n = ar.length;\\n ArrayList a = new ArrayList<>();\\n for (int i = 0; i < n; i++)\\n a.add(ar[i]);\\n Collections.sort(a);\\n for (int i = 0; i < n; i++)\\n ar[i] = a.get(i);\\n }\\n\\n static void sort2(char ar[]) {\\n int n = ar.length;\\n ArrayList a = new ArrayList<>();\\n for (int i = 0; i < n; i++)\\n a.add(ar[i]);\\n Collections.sort(a);\\n for (int i = 0; i < n; i++)\\n ar[i] = a.get(i);\\n }\\n\\n ...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Ehab loves number theory, but for some reason he hates the number x. Given an array a, find the length of its longest subarray such that the sum of its elements isn't divisible by x, or determine that such subarray doesn't exist.\\n\\nAn array a is a subarray of an array b if a can be obtained from b by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 5) \u2014 the number of test cases you need to solve. The description of the test cases follows.\\n\\nThe first line of each test case contains 2 integers n and x (1 \u2264 n \u2264 10^5, 1 \u2264 x \u2264 10^4) \u2014 the number of elements in the array a and the number that Ehab hates.\\n\\nThe second line contains n space-separated integers a_1, a_2, \u2026, a_{n} (0 \u2264 a_i \u2264 10^4) \u2014 the elements of the array a.\\n\\nOutput\\n\\nFor each testcase, print the length of the longest subarray whose sum isn't divisible by x. If there's no such subarray, print -1.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3 3\\n1 2 3\\n3 4\\n1 2 3\\n2 2\\n0 6\\n\\n\\nOutput\\n\\n\\n2\\n3\\n-1\\n\\nNote\\n\\nIn the first test case, the subarray [2,3] has sum of elements 5, which isn't divisible by 3.\\n\\nIn the second test case, the sum of elements of the whole array is 6, which isn't divisible by 4.\\n\\nIn the third test case, all subarrays have an even sum, so the answer is -1.\\nUsing python3 can you solve the prior task?\",\"targets\":\"# ------------------- fast io --------------------\\nimport os\\nimport sys\\nfrom io import BytesIO, IOBase\\n\\nBUFSIZE = 8192\\n\\n\\nclass FastIO(IOBase):\\n newlines = 0\\n\\n def __init__(self, file):\\n self._fd = file.fileno()\\n self.buffer = BytesIO()\\n self.writable = \\\"x\\\" in file.mode or \\\"r\\\" not in file.mode\\n self.write = self.buffer.write if self.writable else None\\n\\n def read(self):\\n while True:\\n b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))\\n if not b:\\n break\\n ptr = self.buffer.tell()\\n self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)\\n self.newlines = 0\\n return self.buffer.read()\\n\\n def readline(self):\\n while self.newlines == 0:\\n b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))\\n self.newlines = b.count(b\\\"\\\\n\\\") + (not b)\\n ptr = self.buffer.tell()\\n self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)\\n self.newlines -= 1\\n return self.buffer.readline()\\n\\n def flush(self):\\n if self.writable:\\n os.write(self._fd, self.buffer.getvalue())\\n self.buffer.truncate(0), self.buffer.seek(0)\\n\\n\\nclass IOWrapper(IOBase):\\n def __init__(self, file):\\n self.buffer = FastIO(file)\\n self.flush = self.buffer.flush\\n self.writable = self.buffer.writable\\n self.write = lambda s: self.buffer.write(s.encode(\\\"ascii\\\"))\\n self.read = lambda: self.buffer.read().decode(\\\"ascii\\\")\\n self.readline = lambda: self.buffer.readline().decode(\\\"ascii\\\")\\n\\n\\nsys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)\\ninput = lambda: sys.stdin.readline().rstrip(\\\"\\\\r\\\\n\\\")\\n\\n# ------------------- fast io --------------------\\nfrom math import gcd, ceil\\n\\ndef pre(s):\\n n = len(s)\\n pi = [0] * n\\n for i in range(1, n):\\n j = pi[i - 1]\\n while j and s[i] != s[j]:\\n j = pi[j - 1]\\n if s[i] == s[j]:\\n j += 1\\n pi[i]...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given a permutation p of n elements. A permutation of n elements is an array of length n containing each integer from 1 to n exactly once. For example, [1, 2, 3] and [4, 3, 5, 1, 2] are permutations, but [1, 2, 4] and [4, 3, 2, 1, 2] are not permutations. You should perform q queries.\\n\\nThere are two types of queries:\\n\\n * 1 x y \u2014 swap p_x and p_y. \\n * 2 i k \u2014 print the number that i will become if we assign i = p_i k times. \\n\\nInput\\n\\nThe first line contains two integers n and q (1 \u2264 n, q \u2264 10^5).\\n\\nThe second line contains n integers p_1, p_2, ..., p_n.\\n\\nEach of the next q lines contains three integers. The first integer is t (1 \u2264 t \u2264 2) \u2014 type of query. If t = 1, then the next two integers are x and y (1 \u2264 x, y \u2264 n; x \u2260 y) \u2014 first-type query. If t = 2, then the next two integers are i and k (1 \u2264 i, k \u2264 n) \u2014 second-type query.\\n\\nIt is guaranteed that there is at least one second-type query.\\n\\nOutput\\n\\nFor every second-type query, print one integer in a new line \u2014 answer to this query.\\n\\nExamples\\n\\nInput\\n\\n\\n5 4\\n5 3 4 2 1\\n2 3 1\\n2 1 2\\n1 1 3\\n2 1 2\\n\\n\\nOutput\\n\\n\\n4\\n1\\n2\\n\\n\\nInput\\n\\n\\n5 9\\n2 3 5 1 4\\n2 3 5\\n2 5 5\\n2 5 1\\n2 5 3\\n2 5 4\\n1 5 4\\n2 5 3\\n2 2 5\\n2 5 1\\n\\n\\nOutput\\n\\n\\n3\\n5\\n4\\n2\\n3\\n3\\n3\\n1\\n\\nNote\\n\\nIn the first example p = \\\\{5, 3, 4, 2, 1\\\\}. \\n\\nThe first query is to print p_3. The answer is 4.\\n\\nThe second query is to print p_{p_1}. The answer is 1.\\n\\nThe third query is to swap p_1 and p_3. Now p = \\\\{4, 3, 5, 2, 1\\\\}.\\n\\nThe fourth query is to print p_{p_1}. The answer is 2.\\n#incl\",\"targets\":\"ude \\nconst int maxn = 1e5 + 10;\\nint n, q, m, p[maxn], r[maxn], tar[maxn];\\ninline int jump(int x, int k) {\\n for (int i = 0; i < k; ++i) x = p[x];\\n return x;\\n}\\ninline int query(int x, int k) {\\n while (k >= m) {\\n x = tar[x];\\n k -= m;\\n }\\n for (int i = 0; i < k; ++i) x = p[x];\\n return x;\\n}\\nint main() {\\n scanf(\\\"%d%d\\\", &n, &q);\\n for (int i = 1; i <= n; ++i) {\\n scanf(\\\"%d\\\", p + i);\\n r[p[i]] = i;\\n }\\n m = ceil(sqrt(n));\\n for (int i = 1; i <= n; ++i) tar[i] = jump(i, m);\\n int opt, x, y;\\n while (q--) {\\n scanf(\\\"%d%d%d\\\", &opt, &x, &y);\\n if (opt == 1) {\\n std::swap(p[x], p[y]);\\n std::swap(r[p[x]], r[p[y]]);\\n tar[x] = jump(x, m);\\n for (int i = 0; i < m; ++i) {\\n tar[r[x]] = r[tar[x]];\\n x = r[x];\\n }\\n tar[y] = jump(y, m);\\n for (int i = 0; i < m; ++i) {\\n tar[r[y]] = r[tar[y]];\\n y = r[y];\\n }\\n } else\\n printf(\\\"%d\\\\n\\\", query(x, y));\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A binary string is a string that consists of characters 0 and 1.\\n\\nLet \\\\operatorname{MEX} of a binary string be the smallest digit among 0, 1, or 2 that does not occur in the string. For example, \\\\operatorname{MEX} of 001011 is 2, because 0 and 1 occur in the string at least once, \\\\operatorname{MEX} of 1111 is 0, because 0 and 2 do not occur in the string and 0 < 2.\\n\\nA binary string s is given. You should cut it into any number of substrings such that each character is in exactly one substring. It is possible to cut the string into a single substring \u2014 the whole string.\\n\\nA string a is a substring of a string b if a can be obtained from b by deletion of several (possibly, zero or all) characters from the beginning and several (possibly, zero or all) characters from the end.\\n\\nWhat is the minimal sum of \\\\operatorname{MEX} of all substrings pieces can be?\\n\\nInput\\n\\nThe input consists of multiple test cases. The first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Description of the test cases follows.\\n\\nEach test case contains a single binary string s (1 \u2264 |s| \u2264 10^5).\\n\\nIt's guaranteed that the sum of lengths of s over all test cases does not exceed 10^5.\\n\\nOutput\\n\\nFor each test case print a single integer \u2014 the minimal sum of \\\\operatorname{MEX} of all substrings that it is possible to get by cutting s optimally.\\n\\nExample\\n\\nInput\\n\\n\\n6\\n01\\n1111\\n01100\\n101\\n0000\\n01010\\n\\n\\nOutput\\n\\n\\n1\\n0\\n2\\n1\\n1\\n2\\n\\nNote\\n\\nIn the first test case the minimal sum is \\\\operatorname{MEX}(0) + \\\\operatorname{MEX}(1) = 1 + 0 = 1.\\n\\nIn the second test case the minimal sum is \\\\operatorname{MEX}(1111) = 0.\\n\\nIn the third test case the minimal sum is \\\\operatorname{MEX}(01100) = 2.\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nconst long long int MAX = 9187201950435737471;\\nconst double pi = acos(-1);\\nconst int N = 150009;\\nconst long long mod = 1000000007;\\nconst int M = 2147483647;\\nconst int lg = 101;\\nint t, n, m, k;\\nint main() {\\n cin >> t;\\n while (t--) {\\n string s;\\n cin >> s;\\n n = s.size();\\n s += '2';\\n int ans = 0;\\n for (int i = 0; i < n; i++) {\\n if (s[i] != s[i + 1]) {\\n if (s[i] == '0') ans++;\\n }\\n }\\n cout << min(ans, 2) << \\\"\\\\n\\\";\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Compute A \\\\times B, truncate its fractional part, and print the result as an integer.\\n\\nConstraints\\n\\n* 0 \\\\leq A \\\\leq 10^{15}\\n* 0 \\\\leq B < 10\\n* A is an integer.\\n* B is a number with two digits after the decimal point.\\n\\nInput\\n\\nInput is given from Standard Input in the following format:\\n\\n\\nA B\\n\\n\\nOutput\\n\\nPrint the answer as an integer.\\n\\nExamples\\n\\nInput\\n\\n198 1.10\\n\\n\\nOutput\\n\\n217\\n\\n\\nInput\\n\\n1 0.01\\n\\n\\nOutput\\n\\n0\\n\\n\\nInput\\n\\n1000000000000000 9.99\\n\\n\\nOutput\\n\\n9990000000000000\\nThe above is tricky. Write me a correct solution in PYTHON3.\",\"targets\":\"a,b=map(int,input().replace('.','').split());print(a*b\\/\\/100)\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"After winning gold and silver in IOI 2014, Akshat and Malvika want to have some fun. Now they are playing a game on a grid made of n horizontal and m vertical sticks.\\n\\nAn intersection point is any point on the grid which is formed by the intersection of one horizontal stick and one vertical stick.\\n\\nIn the grid shown below, n = 3 and m = 3. There are n + m = 6 sticks in total (horizontal sticks are shown in red and vertical sticks are shown in green). There are n\u00b7m = 9 intersection points, numbered from 1 to 9.\\n\\n\\n\\nThe rules of the game are very simple. The players move in turns. Akshat won gold, so he makes the first move. During his\\/her move, a player must choose any remaining intersection point and remove from the grid all sticks which pass through this point. A player will lose the game if he\\/she cannot make a move (i.e. there are no intersection points remaining on the grid at his\\/her move).\\n\\nAssume that both players play optimally. Who will win the game?\\n\\nInput\\n\\nThe first line of input contains two space-separated integers, n and m (1 \u2264 n, m \u2264 100).\\n\\nOutput\\n\\nPrint a single line containing \\\"Akshat\\\" or \\\"Malvika\\\" (without the quotes), depending on the winner of the game.\\n\\nExamples\\n\\nInput\\n\\n2 2\\n\\n\\nOutput\\n\\nMalvika\\n\\n\\nInput\\n\\n2 3\\n\\n\\nOutput\\n\\nMalvika\\n\\n\\nInput\\n\\n3 3\\n\\n\\nOutput\\n\\nAkshat\\n\\nNote\\n\\nExplanation of the first sample:\\n\\nThe grid has four intersection points, numbered from 1 to 4.\\n\\n\\n\\nIf Akshat chooses intersection point 1, then he will remove two sticks (1 - 2 and 1 - 3). The resulting grid will look like this.\\n\\n\\n\\nNow there is only one remaining intersection point (i.e. 4). Malvika must choose it and remove both remaining sticks. After her move the grid will be empty.\\n\\nIn the empty grid, Akshat cannot make any move, hence he will lose.\\n\\nSince all 4 intersection points of the grid are equivalent, Akshat will lose no matter which one he picks.\",\"targets\":\"a = list(map(int, input().split()))\\nc = a[1]\\nb = a[0]\\ncount1 = 1\\ncount2 = 0\\n\\ni = 2\\nwhile True:\\n if (b - 1) * (c - 1) > 0:\\n if i % 2 != 0:\\n count1 += 1\\n else:\\n count2 += 1\\n b = b - 1\\n c = c - 1\\n else:\\n break\\n\\n i += 1\\n\\nif count1 > count2:\\n print(\\\"Akshat\\\")\\nelse:\\n print(\\\"Malvika\\\")\",\"language\":\"python\",\"split\":\"train\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Denis was very sad after Nastya rejected him. So he decided to walk through the gateways to have some fun. And luck smiled at him! When he entered the first courtyard, he met a strange man who was selling something. \\n\\nDenis bought a mysterious item and it was... Random permutation generator! Denis could not believed his luck.\\n\\nWhen he arrived home, he began to study how his generator works and learned the algorithm. The process of generating a permutation consists of n steps. At the i-th step, a place is chosen for the number i (1 \u2264 i \u2264 n). The position for the number i is defined as follows:\\n\\n * For all j from 1 to n, we calculate r_j \u2014 the minimum index such that j \u2264 r_j \u2264 n, and the position r_j is not yet occupied in the permutation. If there are no such positions, then we assume that the value of r_j is not defined. \\n * For all t from 1 to n, we calculate count_t \u2014 the number of positions 1 \u2264 j \u2264 n such that r_j is defined and r_j = t. \\n * Consider the positions that are still not occupied by permutation and among those we consider the positions for which the value in the count array is maximum. \\n * The generator selects one of these positions for the number i. The generator can choose any position. \\n\\n\\n\\nLet's have a look at the operation of the algorithm in the following example:\\n\\n\\n\\nLet n = 5 and the algorithm has already arranged the numbers 1, 2, 3 in the permutation. Consider how the generator will choose a position for the number 4:\\n\\n * The values of r will be r = [3, 3, 3, 4, \u00d7], where \u00d7 means an indefinite value. \\n * Then the count values will be count = [0, 0, 3, 1, 0]. \\n * There are only two unoccupied positions in the permutation: 3 and 4. The value in the count array for position 3 is 3, for position 4 it is 1. \\n * The maximum value is reached only for position 3, so the algorithm will uniquely select this position for number 4. \\n\\n\\n\\nSatisfied with his purchase, Denis went home. For several days without a break, he generated permutations. He believes that he can come up with...\\nSolve the task in PYTHON3.\",\"targets\":\"import math\\nimport collections\\nimport sys\\ninput = sys.stdin.readline\\ndef check(a, start):\\n count = 0\\n for i in a[::-1]:\\n if i == start+count:\\n count+=1\\n else:\\n return False\\n return True\\ndef solve():\\n n = int(input())\\n a = list(map(int, input().split()))\\n z = []\\n find = 1\\n while a:\\n z.append(a[-1])\\n if find == a[-1]:\\n if check(z, find):\\n find = max(z)+1\\n z = []\\n else:\\n print(\\\"No\\\")\\n return\\n a.pop()\\n if not z:\\n print(\\\"Yes\\\")\\n else:\\n print(\\\"No\\\")\\nfor _ in range(int(input())):\\n solve()\",\"language\":\"python\",\"split\":\"train\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"After the mysterious disappearance of Ashish, his two favourite disciples Ishika and Hriday, were each left with one half of a secret message. These messages can each be represented by a permutation of size n. Let's call them a and b.\\n\\nNote that a permutation of n elements is a sequence of numbers a_1, a_2, \u2026, a_n, in which every number from 1 to n appears exactly once. \\n\\nThe message can be decoded by an arrangement of sequence a and b, such that the number of matching pairs of elements between them is maximum. A pair of elements a_i and b_j is said to match if: \\n\\n * i = j, that is, they are at the same index. \\n * a_i = b_j \\n\\n\\n\\nHis two disciples are allowed to perform the following operation any number of times: \\n\\n * choose a number k and cyclically shift one of the permutations to the left or right k times. \\n\\n\\n\\nA single cyclic shift to the left on any permutation c is an operation that sets c_1:=c_2, c_2:=c_3, \u2026, c_n:=c_1 simultaneously. Likewise, a single cyclic shift to the right on any permutation c is an operation that sets c_1:=c_n, c_2:=c_1, \u2026, c_n:=c_{n-1} simultaneously.\\n\\nHelp Ishika and Hriday find the maximum number of pairs of elements that match after performing the operation any (possibly zero) number of times.\\n\\nInput\\n\\nThe first line of the input contains a single integer n (1 \u2264 n \u2264 2 \u22c5 10^5) \u2014 the size of the arrays.\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 n) \u2014 the elements of the first permutation.\\n\\nThe third line contains n integers b_1, b_2, ..., b_n (1 \u2264 b_i \u2264 n) \u2014 the elements of the second permutation.\\n\\nOutput\\n\\nPrint the maximum number of matching pairs of elements after performing the above operations some (possibly zero) times.\\n\\nExamples\\n\\nInput\\n\\n\\n5\\n1 2 3 4 5\\n2 3 4 5 1\\n\\n\\nOutput\\n\\n\\n5\\n\\nInput\\n\\n\\n5\\n5 4 3 2 1\\n1 2 3 4 5\\n\\n\\nOutput\\n\\n\\n1\\n\\nInput\\n\\n\\n4\\n1 3 2 4\\n4 2 3 1\\n\\n\\nOutput\\n\\n\\n2\\n\\nNote\\n\\nFor the first case: b can be shifted to the right by k = 1. The resulting permutations will be \\\\{1, 2, 3, 4, 5\\\\} and \\\\{1, 2, 3, 4, 5\\\\}.\\n\\nFor the second case: The operation is not required....\\nUsing python3 can you solve the prior task?\",\"targets\":\"n = int(input())\\nM = [0 for i in range(n)]\\na = input().split()\\nb = input().split()\\nfor i in range(n):\\n M[ int(a[i]) - 1] = i\\nfor i in range(n):\\n t = i - M[ int(b[i]) - 1]\\n if t < 0:\\n M[ int(b[i]) - 1] = n + t\\n else:\\n M[ int(b[i]) - 1] = t\\nR = [0 for i in range(n)]\\nfor i in range(n):\\n R[M[i]] += 1\\nprint(max(R))\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"JAVA solution for \\\"Alice has just learned addition. However, she hasn't learned the concept of \\\"carrying\\\" fully \u2014 instead of carrying to the next column, she carries to the column two columns to the left.\\n\\nFor example, the regular way to evaluate the sum 2039 + 2976 would be as shown: \\n\\n\\n\\nHowever, Alice evaluates it as shown: \\n\\n\\n\\nIn particular, this is what she does: \\n\\n * add 9 and 6 to make 15, and carry the 1 to the column two columns to the left, i. e. to the column \\\"0 9\\\"; \\n * add 3 and 7 to make 10 and carry the 1 to the column two columns to the left, i. e. to the column \\\"2 2\\\"; \\n * add 1, 0, and 9 to make 10 and carry the 1 to the column two columns to the left, i. e. to the column above the plus sign; \\n * add 1, 2 and 2 to make 5; \\n * add 1 to make 1. \\n\\nThus, she ends up with the incorrect result of 15005.\\n\\nAlice comes up to Bob and says that she has added two numbers to get a result of n. However, Bob knows that Alice adds in her own way. Help Bob find the number of ordered pairs of positive integers such that when Alice adds them, she will get a result of n. Note that pairs (a, b) and (b, a) are considered different if a \u2260 b.\\n\\nInput\\n\\nThe input consists of multiple test cases. The first line contains an integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases. The description of the test cases follows.\\n\\nThe only line of each test case contains an integer n (2 \u2264 n \u2264 10^9) \u2014 the number Alice shows Bob.\\n\\nOutput\\n\\nFor each test case, output one integer \u2014 the number of ordered pairs of positive integers such that when Alice adds them, she will get a result of n. \\n\\nExample\\n\\nInput\\n\\n\\n5\\n100\\n12\\n8\\n2021\\n10000\\n\\n\\nOutput\\n\\n\\n9\\n4\\n7\\n44\\n99\\n\\nNote\\n\\nIn the first test case, when Alice evaluates any of the sums 1 + 9, 2 + 8, 3 + 7, 4 + 6, 5 + 5, 6 + 4, 7 + 3, 8 + 2, or 9 + 1, she will get a result of 100. The picture below shows how Alice evaluates 6 + 4: \\n\\n\\\":\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.util.StringTokenizer;\\n\\npublic class CF1 {\\n public static void main(String[] args) {\\n FastScanner sc=new FastScanner();\\n int T=sc.nextInt();\\n for (int tt=0; tt0){\\n if ((x&1)==1){\\n a+=mul1* (n%10);\\n mul1*=10;\\n n\\/=10;\\n x=0;\\n }\\n else {\\n b+=mul2* (n%10);\\n mul2*=10;\\n n\\/=10;\\n x=1;\\n }\\n }\\n System.out.println((a+1)*(b+1)-2);\\n }\\n }\\n\\n static class FastScanner {\\n BufferedReader br=new BufferedReader(new InputStreamReader(System.in));\\n StringTokenizer st=new StringTokenizer(\\\"\\\");\\n String next() {\\n while (!st.hasMoreTokens())\\n try {\\n st=new StringTokenizer(br.readLine());\\n } catch (IOException e) {\\n e.printStackTrace();\\n }\\n return st.nextToken();\\n }\\n\\n int nextInt() {\\n return Integer.parseInt(next());\\n }\\n int[] readArray(int n) {\\n int[] a=new int[n];\\n for (int i=0; i\\nusing namespace std;\\nint n, m;\\nconst int N = 10000010;\\nint a[N];\\nint main() {\\n cin >> n;\\n for (int i = 1; i <= n; i++) {\\n cin >> a[i];\\n }\\n int ans = 0;\\n for (int i = 1; i <= n; i++) {\\n if (a[i] == 1) {\\n ans++;\\n }\\n }\\n for (int i = 2; i < n; i++) {\\n if (a[i] == 0 and a[i + 1] == 1 and a[i - 1] == 1) {\\n ans++;\\n }\\n }\\n cout << ans << endl;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in PYTHON3?\\nVupsen and Pupsen were gifted an integer array. Since Vupsen doesn't like the number 0, he threw away all numbers equal to 0 from the array. As a result, he got an array a of length n.\\n\\nPupsen, on the contrary, likes the number 0 and he got upset when he saw the array without zeroes. To cheer Pupsen up, Vupsen decided to come up with another array b of length n such that \u2211_{i=1}^{n}a_i \u22c5 b_i=0. Since Vupsen doesn't like number 0, the array b must not contain numbers equal to 0. Also, the numbers in that array must not be huge, so the sum of their absolute values cannot exceed 10^9. Please help Vupsen to find any such array b!\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 100) \u2014 the number of test cases. The next 2 \u22c5 t lines contain the description of test cases. The description of each test case consists of two lines.\\n\\nThe first line of each test case contains a single integer n (2 \u2264 n \u2264 10^5) \u2014 the length of the array.\\n\\nThe second line contains n integers a_1, a_2, \u2026, a_n (-10^4 \u2264 a_i \u2264 10^4, a_i \u2260 0) \u2014 the elements of the array a.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case print n integers b_1, b_2, \u2026, b_n \u2014 elements of the array b (|b_1|+|b_2|+\u2026 +|b_n| \u2264 10^9, b_i \u2260 0, \u2211_{i=1}^{n}a_i \u22c5 b_i=0).\\n\\nIt can be shown that the answer always exists.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n2\\n5 5\\n5\\n5 -2 10 -9 4\\n7\\n1 2 3 4 5 6 7\\n\\n\\nOutput\\n\\n\\n1 -1\\n-1 5 1 -1 -1\\n-10 2 2 -3 5 -1 -1\\n\\nNote\\n\\nIn the first test case, 5 \u22c5 1 + 5 \u22c5 (-1)=5-5=0. You could also print 3 -3, for example, since 5 \u22c5 3 + 5 \u22c5 (-3)=15-15=0\\n\\nIn the second test case, 5 \u22c5 (-1) + (-2) \u22c5 5 + 10 \u22c5 1 + (-9) \u22c5 (-1) + 4 \u22c5 (-1)=-5-10+10+9-4=0.\",\"targets\":\"def bsdk(ans, i,j,k):\\n ans.append(-(i+j) ,k,k)\\nt = int(input())\\nfor q in range(t):\\n n = int(input())\\n arr = [int(x) for x in input().split()]\\n if n%2 == 0:\\n ans = []\\n for i in range(n\\/\\/2):\\n ans.append(-arr[2*i+1])\\n ans.append(arr[2*i])\\n print(*ans) \\n else:\\n ans = []\\n if (arr[1]+ arr[0])!= 0:\\n ans.append(arr[2])\\n ans.append(arr[2], )\\n ans.append( -(arr[0]+ arr[1]))\\n elif (arr[1] + arr[2]) != 0:\\n ans.append(-(arr[1] + arr[2]))\\n ans.append(arr[0])\\n ans.append(arr[0])\\n else :\\n ans.append(arr[1])\\n ans.append(-(arr[2] + arr[0]) )\\n ans.append(arr[1])\\n arr.pop(0)\\n arr.pop(0)\\n arr.pop(0)\\n n = n-3\\n for i in range(n\\/\\/2):\\n ans.append(-arr[2*i+1])\\n ans.append(arr[2*i])\\n print(*ans) \\n \\n\\n\\n\\n\\n\\n # ans = [1 for i in range(n)] \\n # s = sum(arr)\\n # i = n-1\\n # while(s!= 0 and i >=0):\\n # a = s\\/\\/arr[i]\\n # ans[i] -= a\\n # s -= a*arr[i]\\n # i -= 1\\n\\n # print(*ans)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given an array a of length n.\\n\\nLet's define the eversion operation. Let x = a_n. Then array a is partitioned into two parts: left and right. The left part contains the elements of a that are not greater than x (\u2264 x). The right part contains the elements of a that are strictly greater than x (> x). The order of elements in each part is kept the same as before the operation, i. e. the partition is stable. Then the array is replaced with the concatenation of the left and the right parts.\\n\\nFor example, if the array a is [2, 4, 1, 5, 3], the eversion goes like this: [2, 4, 1, 5, 3] \u2192 [2, 1, 3], [4, 5] \u2192 [2, 1, 3, 4, 5].\\n\\nWe start with the array a and perform eversions on this array. We can prove that after several eversions the array a stops changing. Output the minimum number k such that the array stops changing after k eversions.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 100). Description of the test cases follows.\\n\\nThe first line contains a single integer n (1 \u2264 n \u2264 2 \u22c5 10^5).\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^9).\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case print a single integer k \u2014 the number of eversions after which the array stops changing.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n5\\n2 4 1 5 3\\n5\\n5 3 2 4 1\\n4\\n1 1 1 1\\n\\n\\nOutput\\n\\n\\n1\\n2\\n0\\n\\nNote\\n\\nConsider the fist example.\\n\\n * The first eversion: a = [1, 4, 2, 5, 3], x = 3. [2, 4, 1, 5, 3] \u2192 [2, 1, 3], [4, 5] \u2192 [2, 1, 3, 4, 5]. \\n * The second and following eversions: a = [2, 1, 3, 4, 5], x = 5. [2, 1, 3, 4, 5] \u2192 [2, 1, 3, 4, 5], [] \u2192 [2, 1, 3, 4, 5]. This eversion does not change the array, so the answer is 1. \\n\\n\\n\\nConsider the second example. \\n\\n * The first eversion: a = [5, 3, 2, 4, 1], x = 1. [5, 3, 2, 4, 1] \u2192 [1], [5, 3, 2, 4] \u2192 [1, 5, 3, 2, 4]. \\n * The second eversion: a = [1, 5, 3, 2, 4], x = 4. [1, 5, 3, 2, 4] \u2192 [1, 3, 2, 4], [5] \u2192 [1, 3, 2, 4, 5]. \\n * The third and following eversions: a = [1, 3, 2, 4,...\\nThe above is tricky. Write me a correct solution in JAVA.\",\"targets\":\"import java.util.*;\\npublic class Codeforces {\\n\\n\\n\\t\\/\\/ CHECK CONSTRAINTS ALWAYS EDGE CASE MISSED \\n\\t\\nstatic int mod = 1000000007;\\t\\n public static void main(String[] args) {\\n\\nScanner sc= new Scanner(System.in);\\nwhile(sc.hasNext()) {\\n\\nint t =sc.nextInt();\\nwhile(t-->0) {\\n\\nint n = sc.nextInt();\\nint a[] = new int[n];\\nint max = Integer.MIN_VALUE;\\nint mi = -1;\\nfor(int i = 0 ; i=0 ; i--) {\\n\\tif(a[i] == max) {\\n\\t\\tbreak;\\n\\t}\\n\\telse {\\n\\tif(a[i] > check) {\\n\\t\\tcheck = a[i];\\n\\t\\tcnt++;\\n\\t}\\n\\t}\\n}\\n\\nSystem.out.println(cnt);\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\t\\n\\t\\n\\t\\n\\t\\n\\t\\n\\t\\n\\t\\n\\t\\n\\t\\n\\t\\n}\\n}\\n} \\n\\n\\n\\n\\n\\n\\n\\n\\n\\t\\n\\n\\n\\n \\n static void primeFactors(long n , ArrayList al) {\\n\\t while(n%2 == 0) {\\n\\t\\t al.add(2);\\n\\t\\t n = n\\/2;\\n\\t }\\n\\t\\n\\t for(int i = 3 ; i*i<= n;i+=2) {\\n\\t\\t while(n%i == 0) {\\n\\t\\t\\t al.add(i);\\n\\t\\t\\t n = n\\/i;\\n\\t\\t }\\n\\t }\\n\\t\\n\\tif(n>2) {\\n\\t\\tal.add((int) n);\\n\\t}\\n }\\n \\n \\n \\n static class Pair implements Comparable{\\n\\t int a;\\n\\t int b;\\n\\t Pair(int a, int b){\\n\\t\\t this.a = a;\\n\\t\\t this.b = b;\\n\\t }\\n\\t@Override\\n\\tpublic int compareTo(Pair o) {\\n\\t\\t\\/\\/ TODO Auto-generated method stub\\n\\tint temp = this.a - o.a;\\n\\tif(temp == 0) {\\n\\t return this.b - o.b;\\t\\n\\t}\\n\\telse {\\n\\treturn temp;\\t\\n\\t}\\n\\t\\n\\t\\n\\t}\\n\\t \\n\\t \\n }\\n \\n \\n \\n \\n static long gcd(long a , long b) {\\n\\t if(b == 0) {\\n\\t\\t return a;\\n\\t }\\n\\t \\n\\t return gcd(b, a%b);\\n }\\n \\n \\n static boolean isPalindrome(int a[]) {\\n\\t int i= 0;\\n\\t int j = a.length - 1;\\n\\t \\n\\t while(i<=j) {\\n\\t\\t if(a[i] != a[j]) {\\n\\t\\t return false;\\t \\n\\t\\t }\\n\\t\\t i++;\\n\\t\\t j--;\\n\\t }\\n\\t \\n\\t return true;\\n\\t \\n }\\n \\n \\n \\n static boolean isSubsequence(String a , String b) {\\n\\t \\n\\tint i = 0 , j = 0;\\n\\twhile(i\\nusing namespace std;\\nint main() {\\n string str;\\n cin >> str;\\n if (str[0] >= 'a' && str[0] <= 'z') str[0] = str[0] + ('A' - 'a');\\n cout << str << endl;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Farmer John has a farm that consists of n pastures connected by one-directional roads. Each road has a weight, representing the time it takes to go from the start to the end of the road. The roads could have negative weight, where the cows go so fast that they go back in time! However, Farmer John guarantees that it is impossible for the cows to get stuck in a time loop, where they can infinitely go back in time by traveling across a sequence of roads. Also, each pair of pastures is connected by at most one road in each direction.\\n\\nUnfortunately, Farmer John lost the map of the farm. All he remembers is an array d, where d_i is the smallest amount of time it took the cows to reach the i-th pasture from pasture 1 using a sequence of roads. The cost of his farm is the sum of the weights of each of the roads, and Farmer John needs to know the minimal cost of a farm that is consistent with his memory.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Then t cases follow.\\n\\nThe first line of each test case contains a single integer n (1 \u2264 n \u2264 10^5) \u2014 the number of pastures.\\n\\nThe second line of each test case contains n space separated integers d_1, d_2, \u2026, d_n (0 \u2264 d_i \u2264 10^9) \u2014 the array d. It is guaranteed that d_1 = 0.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 10^5.\\n\\nOutput\\n\\nFor each test case, output the minimum possible cost of a farm that is consistent with Farmer John's memory.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3\\n0 2 3\\n2\\n0 1000000000\\n1\\n0\\n\\n\\nOutput\\n\\n\\n-3\\n0\\n0\\n\\nNote\\n\\nIn the first test case, you can add roads \\n\\n * from pasture 1 to pasture 2 with a time of 2, \\n * from pasture 2 to pasture 3 with a time of 1, \\n * from pasture 3 to pasture 1 with a time of -3, \\n * from pasture 3 to pasture 2 with a time of -1, \\n * from pasture 2 to pasture 1 with a time of -2. \\n\\nThe total cost is 2 + 1 + -3 + -1 + -2 = -3.\\n\\nIn the second test case, you can add a road from pasture 1 to pasture 2 with cost 1000000000 and a road from pasture 2 to pasture 1 with cost...\\\":\",\"targets\":\"#include\\nusing namespace std;\\nconst int maxn=1e5+10;\\nint d[maxn];\\nint main() {\\n\\tint T,n;\\n\\tscanf(\\\"%d\\\",&T);\\n\\twhile(T--) {\\n\\t\\tlong long ans=0,sum=0;\\n\\t\\tscanf(\\\"%d\\\",&n);\\n\\t\\tfor(int i=1;i<=n;i++)\\n\\t\\t\\tscanf(\\\"%d\\\",d+i);\\n\\t\\tsort(d+1,d+n+1);\\n\\t\\tfor(int i=2;i<=n;i++) {\\n\\t\\t\\tans+=1ll*d[i]*(i-1)-sum;\\n\\t\\t\\tsum+=d[i];\\n\\t\\t}\\n\\t\\tans-=d[n];\\n\\t\\tprintf(\\\"%lld\\\\n\\\",-ans);\\n\\t}\\n\\treturn 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\n\\n\\nWilliam has two arrays a and b, each consisting of n items.\\n\\nFor some segments l..r of these arrays William wants to know if it is possible to equalize the values of items in these segments using a balancing operation. Formally, the values are equalized if for each i from l to r holds a_i = b_i.\\n\\nTo perform a balancing operation an even number of indices must be selected, such that l \u2264 pos_1 < pos_2 < ... < pos_k \u2264 r. Next the items of array a at positions pos_1, pos_3, pos_5, ... get incremented by one and the items of array b at positions pos_2, pos_4, pos_6, ... get incremented by one.\\n\\nWilliam wants to find out if it is possible to equalize the values of elements in two arrays for each segment using some number of balancing operations, and what is the minimal number of operations required for that. Note that for each segment the operations are performed independently.\\n\\nInput\\n\\nThe first line contains a two integers n and q (2 \u2264 n \u2264 10^5, 1 \u2264 q \u2264 10^5), the size of arrays a and b and the number of segments.\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (0 \u2264 a_i \u2264 10^9).\\n\\nThe third line contains n integers b_1, b_2, ..., b_n (0 \u2264 b_i \u2264 10^9).\\n\\nEach of the next q lines contains two integers l_i and r_i (1 \u2264 l_i < r_i \u2264 n), the edges of segments.\\n\\nOutput\\n\\nFor each segment output a single number \u2014 the minimal number of balancing operations needed or \\\"-1\\\" if it is impossible to equalize segments of arrays.\\n\\nExample\\n\\nInput\\n\\n\\n8 5\\n0 1 2 9 3 2 7 5\\n2 2 1 9 4 1 5 8\\n2 6\\n1 7\\n2 4\\n7 8\\n5 8\\n\\n\\nOutput\\n\\n\\n1\\n3\\n1\\n-1\\n-1\\n\\nNote\\n\\nFor the first segment from 2 to 6 you can do one operation with pos = [2, 3, 5, 6], after this operation the arrays will be: a = [0, 2, 2, 9, 4, 2, 7, 5], b = [2, 2, 2, 9, 4, 2, 5, 8]. Arrays are equal on a segment from 2 to 6 after this operation.\\n\\nFor the second segment from 1 to 7 you can do three following operations: \\n\\n 1. pos = [1, 3, 5, 6] \\n 2. pos = [1, 7] \\n 3. pos = [2, 7] \\n\\n\\n\\nAfter these operations, the arrays will be: a = [2, 2, 2, 9, 4, 2, 7, 5], b = [2, 2, 2, 9, 4, 2, 7,...\",\"targets\":\"#include \\n#pragma optimize(\\\"unroll-loops\\\")\\nusing namespace std;\\nconst long long N = 1 << 18;\\nconst long long M = 1e10 + 7;\\nint main() {\\n ios_base::sync_with_stdio(0);\\n cin.tie(0);\\n cout.tie(0);\\n long long n, kyu;\\n cin >> n >> kyu;\\n long long a[n];\\n for (long long i = 0; i < n; i++) cin >> a[i];\\n long long tmp, pre[n];\\n for (long long i = 0; i < n; i++) {\\n cin >> tmp;\\n a[i] = tmp - a[i];\\n pre[i] = a[i];\\n if (i > 0) pre[i] += pre[i - 1];\\n }\\n long long st[n][17][2];\\n for (long long i = 0; i < n; i++) st[i][0][0] = st[i][0][1] = pre[i];\\n for (long long j = 1; j < 17; j++)\\n for (long long i = 0; i < n; i++)\\n if (i + (1 << j - 1) < n) {\\n st[i][j][0] = min(st[i][j - 1][0], st[i + (1 << j - 1)][j - 1][0]);\\n st[i][j][1] = max(st[i][j - 1][1], st[i + (1 << j - 1)][j - 1][1]);\\n }\\n while (kyu--) {\\n long long l, r;\\n cin >> l >> r;\\n --l, --r;\\n long long df = r - l + 1;\\n df = log2(df);\\n long long mn = min(st[l][df][0], st[r - (1 << df) + 1][df][0]);\\n long long mx = max(st[l][df][1], st[r - (1 << df) + 1][df][1]);\\n long long last = 0;\\n if (l > 0) last = pre[l - 1];\\n if (mn < last || pre[r] != last) {\\n cout << -1 << '\\\\n';\\n continue;\\n }\\n cout << mx - last << '\\\\n';\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nAndi and Budi were given an assignment to tidy up their bookshelf of n books. Each book is represented by the book title \u2014 a string s_i numbered from 1 to n, each with length m. Andi really wants to sort the book lexicographically ascending, while Budi wants to sort it lexicographically descending.\\n\\nSettling their fight, they decided to combine their idea and sort it asc-desc-endingly, where the odd-indexed characters will be compared ascendingly, and the even-indexed characters will be compared descendingly.\\n\\nA string a occurs before a string b in asc-desc-ending order if and only if in the first position where a and b differ, the following holds:\\n\\n * if it is an odd position, the string a has a letter that appears earlier in the alphabet than the corresponding letter in b; \\n * if it is an even position, the string a has a letter that appears later in the alphabet than the corresponding letter in b. \\n\\nInput\\n\\nThe first line contains two integers n and m (1 \u2264 n \u22c5 m \u2264 10^6).\\n\\nThe i-th of the next n lines contains a string s_i consisting of m uppercase Latin letters \u2014 the book title. The strings are pairwise distinct.\\n\\nOutput\\n\\nOutput n integers \u2014 the indices of the strings after they are sorted asc-desc-endingly.\\n\\nExample\\n\\nInput\\n\\n\\n5 2\\nAA\\nAB\\nBB\\nBA\\nAZ\\n\\n\\nOutput\\n\\n\\n5 2 1 3 4\\n\\nNote\\n\\nThe following illustrates the first example.\\n\\n\",\"targets\":\"#include \\nusing namespace std;\\nconst int N = 2e5 + 5;\\nint n, m;\\nbool comp(pair &a, pair &b) {\\n int id = 0;\\n for (int i = 0; i < m; i++) {\\n if (a.first[i] != b.first[i]) {\\n id = i;\\n break;\\n }\\n }\\n if (id % 2 == 0) {\\n return a.first[id] < b.first[id];\\n } else {\\n return a.first[id] > b.first[id];\\n }\\n}\\nvoid TEST_CASES() {\\n cin >> n >> m;\\n vector > a(n);\\n for (int i = 0; i < n; i++) {\\n cin >> a[i].first;\\n a[i].second = i + 1;\\n }\\n sort(a.begin(), a.end(), comp);\\n for (auto &it : a) {\\n cout << it.second << \\\" \\\";\\n }\\n}\\nint32_t main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(nullptr);\\n int t = 1;\\n while (t--) {\\n TEST_CASES();\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nMolly Hooper has n different kinds of chemicals arranged in a line. Each of the chemicals has an affection value, The i-th of them has affection value ai.\\n\\nMolly wants Sherlock to fall in love with her. She intends to do this by mixing a contiguous segment of chemicals together to make a love potion with total affection value as a non-negative integer power of k. Total affection value of a continuous segment of chemicals is the sum of affection values of each chemical in that segment.\\n\\nHelp her to do so in finding the total number of such segments.\\n\\nInput\\n\\nThe first line of input contains two integers, n and k, the number of chemicals and the number, such that the total affection value is a non-negative power of this number k. (1 \u2264 n \u2264 105, 1 \u2264 |k| \u2264 10).\\n\\nNext line contains n integers a1, a2, ..., an ( - 109 \u2264 ai \u2264 109) \u2014 affection values of chemicals.\\n\\nOutput\\n\\nOutput a single integer \u2014 the number of valid segments.\\n\\nExamples\\n\\nInput\\n\\n4 2\\n2 2 2 2\\n\\n\\nOutput\\n\\n8\\n\\n\\nInput\\n\\n4 -3\\n3 -6 -3 12\\n\\n\\nOutput\\n\\n3\\n\\nNote\\n\\nDo keep in mind that k0 = 1.\\n\\nIn the first sample, Molly can get following different affection values: \\n\\n * 2: segments [1, 1], [2, 2], [3, 3], [4, 4];\\n\\n * 4: segments [1, 2], [2, 3], [3, 4];\\n\\n * 6: segments [1, 3], [2, 4];\\n\\n * 8: segments [1, 4]. \\n\\n\\n\\nOut of these, 2, 4 and 8 are powers of k = 2. Therefore, the answer is 8.\\n\\nIn the second sample, Molly can choose segments [1, 2], [3, 3], [3, 4].\",\"targets\":\"#include \\nusing namespace std;\\nstruct myhashi64 {\\n size_t operator()(int64_t x) const {\\n x = (x ^ (x >> 30)) * UINT64_C(0xbf58476d1ce4e5b9);\\n x = (x ^ (x >> 27)) * UINT64_C(0x94d049bb133111eb);\\n x = x ^ (x >> 31);\\n return x;\\n }\\n};\\nstatic int64_t cnt(const vector &ss, const vector &vkp) {\\n int64_t sum = 0;\\n unordered_map r;\\n for (int i = ss.size() - 1; i >= 0; i--) {\\n for (auto kp : vkp) {\\n auto v = r.find(kp + ss[i]);\\n if (v != r.end()) sum += v->second;\\n }\\n r[ss[i]]++;\\n }\\n for (auto kp : vkp) {\\n auto v = r.find(kp);\\n if (v != r.end()) sum += v->second;\\n }\\n return sum;\\n}\\nint main(int argc, char **argv) {\\n int n, k;\\n cin >> n >> k;\\n vector aa(n);\\n vector ss(n, 0);\\n for (int i = 0; i < n; i++) cin >> aa[i];\\n ss[0] = aa[0];\\n for (int i = 1; i < n; i++) ss[i] = ss[i - 1] + aa[i];\\n int64_t sum = 0;\\n if (abs(k) > 1) {\\n vector vkp;\\n for (int64_t kp = 1; abs(kp) <= 100000000000000; kp *= k) vkp.push_back(kp);\\n sum = cnt(ss, vkp);\\n } else if (k == -1) {\\n sum = cnt(ss, vector{-1, 1});\\n } else {\\n sum = cnt(ss, vector{1});\\n }\\n cout << sum << endl;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"JAVA solution for \\\"n people gathered to hold a jury meeting of the upcoming competition, the i-th member of the jury came up with a_i tasks, which they want to share with each other.\\n\\nFirst, the jury decides on the order which they will follow while describing the tasks. Let that be a permutation p of numbers from 1 to n (an array of size n where each integer from 1 to n occurs exactly once).\\n\\nThen the discussion goes as follows:\\n\\n * If a jury member p_1 has some tasks left to tell, then they tell one task to others. Otherwise, they are skipped. \\n * If a jury member p_2 has some tasks left to tell, then they tell one task to others. Otherwise, they are skipped. \\n * ... \\n * If a jury member p_n has some tasks left to tell, then they tell one task to others. Otherwise, they are skipped. \\n * If there are still members with tasks left, then the process repeats from the start. Otherwise, the discussion ends. \\n\\n\\n\\nA permutation p is nice if none of the jury members tell two or more of their own tasks in a row. \\n\\nCount the number of nice permutations. The answer may be really large, so print it modulo 998 244 353.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases.\\n\\nThe first line of the test case contains a single integer n (2 \u2264 n \u2264 2 \u22c5 10^5) \u2014 number of jury members.\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^9) \u2014 the number of problems that the i-th member of the jury came up with.\\n\\nThe sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, print one integer \u2014 the number of nice permutations, taken modulo 998 244 353.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n2\\n1 2\\n3\\n5 5 5\\n4\\n1 3 3 7\\n6\\n3 4 2 1 3 3\\n\\n\\nOutput\\n\\n\\n1\\n6\\n0\\n540\\n\\nNote\\n\\nExplanation of the first test case from the example:\\n\\nThere are two possible permutations, p = [1, 2] and p = [2, 1]. For p = [1, 2], the process is the following:\\n\\n 1. the first jury member tells a task; \\n 2. the second jury member tells a task; \\n 3. the first jury member doesn't have any tasks left to tell, so they are skipped;...\\\":\",\"targets\":\"import java.io.*;\\nimport java.util.*;\\n\\npublic class C {\\n \\/\\/--------------------------INPUT READER--------------------------------\\/\\/\\n static class fs {\\n public BufferedReader br;\\n StringTokenizer st = new StringTokenizer(\\\"\\\");\\n\\n public fs() { this(System.in); }\\n public fs(InputStream is) {\\n br = new BufferedReader(new InputStreamReader(is));\\n }\\n String next() {\\n while (!st.hasMoreTokens()) {\\n try { st = new StringTokenizer(br.readLine()); }\\n catch (IOException e) { e.printStackTrace(); }\\n }\\n return st.nextToken();\\n }\\n\\n int ni() { return Integer.parseInt(next()); }\\n long nl() { return Long.parseLong(next()); }\\n double nd() { return Double.parseDouble(next()); }\\n String ns() { return next(); }\\n\\n int[] na(int n) {\\n int[] a = new int[n];\\n for (int i = 0; i < n; i++) a[i] = ni();\\n return a;\\n }\\n }\\n \\/\\/-----------------------------------------------------------------------\\/\\/\\n\\n \\/\\/---------------------------PRINTER-------------------------------------\\/\\/\\n static class Printer {\\n static PrintWriter w;\\n public Printer() {this(System.out);}\\n public Printer(OutputStream os) {\\n w = new PrintWriter(os);\\n }\\n public void p(int i) {w.println(i);};\\n public void p(long l) {w.println(l);};\\n public void p(double d) {w.println(d);};\\n public void p(String s) { w.println(s);};\\n public void pr(int i) {w.println(i);};\\n public void pr(long l) {w.print(l);};\\n public void pr(double d) {w.print(d);};\\n public void pr(String s) { w.print(s);};\\n public void pl() {w.println();};\\n public void close() {w.close();};\\n }\\n \\/\\/------------------------------------------------------------------------\\/\\/\\n\\n \\/\\/--------------------------VARIABLES------------------------------------\\/\\/\\n static fs sc = new fs();\\n static...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Let's call a positive integer good if there is no digit 0 in its decimal representation.\\n\\nFor an array of a good numbers a, one found out that the sum of some two neighboring elements is equal to x (i.e. x = a_i + a_{i + 1} for some i). x had turned out to be a good number as well.\\n\\nThen the elements of the array a were written out one after another without separators into one string s. For example, if a = [12, 5, 6, 133], then s = 1256133.\\n\\nYou are given a string s and a number x. Your task is to determine the positions in the string that correspond to the adjacent elements of the array that have sum x. If there are several possible answers, you can print any of them.\\n\\nInput\\n\\nThe first line contains the string s (2 \u2264 |s| \u2264 5 \u22c5 10^5).\\n\\nThe second line contains an integer x (2 \u2264 x < 10^{200000}).\\n\\nAn additional constraint on the input: the answer always exists, i.e you can always select two adjacent substrings of the string s so that if you convert these substrings to integers, their sum is equal to x.\\n\\nOutput\\n\\nIn the first line, print two integers l_1, r_1, meaning that the first term of the sum (a_i) is in the string s from position l_1 to position r_1.\\n\\nIn the second line, print two integers l_2, r_2, meaning that the second term of the sum (a_{i + 1}) is in the string s from position l_2 to position r_2.\\n\\nExamples\\n\\nInput\\n\\n\\n1256133\\n17\\n\\n\\nOutput\\n\\n\\n1 2\\n3 3\\n\\n\\nInput\\n\\n\\n9544715561\\n525\\n\\n\\nOutput\\n\\n\\n2 3\\n4 6\\n\\n\\nInput\\n\\n\\n239923\\n5\\n\\n\\nOutput\\n\\n\\n1 1\\n2 2\\n\\n\\nInput\\n\\n\\n1218633757639\\n976272\\n\\n\\nOutput\\n\\n\\n2 7\\n8 13\\n\\nNote\\n\\nIn the first example s[1;2] = 12 and s[3;3] = 5, 12+5=17.\\n\\nIn the second example s[2;3] = 54 and s[4;6] = 471, 54+471=525.\\n\\nIn the third example s[1;1] = 2 and s[2;2] = 3, 2+3=5.\\n\\nIn the fourth example s[2;7] = 218633 and s[8;13] = 757639, 218633+757639=976272.\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nconst int N = 500000;\\nmt19937 Rand(time(0));\\nint mod[3];\\nstruct hasher {\\n int a[3];\\n hasher(int x = 0) { a[0] = a[1] = a[2] = x; }\\n friend hasher operator+(const hasher &a, const hasher &b) {\\n hasher res;\\n for (int i = 0; i < 3; ++i) {\\n res.a[i] = a.a[i] + b.a[i];\\n if (res.a[i] >= mod[i]) res.a[i] -= mod[i];\\n }\\n return res;\\n }\\n friend hasher operator-(const hasher &a, const hasher &b) {\\n hasher res;\\n for (int i = 0; i < 3; ++i) {\\n res.a[i] = a.a[i] - b.a[i];\\n if (res.a[i] < 0) res.a[i] += mod[i];\\n }\\n return res;\\n }\\n friend hasher operator*(const hasher &a, const hasher &b) {\\n hasher res;\\n for (int i = 0; i < 3; ++i) res.a[i] = 1LL * a.a[i] * b.a[i] % mod[i];\\n return res;\\n }\\n friend bool operator==(const hasher &a, const hasher &b) {\\n for (int i = 0; i < 3; ++i)\\n if (a.a[i] != b.a[i]) return 0;\\n return 1;\\n }\\n hasher inv() {\\n hasher res = 1;\\n for (int i = 0; i < 3; ++i) {\\n int k = mod[i] - 2, x = a[i];\\n for (; k; k >>= 1, x = 1LL * x * x % mod[i])\\n if (k & 1) res.a[i] = 1LL * res.a[i] * x % mod[i];\\n }\\n return res;\\n }\\n} pw[N + 9];\\nvoid Get_pw() {\\n pw[0] = 1;\\n pw[1] = 10;\\n for (int i = 2; i <= N; ++i) pw[i] = pw[i - 1] * pw[1];\\n}\\nhasher Get_hash(hasher *h, int l, int r) {\\n return h[r] - h[l - 1] * pw[r - l + 1];\\n}\\nhasher Get_hash(vector &h, int l, int r) {\\n return h[r] - h[l - 1] * pw[r - l + 1];\\n}\\nchar s[N + 9], t[N + 9];\\nint n, m;\\nvoid into() {\\n scanf(\\\"%s%s\\\", s + 1, t + 1);\\n n = strlen(s + 1);\\n m = strlen(t + 1);\\n}\\nint Get_mod0() { return 19260817; }\\nbool Check_prime(int n) {\\n for (int i = 2; i * i <= n; ++i)\\n if (n % i == 0) return 0;\\n return 1;\\n}\\nint Get_prime(int n) {\\n for (; !Check_prime(n); ++n)\\n ;\\n return n;\\n}\\nint Get_mod1() {\\n int sum = 0;\\n for (int i = 1; i <= n; ++i) sum += s[i];\\n for (int i = 1; i <= m; ++i) sum += t[i];\\n int n = Rand() % 200000000 + 300000000 + sum;\\n return Get_prime(n);\\n}\\nint Get_mod2() {\\n int x =...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Furik and Rubik love playing computer games. Furik has recently found a new game that greatly interested Rubik. The game consists of n parts and to complete each part a player may probably need to complete some other ones. We know that the game can be fully completed, that is, its parts do not form cyclic dependencies. \\n\\nRubik has 3 computers, on which he can play this game. All computers are located in different houses. Besides, it has turned out that each part of the game can be completed only on one of these computers. Let's number the computers with integers from 1 to 3. Rubik can perform the following actions: \\n\\n * Complete some part of the game on some computer. Rubik spends exactly 1 hour on completing any part on any computer. \\n * Move from the 1-st computer to the 2-nd one. Rubik spends exactly 1 hour on that. \\n * Move from the 1-st computer to the 3-rd one. Rubik spends exactly 2 hours on that. \\n * Move from the 2-nd computer to the 1-st one. Rubik spends exactly 2 hours on that. \\n * Move from the 2-nd computer to the 3-rd one. Rubik spends exactly 1 hour on that. \\n * Move from the 3-rd computer to the 1-st one. Rubik spends exactly 1 hour on that. \\n * Move from the 3-rd computer to the 2-nd one. Rubik spends exactly 2 hours on that. \\n\\n\\n\\nHelp Rubik to find the minimum number of hours he will need to complete all parts of the game. Initially Rubik can be located at the computer he considers necessary. \\n\\nInput\\n\\nThe first line contains integer n (1 \u2264 n \u2264 200) \u2014 the number of game parts. The next line contains n integers, the i-th integer \u2014 ci (1 \u2264 ci \u2264 3) represents the number of the computer, on which you can complete the game part number i. \\n\\nNext n lines contain descriptions of game parts. The i-th line first contains integer ki (0 \u2264 ki \u2264 n - 1), then ki distinct integers ai, j (1 \u2264 ai, j \u2264 n; ai, j \u2260 i) \u2014 the numbers of parts to complete before part i.\\n\\nNumbers on all lines are separated by single spaces. You can assume that the parts of the game are numbered from 1 to n in some way. It is...\\\":\",\"targets\":\"#include \\nusing namespace std;\\nint i, j, k, n, m, an;\\nint co[210], len[210], a[210][210], f[210];\\ninline bool ju(int x) {\\n int i;\\n for (i = 1; i <= len[x]; i++)\\n if (!f[a[x][i]]) return 0;\\n return 1;\\n}\\ninline void work(int x) {\\n int s = 0, re = 0, i;\\n for (i = 1; i <= n; i++) f[i] = 0;\\n for (;;) {\\n int F = 0;\\n for (;;) {\\n for (i = 1; i <= n; i++)\\n if (!f[i] && co[i] == x && ju(i)) {\\n F = 1;\\n f[i] = 1;\\n re++;\\n s++;\\n break;\\n }\\n if (!F) break;\\n F = 0;\\n }\\n if (s == n) break;\\n x++;\\n if (x > 3) x = 1;\\n re++;\\n }\\n an = min(an, re);\\n}\\nint main() {\\n scanf(\\\"%d\\\", &n);\\n for (i = 1; i <= n; i++) scanf(\\\"%d\\\", &co[i]);\\n for (i = 1; i <= n; i++) {\\n scanf(\\\"%d\\\", &len[i]);\\n for (j = 1; j <= len[i]; j++) scanf(\\\"%d\\\", &a[i][j]);\\n }\\n an = 210 * 210;\\n for (i = 1; i <= 3; i++) work(i);\\n printf(\\\"%d\\\\n\\\", an);\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"During the hypnosis session, Nicholas suddenly remembered a positive integer n, which doesn't contain zeros in decimal notation. \\n\\nSoon, when he returned home, he got curious: what is the maximum number of digits that can be removed from the number so that the number becomes not prime, that is, either composite or equal to one?\\n\\nFor some numbers doing so is impossible: for example, for number 53 it's impossible to delete some of its digits to obtain a not prime integer. However, for all n in the test cases of this problem, it's guaranteed that it's possible to delete some of their digits to obtain a not prime number.\\n\\nNote that you cannot remove all the digits from the number.\\n\\nA prime number is a number that has no divisors except one and itself. A composite is a number that has more than two divisors. 1 is neither a prime nor a composite number.\\n\\nInput\\n\\nEach test contains multiple test cases.\\n\\nThe first line contains one positive integer t (1 \u2264 t \u2264 10^3), denoting the number of test cases. Description of the test cases follows.\\n\\nThe first line of each test case contains one positive integer k (1 \u2264 k \u2264 50) \u2014 the number of digits in the number.\\n\\nThe second line of each test case contains a positive integer n, which doesn't contain zeros in decimal notation (10^{k-1} \u2264 n < 10^{k}). It is guaranteed that it is always possible to remove less than k digits to make the number not prime.\\n\\nIt is guaranteed that the sum of k over all test cases does not exceed 10^4.\\n\\nOutput\\n\\nFor every test case, print two numbers in two lines. In the first line print the number of digits, that you have left in the number. In the second line print the digits left after all delitions. \\n\\nIf there are multiple solutions, print any.\\n\\nExample\\n\\nInput\\n\\n\\n7\\n3\\n237\\n5\\n44444\\n3\\n221\\n2\\n35\\n3\\n773\\n1\\n4\\n30\\n626221626221626221626221626221\\n\\n\\nOutput\\n\\n\\n2\\n27\\n1\\n4\\n1\\n1\\n2\\n35\\n2\\n77\\n1\\n4\\n1\\n6\\n\\nNote\\n\\nIn the first test case, you can't delete 2 digits from the number 237, as all the numbers 2, 3, and 7 are prime. However, you can delete 1 digit, obtaining a number 27 =...\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nconst int N = 55;\\nchar a[N];\\nint flag[N];\\nvector v[15];\\nvoid solve() {\\n int q = 0, i, n, ans;\\n memset(flag, 0, sizeof(flag));\\n memset(a, '\\\\0', sizeof(a));\\n scanf(\\\"%d%s\\\", &n, a + 1);\\n for (i = 1; i <= n; ++i) {\\n if (a[i] == '1' || a[i] == '4' || a[i] == '6' || a[i] == '8' ||\\n a[i] == '9') {\\n printf(\\\"1\\\\n\\\");\\n printf(\\\"%c\\\\n\\\", a[i]);\\n return;\\n }\\n flag[a[i] - '0']++;\\n if (a[i] == '5' && (flag[3] || flag[2] || flag[7])) {\\n q = 1;\\n if (flag[3])\\n ans = 3;\\n else if (flag[2])\\n ans = 2;\\n else\\n ans = 7;\\n } else if (a[i] == '7' && (flag[2] || flag[5])) {\\n if (flag[2]) {\\n q = 2;\\n } else {\\n q = 5;\\n }\\n } else if (a[i] == '2' && i > 1) {\\n q = 3;\\n }\\n }\\n printf(\\\"2\\\\n\\\");\\n if (q == 1) {\\n printf(\\\"%d%d\\\\n\\\", ans, 5);\\n return;\\n } else if (q == 3) {\\n printf(\\\"%c%d\\\\n\\\", a[1], 2);\\n return;\\n } else if (q > 0) {\\n printf(\\\"%d%d\\\\n\\\", q, 7);\\n return;\\n }\\n for (i = 1; i <= 9; ++i) {\\n if (flag[i] > 1) {\\n printf(\\\"%d%d\\\\n\\\", i, i);\\n return;\\n }\\n }\\n}\\nint main() {\\n int t;\\n scanf(\\\"%d\\\", &t);\\n while (t--) {\\n solve();\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Shohag has an integer sequence a_1, a_2, \u2026, a_n. He can perform the following operation any number of times (possibly, zero):\\n\\n * Select any positive integer k (it can be different in different operations). \\n * Choose any position in the sequence (possibly the beginning or end of the sequence, or in between any two elements) and insert k into the sequence at this position. \\n * This way, the sequence a changes, and the next operation is performed on this changed sequence. \\n\\n\\n\\nFor example, if a=[3,3,4] and he selects k = 2, then after the operation he can obtain one of the sequences [\\\\underline{2},3,3,4], [3,\\\\underline{2},3,4], [3,3,\\\\underline{2},4], or [3,3,4,\\\\underline{2}].\\n\\nShohag wants this sequence to satisfy the following condition: for each 1 \u2264 i \u2264 |a|, a_i \u2264 i. Here, |a| denotes the size of a.\\n\\nHelp him to find the minimum number of operations that he has to perform to achieve this goal. We can show that under the constraints of the problem it's always possible to achieve this goal in a finite number of operations.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 200) \u2014 the number of test cases.\\n\\nThe first line of each test case contains a single integer n (1 \u2264 n \u2264 100) \u2014 the initial length of the sequence.\\n\\nThe second line of each test case contains n integers a_1, a_2, \u2026, a_n (1 \u2264 a_i \u2264 10^9) \u2014 the elements of the sequence.\\n\\nOutput\\n\\nFor each test case, print a single integer \u2014 the minimum number of operations needed to perform to achieve the goal mentioned in the statement.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n3\\n1 3 4\\n5\\n1 2 5 7 4\\n1\\n1\\n3\\n69 6969 696969\\n\\n\\nOutput\\n\\n\\n1\\n3\\n0\\n696966\\n\\nNote\\n\\nIn the first test case, we have to perform at least one operation, as a_2=3>2. We can perform the operation [1, 3, 4] \u2192 [1, \\\\underline{2}, 3, 4] (the newly inserted element is underlined), now the condition is satisfied.\\n\\nIn the second test case, Shohag can perform the following operations:\\n\\n[1, 2, 5, 7, 4] \u2192 [1, 2, \\\\underline{3}, 5, 7, 4] \u2192 [1, 2, 3, \\\\underline{4}, 5, 7, 4] \u2192 [1, 2, 3, 4, 5, \\\\underline{3}, 7, 4].\\n\\nIn the third...\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.util.*;\\npublic class A{\\n\\tpublic static void main(String[] args){\\n\\t\\tFastReader sc = new FastReader();\\n\\t\\tint t=sc.nextInt();\\n\\t\\twhile(t-->0){\\n\\t\\t\\tint n=sc.nextInt();\\n\\t\\t\\tint a[]=sc.fastArray(n);boolean check=false;\\n\\t\\t\\tint ans=0;\\n\\t\\t\\tif(a[0]!=1) {\\n\\t\\t\\t\\tans+=a[0]-1;\\n\\t\\t\\t\\tcheck=true;\\n\\t\\t\\t}\\n\\t\\t\\tfor(int i=1;i0)ans+=add;\\n\\t\\t\\t\\t\\tcheck=true;\\t\\n\\t\\t\\t\\t}\\n\\t\\t\\t}\\n\\t\\t\\tSystem.out.println(ans);\\n\\t\\t}\\t\\t \\n }\\n\\n\\tstatic class pair {\\n\\t\\tint x;int y;\\n\\t\\t pair(int x,int y){\\n\\t\\t\\tthis.x=x;\\n\\t\\t\\tthis.y=y;\\n\\t\\t}\\n\\t\\t\\n\\t}\\n\\tstatic ArrayList primeFac(int n){\\n\\t\\tArrayListans = new ArrayList();\\n\\t\\tint lp[]=new int [n+1];\\n\\t\\tArrays.fill(lp, 0); \\t\\/\\/0-prime\\n\\t\\tfor(int i=2;i<=n;i++) {\\n\\t\\t\\tif(lp[i]==0) {\\n\\t\\t\\t\\tfor(int j=i;j<=n;j+=i) {\\n\\t\\t\\t\\t\\tif(lp[j]==0) lp[j]=i;\\n\\t\\t\\t\\t}\\n\\t\\t\\t}\\n\\t\\t}\\n\\t\\tint fac=n;\\n\\t\\twhile(fac>1) {\\n\\t\\t\\tans.add(lp[fac]);\\n\\t\\t\\tfac=fac\\/lp[fac];\\n\\t\\t}\\n\\t\\tprint(ans);\\n\\t\\treturn ans;\\n\\t}\\n\\tstatic ArrayList prime_in_given_range(long l,long r){\\n\\t\\tArrayList ans= new ArrayList<>();\\n\\t\\tint n=(int)Math.sqrt(r)+1;\\n\\t\\tint prime[]=sieve_of_Eratosthenes(n);\\n\\t\\tlong res[]=new long [(int)(r-l)+1];\\n\\t\\tfor(int i=0;i<=r-l;i++) {\\n\\t\\t\\tres[i]=i+l;\\n\\t\\t}\\n\\t\\tfor(int i=0;i0) {\\n\\t\\t\\tif((b&1)==1) {\\n\\t\\t\\t\\tres*=a;\\n\\t\\t\\t}\\n\\t\\t\\ta*=a;\\n\\t\\t\\tb>>=1;\\n\\t\\t}\\n\\t\\treturn res;\\n\\t}\\n\\tstatic void print(int a[])...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"This is the easy version of the problem. The only difference from the hard version is that in this version all coordinates are even.\\n\\nThere are n fence-posts at distinct coordinates on a plane. It is guaranteed that no three fence posts lie on the same line.\\n\\nThere are an infinite number of cows on the plane, one at every point with integer coordinates.\\n\\nGregor is a member of the Illuminati, and wants to build a triangular fence, connecting 3 distinct existing fence posts. A cow strictly inside the fence is said to be enclosed. If there are an odd number of enclosed cows and the area of the fence is an integer, the fence is said to be interesting.\\n\\nFind the number of interesting fences.\\n\\nInput\\n\\nThe first line contains the integer n (3 \u2264 n \u2264 6000), the number of fence posts which Gregor can choose to form the vertices of a fence.\\n\\nEach of the next n line contains two integers x and y (0 \u2264 x,y \u2264 10^7, x and y are even), where (x,y) is the coordinate of a fence post. All fence posts lie at distinct coordinates. No three fence posts are on the same line.\\n\\nOutput\\n\\nPrint a single integer, the number of interesting fences. Two fences are considered different if they are constructed with a different set of three fence posts.\\n\\nExamples\\n\\nInput\\n\\n\\n3\\n0 0\\n2 0\\n0 4\\n\\n\\nOutput\\n\\n\\n1\\n\\n\\nInput\\n\\n\\n5\\n0 0\\n2 16\\n30 14\\n4 6\\n2 10\\n\\n\\nOutput\\n\\n\\n3\\n\\nNote\\n\\nIn the first example, there is only 1 fence. That fence is interesting since its area is 4 and there is 1 enclosed cow, marked in red.\\n\\n\\n\\nIn the second example, there are 3 interesting fences. \\n\\n * (0,0) \u2014 (30,14) \u2014 (2,10) \\n * (2,16) \u2014 (30,14) \u2014 (2,10) \\n * (30,14) \u2014 (4,6) \u2014 (2,10)\",\"targets\":\"n = int(input())\\nnum = [0, 0, 0, 0]\\n\\nfor _ in range(n):\\n x, y = map(int, input().split())\\n num[bool(x&2) + (y&2)] += 1\\n\\nprint((n*(n-1)*(n-2))\\/\\/6 - num[0]*num[1]*num[2] - num[0]*num[1]*num[3] - num[0]*num[2]*num[3] - num[1]*num[2]*num[3])\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given two positive integers n and s. Find the maximum possible median of an array of n non-negative integers (not necessarily distinct), such that the sum of its elements is equal to s.\\n\\nA median of an array of integers of length m is the number standing on the \u2308 {m\\/2} \u2309-th (rounding up) position in the non-decreasing ordering of its elements. Positions are numbered starting from 1. For example, a median of the array [20,40,20,50,50,30] is the \u2308 m\\/2 \u2309-th element of [20,20,30,40,50,50], so it is 30. There exist other definitions of the median, but in this problem we use the described definition.\\n\\nInput\\n\\nThe input consists of multiple test cases. The first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Description of the test cases follows.\\n\\nEach test case contains a single line with two integers n and s (1 \u2264 n, s \u2264 10^9) \u2014 the length of the array and the required sum of the elements.\\n\\nOutput\\n\\nFor each test case print a single integer \u2014 the maximum possible median.\\n\\nExample\\n\\nInput\\n\\n\\n8\\n1 5\\n2 5\\n3 5\\n2 1\\n7 17\\n4 14\\n1 1000000000\\n1000000000 1\\n\\n\\nOutput\\n\\n\\n5\\n2\\n2\\n0\\n4\\n4\\n1000000000\\n0\\n\\nNote\\n\\nPossible arrays for the first three test cases (in each array the median is underlined):\\n\\n * In the first test case [\\\\underline{5}] \\n * In the second test case [\\\\underline{2}, 3] \\n * In the third test case [1, \\\\underline{2}, 2] \\nThe above is tricky. Write me a correct solution in PYTHON3.\",\"targets\":\"t = int(input())\\nfor i in range(t):\\n n, s = map(int, input().split())\\n if n % 2 == 0:\\n m = n \\/\\/ 2 - 1\\n else:\\n m = n \\/\\/ 2\\n print(s \\/\\/ (n - m))\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Anastasia loves going for a walk in Central Uzhlyandian Park. But she became uninterested in simple walking, so she began to collect Uzhlyandian pebbles. At first, she decided to collect all the pebbles she could find in the park.\\n\\nShe has only two pockets. She can put at most k pebbles in each pocket at the same time. There are n different pebble types in the park, and there are wi pebbles of the i-th type. Anastasia is very responsible, so she never mixes pebbles of different types in same pocket. However, she can put different kinds of pebbles in different pockets at the same time. Unfortunately, she can't spend all her time collecting pebbles, so she can collect pebbles from the park only once a day.\\n\\nHelp her to find the minimum number of days needed to collect all the pebbles of Uzhlyandian Central Park, taking into consideration that Anastasia can't place pebbles of different types in same pocket.\\n\\nInput\\n\\nThe first line contains two integers n and k (1 \u2264 n \u2264 105, 1 \u2264 k \u2264 109) \u2014 the number of different pebble types and number of pebbles Anastasia can place in one pocket.\\n\\nThe second line contains n integers w1, w2, ..., wn (1 \u2264 wi \u2264 104) \u2014 number of pebbles of each type. \\n\\nOutput\\n\\nThe only line of output contains one integer \u2014 the minimum number of days Anastasia needs to collect all the pebbles.\\n\\nExamples\\n\\nInput\\n\\n3 2\\n2 3 4\\n\\n\\nOutput\\n\\n3\\n\\n\\nInput\\n\\n5 4\\n3 1 8 9 7\\n\\n\\nOutput\\n\\n5\\n\\nNote\\n\\nIn the first sample case, Anastasia can collect all pebbles of the first type on the first day, of second type \u2014 on the second day, and of third type \u2014 on the third day.\\n\\nOptimal sequence of actions in the second sample case: \\n\\n * In the first day Anastasia collects 8 pebbles of the third type. \\n * In the second day she collects 8 pebbles of the fourth type. \\n * In the third day she collects 3 pebbles of the first type and 1 pebble of the fourth type. \\n * In the fourth day she collects 7 pebbles of the fifth type. \\n * In the fifth day she collects 1 pebble of the second type. \\nimpor\",\"targets\":\"t java.io.*;\\nimport java.math.BigInteger;\\nimport java.util.*;\\nimport java.util.concurrent.*;\\npublic class Main {\\n public static void main(String[] args) {\\n InputStream inputStream = System.in;\\n OutputStream outputStream = System.out;\\n InputReader in = new InputReader(inputStream);\\n PrintWriter out = new PrintWriter(outputStream);\\n Solver solver = new Solver();\\n solver.solve(in, out);\\n out.close();\\n }\\n static class Solver {\\n public void solve(InputReader in, PrintWriter out) {\\n int n = in.nextInt();\\n int k = in.nextInt();\\n int[] w = new int[n];\\n int tot = 0, nz = 0;\\n for (int i = 0; i < n; ++i) {\\n w[i] = in.nextInt();\\n if (w[i] >= 2 * k) {\\n tot += w[i] \\/ (2 * k);\\n w[i] = w[i] % (2 * k);\\n }\\n if (w[i] > k) {\\n tot += 1;\\n w[i] = 0;\\n }\\n if (w[i] > 0) {\\n ++nz;\\n }\\n }\\n tot += nz \\/ 2 + (nz % 2);\\n out.println(tot);\\n }\\n } \\/\\/ wubba lubba dub dub\\n static class InputReader {\\n public BufferedReader reader;\\n public StringTokenizer tokenizer;\\n public InputReader(InputStream stream) {\\n reader = new BufferedReader(new InputStreamReader(stream), 32768);\\n tokenizer = null;\\n }\\n public String next() {\\n while (tokenizer == null || !tokenizer.hasMoreElements()) {\\n try {\\n tokenizer = new StringTokenizer(reader.readLine());\\n } catch (IOException e) {\\n throw new RuntimeException(e);\\n }\\n }\\n return tokenizer.nextToken();\\n }\\n public int nextInt() {\\n return Integer.parseInt(next());\\n }\\n public long nextLong() {\\n return Long.parseLong(next());\\n }\\n ...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).\\n\\nFor a positive integer n, we call a permutation p of length n good if the following condition holds for every pair i and j (1 \u2264 i \u2264 j \u2264 n) \u2014 \\n\\n * (p_i OR p_{i+1} OR \u2026 OR p_{j-1} OR p_{j}) \u2265 j-i+1, where OR denotes the [bitwise OR operation.](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#OR)\\n\\n\\n\\nIn other words, a permutation p is good if for every subarray of p, the OR of all elements in it is not less than the number of elements in that subarray. \\n\\nGiven a positive integer n, output any good permutation of length n. We can show that for the given constraints such a permutation always exists.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 100). Description of the test cases follows.\\n\\nThe first and only line of every test case contains a single integer n (1 \u2264 n \u2264 100).\\n\\nOutput\\n\\nFor every test, output any good permutation of length n on a separate line. \\n\\nExample\\n\\nInput\\n\\n\\n3\\n1\\n3\\n7\\n\\n\\nOutput\\n\\n\\n1\\n3 1 2\\n4 3 5 2 7 1 6\\n\\nNote\\n\\nFor n = 3, [3,1,2] is a good permutation. Some of the subarrays are listed below. \\n\\n * 3 OR 1 = 3 \u2265 2 (i = 1,j = 2) \\n * 3 OR 1 OR 2 = 3 \u2265 3 (i = 1,j = 3) \\n * 1 OR 2 = 3 \u2265 2 (i = 2,j = 3) \\n * 1 \u2265 1 (i = 2,j = 2) \\n\\n\\n\\nSimilarly, you can verify that [4,3,5,2,7,1,6] is also good.\\nUsing java can you solve the prior task?\",\"targets\":\"\\/*********CODE BY SHREY_SHREYANSH*********\\/\\n\\nimport java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.util.Arrays;\\nimport java.util.Scanner;\\nimport java.util.StringTokenizer;\\n\\npublic class Main\\n{\\n static class FastReader\\n {\\n BufferedReader br;\\n StringTokenizer st;\\n\\n public FastReader()\\n {\\n br = new BufferedReader(new\\n InputStreamReader(System.in));\\n }\\n\\n String next()\\n {\\n while (st == null || !st.hasMoreElements())\\n {\\n try\\n {\\n st = new StringTokenizer(br.readLine());\\n }\\n catch (IOException e)\\n {\\n e.printStackTrace();\\n }\\n }\\n return st.nextToken();\\n }\\n\\n int nextInt()\\n {\\n return Integer.parseInt(next());\\n }\\n\\n long nextLong()\\n {\\n return Long.parseLong(next());\\n }\\n\\n double nextDouble()\\n {\\n return Double.parseDouble(next());\\n }\\n\\n String nextLine()\\n {\\n String str = \\\"\\\";\\n try\\n {\\n str = br.readLine();\\n }\\n catch (IOException e)\\n {\\n e.printStackTrace();\\n }\\n return str;\\n }\\n }\\n\\n public static void main(String[] args)\\n {\\n FastReader sc =new FastReader();\\n int T = sc.nextInt();\\n while (T-- > 0) {\\n int n = sc.nextInt();\\n for(int i=1;i<=n;i++)\\n System.out.print(i+\\\" \\\");\\n System.out.println();\\n }\\n }\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Alice has an empty grid with n rows and m columns. Some of the cells are marked, and no marked cells are adjacent to the edge of the grid. (Two squares are adjacent if they share a side.) \\n\\nAlice wants to fill each cell with a number such that the following statements are true: \\n\\n * every unmarked cell contains either the number 1 or 4; \\n * every marked cell contains the sum of the numbers in all unmarked cells adjacent to it (if a marked cell is not adjacent to any unmarked cell, this sum is 0); \\n * every marked cell contains a multiple of 5. \\n\\nAlice couldn't figure it out, so she asks Bob to help her. Help Bob find any such grid, or state that no such grid exists.\\n\\nInput\\n\\nThe first line of input contains two integers n and m (1 \u2264 n, m \u2264 500) \u2014 the number of rows and the number of columns in the grid, respectively.\\n\\nThen n lines follow, each containing m characters. Each of these characters is either '.' or 'X' \u2014 an unmarked and a marked cell, respectively. No marked cells are adjacent to the edge of the grid.\\n\\nOutput\\n\\nOutput \\\"'NO\\\" if no suitable grid exists. Otherwise, output \\\"'YES\\\"'. Then output n lines of m space-separated integers \u2014 the integers in the grid.\\n\\nExamples\\n\\nInput\\n\\n\\n5 5\\n.....\\n.XXX.\\n.X.X.\\n.XXX.\\n.....\\n\\n\\nOutput\\n\\n\\nYES\\n4 1 4 4 1\\n4 5 5 5 1\\n4 5 1 5 4\\n1 5 5 5 4\\n1 4 4 1 4\\n\\n\\nInput\\n\\n\\n5 5\\n.....\\n.XXX.\\n.XXX.\\n.XXX.\\n.....\\n\\n\\nOutput\\n\\n\\nNO\\n\\n\\nInput\\n\\n\\n3 2\\n..\\n..\\n..\\n\\n\\nOutput\\n\\n\\nYES\\n4 1\\n4 1\\n1 4\\n\\n\\nInput\\n\\n\\n9 9\\n.........\\n.XXXXX.X.\\n.X...X...\\n.X.XXXXX.\\n.X.X.X.X.\\n.X.XXX.X.\\n.X.....X.\\n.XXXXXXX.\\n.........\\n\\n\\nOutput\\n\\n\\nYES\\n4 4 4 1 4 1 4 1 4\\n1 5 5 5 5 5 4 10 1\\n4 5 1 4 1 5 4 4 4\\n4 5 1 5 5 0 5 5 1\\n4 5 1 5 4 5 1 5 4\\n4 5 1 5 5 5 4 5 1\\n1 5 4 4 1 1 4 5 1\\n4 5 5 5 5 5 5 5 4\\n1 1 1 1 4 4 1 1 4\\n\\nNote\\n\\nIt can be shown that no such grid exists for the second test.\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nconst long long INF = 1e9 + 7;\\nconst long long MOD = 998244353;\\nvector > adj;\\nlong long color[1000005];\\nbool v[1000005] = {0};\\nlong long block(long long x, long long y, long long m) { return m * x + y; }\\nvoid dfs(long long idx, long long y) {\\n v[idx] = 1;\\n color[idx] = y;\\n for (auto x : adj[idx]) {\\n if (!v[x]) {\\n dfs(x, y ^ 1);\\n } else if (v[x]) {\\n assert(color[x] == (y ^ 1));\\n }\\n }\\n}\\nint main(void) {\\n ios_base::sync_with_stdio(0);\\n cin.tie(0);\\n long long n, m;\\n cin >> n >> m;\\n char arr[n][m];\\n long long ans[n][m];\\n for (long long i = 0; i < n; i++) {\\n for (long long j = 0; j < m; j++) {\\n cin >> arr[i][j];\\n }\\n }\\n bool ok = 1;\\n long long ola = n * m + 10;\\n adj.assign(ola, vector());\\n long long dx[4] = {0, 0, 1, -1};\\n long long dy[4] = {1, -1, 0, 0};\\n for (long long i = 0; i < n; i++) {\\n for (long long j = 0; j < m; j++) {\\n if (arr[i][j] == 'X') {\\n long long posa = 0;\\n vector ex;\\n for (long long k = 0; k < 4; k++) {\\n long long x = i + dx[k], y = dy[k] + j;\\n if (arr[x][y] == '.') {\\n ex.push_back(block(x, y, m));\\n posa++;\\n }\\n }\\n if (posa == 2) {\\n for (long long i = 0; i < posa; i++) {\\n adj[ex[i]].push_back(ex[(i + 1) % posa]);\\n adj[ex[(i + 1) % posa]].push_back(ex[i]);\\n }\\n } else if (posa == 4) {\\n adj[ex[0]].push_back(ex[2]);\\n adj[ex[2]].push_back(ex[0]);\\n adj[ex[1]].push_back(ex[3]);\\n adj[ex[3]].push_back(ex[1]);\\n }\\n if (posa % 2) {\\n ok = 0;\\n }\\n }\\n }\\n }\\n if (!ok) {\\n cout << \\\"NO\\\";\\n return 0;\\n }\\n for (long long i = 0; i < n; i++) {\\n for (long long j = 0; j < m; j++) {\\n if (arr[i][j] == '.' && !v[block(i, j, m)]) {\\n dfs(block(i, j, m), 0);\\n }\\n if (arr[i][j] == '.') {\\n ans[i][j] = 1;\\n if (color[block(i, j, m)] == 1) {\\n ...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Given n, find any array a_1, a_2, \u2026, a_n of integers such that all of the following conditions hold: \\n\\n * 1 \u2264 a_i \u2264 10^9 for every i from 1 to n.\\n\\n * a_1 < a_2 < \u2026 \\nusing namespace std;\\nusing ll = long long;\\nusing ld = long double;\\nusing pii = pair;\\nusing pll = pair;\\nusing vi = vector;\\nusing vl = vector;\\nconst char nl = '\\\\n';\\nconst ll mod = 998244353;\\nconst int max_n = 50;\\nconst int max_m = 1e5;\\nconst int max_sum = max_n * max_m;\\nint l[max_n + 1], r[max_n + 1];\\nll f[max_m + 1];\\nll cnt[max_m + 2][max_n + 1];\\nll cnt_pref[max_m + 2][max_n + 1];\\nvoid solve() {\\n int n, m;\\n cin >> n >> m;\\n for (int i = 1; i <= n; i++) cin >> l[i] >> r[i];\\n int l_sum = 0;\\n for (int i = 1; i <= n; i++) l_sum += l[i];\\n if (l_sum > m) {\\n cout << 0 << nl;\\n return;\\n }\\n for (int d = m \\/ n; d >= 1; d--) {\\n int ms = m \\/ d;\\n bool can = true;\\n for (int i = 1; i <= n; i++) {\\n can &= (l[i] + d - 1) \\/ d * d <= r[i];\\n }\\n if (!can) continue;\\n for (int i = 0; i <= n; i++) {\\n for (int s = 0; s <= ms; s++) {\\n cnt[s][i] = cnt_pref[s][i] = 0;\\n }\\n }\\n cnt[0][0] = 1;\\n for (int s = 0; s <= ms; s++) cnt_pref[s][0] = 1;\\n for (int i = 1; i <= n; i++) {\\n for (int s = 0; s <= ms; s++) {\\n int left = max(0, s - r[i] \\/ d), right = s - (l[i] + d - 1) \\/ d;\\n if (left > right) continue;\\n ll range_sum = cnt_pref[right][i - 1];\\n if (left > 0) {\\n range_sum -= cnt_pref[left - 1][i - 1];\\n range_sum += mod;\\n range_sum %= mod;\\n }\\n cnt[s][i] = range_sum;\\n cnt_pref[s][i] = cnt[s][i];\\n if (s > 0) {\\n cnt_pref[s][i] += cnt_pref[s - 1][i];\\n cnt_pref[s][i] %= mod;\\n }\\n }\\n }\\n f[d] = cnt_pref[ms][n];\\n for (int d2 = 2 * d; d2 <= m; d2 += d) {\\n f[d] -= f[d2];\\n f[d] += mod;\\n f[d] %= mod;\\n }\\n }\\n cout << f[1] << nl;\\n}\\nint main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(nullptr);\\n int t = 1;\\n while (t--) solve();\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Vlad has n friends, for each of whom he wants to buy one gift for the New Year.\\n\\nThere are m shops in the city, in each of which he can buy a gift for any of his friends. If the j-th friend (1 \u2264 j \u2264 n) receives a gift bought in the shop with the number i (1 \u2264 i \u2264 m), then the friend receives p_{ij} units of joy. The rectangular table p_{ij} is given in the input.\\n\\nVlad has time to visit at most n-1 shops (where n is the number of friends). He chooses which shops he will visit and for which friends he will buy gifts in each of them.\\n\\nLet the j-th friend receive a_j units of joy from Vlad's gift. Let's find the value \u03b1=min\\\\\\\\{a_1, a_2, ..., a_n\\\\}. Vlad's goal is to buy gifts so that the value of \u03b1 is as large as possible. In other words, Vlad wants to maximize the minimum of the joys of his friends.\\n\\nFor example, let m = 2, n = 2. Let the joy from the gifts that we can buy in the first shop: p_{11} = 1, p_{12}=2, in the second shop: p_{21} = 3, p_{22}=4.\\n\\nThen it is enough for Vlad to go only to the second shop and buy a gift for the first friend, bringing joy 3, and for the second \u2014 bringing joy 4. In this case, the value \u03b1 will be equal to min\\\\{3, 4\\\\} = 3\\n\\nHelp Vlad choose gifts for his friends so that the value of \u03b1 is as high as possible. Please note that each friend must receive one gift. Vlad can visit at most n-1 shops (where n is the number of friends). In the shop, he can buy any number of gifts.\\n\\nInput\\n\\nThe first line of the input contains an integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases in the input.\\n\\nAn empty line is written before each test case. Then there is a line containing integers m and n (2 \u2264 n, 2 \u2264 n \u22c5 m \u2264 10^5) separated by a space \u2014 the number of shops and the number of friends, where n \u22c5 m is the product of n and m.\\n\\nThen m lines follow, each containing n numbers. The number in the i-th row of the j-th column p_{ij} (1 \u2264 p_{ij} \u2264 10^9) is the joy of the product intended for friend number j in shop number i.\\n\\nIt is guaranteed that the sum of the values n \u22c5 m over all test cases in...\\nt = i\",\"targets\":\"nt(input())\\n\\nfor i in range(t):\\n input()\\n x, y = [], []\\n n, m = map(int, input().split())\\n for j in range(n):\\n x.append(list(map(int, input().split())))\\n for j in range(n):\\n for g in range(m):\\n y.append([x[j][g], j, g])\\n y.sort()\\n y.reverse()\\n found = [0 for i in range(m)]\\n deg = [0 for j in range(n)]\\n deg2 = False\\n rem = m\\n for [v, i, j] in y:\\n deg[i] += 1;\\n if (deg[i] >= 2):\\n deg2 = True;\\n if (found[j] == 0):\\n rem -= 1;\\n found[j] = 1;\\n if (deg2 and rem == 0):\\n print(v)\\n break\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Gregor is learning about RSA cryptography, and although he doesn't understand how RSA works, he is now fascinated with prime numbers and factoring them.\\n\\nGregor's favorite prime number is P. Gregor wants to find two bases of P. Formally, Gregor is looking for two integers a and b which satisfy both of the following properties.\\n\\n * P mod a = P mod b, where x mod y denotes the remainder when x is divided by y, and \\n * 2 \u2264 a < b \u2264 P. \\n\\n\\n\\nHelp Gregor find two bases of his favorite prime number!\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 1000).\\n\\nEach subsequent line contains the integer P (5 \u2264 P \u2264 {10}^9), with P guaranteed to be prime.\\n\\nOutput\\n\\nYour output should consist of t lines. Each line should consist of two integers a and b (2 \u2264 a < b \u2264 P). If there are multiple possible solutions, print any.\\n\\nExample\\n\\nInput\\n\\n\\n2\\n17\\n5\\n\\n\\nOutput\\n\\n\\n3 5\\n2 4\\n\\nNote\\n\\nThe first query is P=17. a=3 and b=5 are valid bases in this case, because 17 mod 3 = 17 mod 5 = 2. There are other pairs which work as well.\\n\\nIn the second query, with P=5, the only solution is a=2 and b=4.\\nUsing java can you solve the prior task?\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.BufferedWriter;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.io.OutputStreamWriter;\\nimport java.util.StringTokenizer;\\n\\npublic class main{\\n\\tprivate static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));\\n\\tprivate static BufferedWriter w=new BufferedWriter(new OutputStreamWriter(System.out));\\n\\t\\n\\tpublic static void main(String[] args) throws IOException {\\n\\t\\t\\/\\/ TODO Auto-generated method stub\\n\\t\\tint t=Integer.parseInt(br.readLine());\\n\\n\\t\\twhile(t>0) {\\n\\t\\t long n=Long.parseLong(br.readLine());\\n\\t\\t long a=2;\\n\\t\\t long temp=(n-1)\\/2;\\n\\t\\t if(n==5) {\\n\\t\\t \\ttemp=4;\\n\\t\\t }\\n\\t\\t w.write(a+\\\" \\\"+temp);\\n\\t\\t w.newLine();\\n\\t\\t\\tt--;\\n\\t\\t}\\n\\t\\tw.flush();\\n\\t\\tw.close();\\n\\t}\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nIn Byteland, there are two political parties fighting for seats in the Parliament in the upcoming elections: Wrong Answer Party and Time Limit Exceeded Party. As they want to convince as many citizens as possible to cast their votes on them, they keep promising lower and lower taxes.\\n\\nThere are n cities in Byteland, connected by m one-way roads. Interestingly enough, the road network has no cycles \u2014 it's impossible to start in any city, follow a number of roads, and return to that city. Last year, citizens of the i-th city had to pay h_i bourles of tax.\\n\\nParties will now alternately hold the election conventions in various cities. If a party holds a convention in city v, the party needs to decrease the taxes in this city to a non-negative integer amount of bourles. However, at the same time they can arbitrarily modify the taxes in each of the cities that can be reached from v using a single road. The only condition that must be fulfilled that the tax in each city has to remain a non-negative integer amount of bourles.\\n\\nThe first party to hold the convention is Wrong Answer Party. It's predicted that the party to hold the last convention will win the election. Can Wrong Answer Party win regardless of Time Limit Exceeded Party's moves?\\n\\nInput\\n\\nThe first line of the input contains two integers n, m (1 \u2264 n \u2264 200 000, 0 \u2264 m \u2264 200 000) \u2014 the number of cities and roads in Byteland.\\n\\nThe next line contains n space-separated integers h_1, h_2, ..., h_n (0 \u2264 h_i \u2264 10^9); h_i denotes the amount of taxes paid in the i-th city.\\n\\nEach of the following m lines contains two integers (1 \u2264 u, v \u2264 n, u \u2260 v), and describes a one-way road leading from the city u to the city v. There will be no cycles in the road network. No two roads will connect the same pair of cities.\\n\\nWe can show that the conventions cannot be held indefinitely for any correct test case.\\n\\nOutput\\n\\nIf Wrong Answer Party can win the election, output WIN in the first line of your output. In this case, you're additionally asked to produce any convention allowing...\",\"targets\":\"#include \\nusing namespace std;\\nint he[200010], ver[2 * 200010], nxt[2 * 200010], tot, in[200010];\\nvoid add(int x, int y) {\\n ver[++tot] = y;\\n nxt[tot] = he[x];\\n he[x] = tot;\\n}\\nint que[200010], cnt;\\nlong long w[200010];\\nvector v[200010];\\nlong long ans[200010];\\nint s[200010];\\nbool vis[200010];\\nint main() {\\n int n, m;\\n scanf(\\\"%d%d\\\", &n, &m);\\n for (int i = 1; i <= n; i++) {\\n scanf(\\\"%lld\\\", &w[i]);\\n }\\n for (int i = 1; i <= m; i++) {\\n int x, y;\\n scanf(\\\"%d%d\\\", &x, &y);\\n add(y, x);\\n in[x]++;\\n }\\n queue q;\\n for (int i = 1; i <= n; i++) {\\n if (in[i] == 0) q.push(i);\\n }\\n while (!q.empty()) {\\n int x = q.front();\\n q.pop();\\n que[++cnt] = x;\\n for (int i = he[x]; i; i = nxt[i]) {\\n in[ver[i]]--;\\n if (!in[ver[i]]) q.push(ver[i]);\\n }\\n }\\n int maxx = 0;\\n for (int i = 1; i <= cnt; i++) {\\n int x = que[i];\\n int stp = 0;\\n if (!v[x].size())\\n ans[0] ^= w[x];\\n else {\\n sort(v[x].begin(), v[x].end());\\n s[x] = 0;\\n for (int j = 0; j < v[x].size(); j++) {\\n if (v[x][j] == s[x]) s[x]++;\\n }\\n stp = s[x];\\n ans[stp] ^= w[x];\\n maxx = max(maxx, stp);\\n }\\n s[x] = stp;\\n for (int j = he[x]; j; j = nxt[j]) v[ver[j]].push_back(stp);\\n }\\n bool xx = false;\\n for (int i = 0; i <= maxx; i++) {\\n if (ans[i] != 0) {\\n xx = true;\\n break;\\n }\\n }\\n if (xx) {\\n puts(\\\"WIN\\\");\\n for (int i = maxx; i >= 0; i--) {\\n if (ans[i]) {\\n maxx = i;\\n break;\\n }\\n }\\n int tmp = 0;\\n for (int i = 1; i <= n; i++) {\\n if (s[i] == maxx && ((w[i] ^ ans[s[i]]) < w[i])) {\\n tmp = i;\\n break;\\n }\\n }\\n w[tmp] = ans[maxx] ^ w[tmp];\\n for (int i = 1; i <= n; i++) {\\n if (i == tmp || s[i] >= s[tmp]) continue;\\n for (int j = he[i]; j; j = nxt[j]) {\\n if (ver[j] == tmp && vis[s[i]] == 0) {\\n w[i] = ans[s[i]] ^ w[i];\\n vis[s[i]] = 1;\\n break;\\n }\\n }\\n }\\n for (int i = 1; i <= n; i++) printf(\\\"%lld \\\", w[i]);\\n } else\\n ...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given a matrix, consisting of n rows and m columns. The rows are numbered top to bottom, the columns are numbered left to right.\\n\\nEach cell of the matrix can be either free or locked.\\n\\nLet's call a path in the matrix a staircase if it: \\n\\n * starts and ends in the free cell; \\n * visits only free cells; \\n * has one of the two following structures: \\n 1. the second cell is 1 to the right from the first one, the third cell is 1 to the bottom from the second one, the fourth cell is 1 to the right from the third one, and so on; \\n 2. the second cell is 1 to the bottom from the first one, the third cell is 1 to the right from the second one, the fourth cell is 1 to the bottom from the third one, and so on. \\n\\n\\n\\nIn particular, a path, consisting of a single cell, is considered to be a staircase.\\n\\nHere are some examples of staircases:\\n\\n\\n\\nInitially all the cells of the matrix are free.\\n\\nYou have to process q queries, each of them flips the state of a single cell. So, if a cell is currently free, it makes it locked, and if a cell is currently locked, it makes it free.\\n\\nPrint the number of different staircases after each query. Two staircases are considered different if there exists such a cell that appears in one path and doesn't appear in the other path.\\n\\nInput\\n\\nThe first line contains three integers n, m and q (1 \u2264 n, m \u2264 1000; 1 \u2264 q \u2264 10^4) \u2014 the sizes of the matrix and the number of queries.\\n\\nEach of the next q lines contains two integers x and y (1 \u2264 x \u2264 n; 1 \u2264 y \u2264 m) \u2014 the description of each query.\\n\\nOutput\\n\\nPrint q integers \u2014 the i-th value should be equal to the number of different staircases after i queries. Two staircases are considered different if there exists such a cell that appears in one path and doesn't appear in the other path.\\n\\nExamples\\n\\nInput\\n\\n\\n2 2 8\\n1 1\\n1 1\\n1 1\\n2 2\\n1 1\\n1 2\\n2 1\\n1 1\\n\\n\\nOutput\\n\\n\\n5\\n10\\n5\\n2\\n5\\n3\\n1\\n0\\n\\n\\nInput\\n\\n\\n3 4 10\\n1 4\\n1 2\\n2 3\\n1 2\\n2 3\\n3 2\\n1 3\\n3 4\\n1 3\\n3 1\\n\\n\\nOutput\\n\\n\\n49\\n35\\n24\\n29\\n49\\n39\\n31\\n23\\n29\\n27\\n\\n\\nInput\\n\\n\\n1000 1000 2\\n239 634\\n239 634\\n\\n\\nOutput\\n\\n\\n1332632508\\n1333333000\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nconst long long maxn = 1e3 + 10;\\nint dp0[maxn][maxn], dp1[maxn][maxn];\\nint pd0[maxn][maxn], pd1[maxn][maxn];\\nbool c[maxn][maxn];\\nint l, r;\\nint main() {\\n ios_base::sync_with_stdio(0);\\n cin.tie(0);\\n cout.tie(0);\\n int n, m, q;\\n cin >> n >> m >> q;\\n long long maxx = 0;\\n for (int i = 1; i <= n; i++) {\\n for (int j = 1; j <= m; j++) {\\n c[i][j] = 1;\\n dp0[i][j] = dp1[i][j - 1] + 1;\\n dp1[i][j] = dp0[i - 1][j] + 1;\\n pd1[i][j] = dp1[i][j];\\n pd0[i][j] = dp0[i][j];\\n maxx += dp0[i][j] + dp1[i][j] - 1;\\n }\\n }\\n int x, y;\\n int vv = 0;\\n while (q--) {\\n cin >> l >> r;\\n x = l, y = r;\\n if (c[l][r] == 1) {\\n x = l, y = r;\\n vv = 0;\\n for (int i = 1; i <= 2000; i++) {\\n if (i % 2 == 1) {\\n y++;\\n if (x > n || y > m) {\\n break;\\n }\\n if (c[x][y] == 0) {\\n dp0[x][y] -= dp1[l][r];\\n break;\\n vv++;\\n }\\n dp0[x][y] -= dp1[l][r];\\n if (vv == 0) {\\n maxx -= dp1[l][r];\\n }\\n } else {\\n x++;\\n if (x > n || y > m) {\\n break;\\n }\\n if (c[x][y] == 0) {\\n dp1[x][y] -= dp1[l][r];\\n break;\\n vv++;\\n }\\n dp1[x][y] -= dp1[l][r];\\n if (vv == 0) {\\n maxx -= dp1[l][r];\\n }\\n }\\n }\\n vv = 0;\\n x = l, y = r;\\n for (int i = 1; i <= 2000; i++) {\\n if (i % 2 == 0) {\\n y++;\\n if (x > n || y > m) {\\n break;\\n }\\n if (c[x][y] == 0) {\\n vv++;\\n dp0[x][y] -= dp0[l][r];\\n break;\\n }\\n dp0[x][y] -= dp0[l][r];\\n if (vv == 0) {\\n maxx -= dp0[l][r];\\n }\\n } else {\\n x++;\\n if (x > n || y > m) {\\n break;\\n }\\n if (c[x][y] == 0) {\\n vv++;\\n dp1[x][y] -= dp0[l][r];\\n break;\\n }\\n dp1[x][y] -=...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nBlake is a CEO of a large company called \\\"Blake Technologies\\\". He loves his company very much and he thinks that his company should be the best. That is why every candidate needs to pass through the interview that consists of the following problem.\\n\\nWe define function f(x, l, r) as a bitwise OR of integers xl, xl + 1, ..., xr, where xi is the i-th element of the array x. You are given two arrays a and b of length n. You need to determine the maximum value of sum f(a, l, r) + f(b, l, r) among all possible 1 \u2264 l \u2264 r \u2264 n.\\n\\n\\n\\nInput\\n\\nThe first line of the input contains a single integer n (1 \u2264 n \u2264 1000) \u2014 the length of the arrays.\\n\\nThe second line contains n integers ai (0 \u2264 ai \u2264 109).\\n\\nThe third line contains n integers bi (0 \u2264 bi \u2264 109).\\n\\nOutput\\n\\nPrint a single integer \u2014 the maximum value of sum f(a, l, r) + f(b, l, r) among all possible 1 \u2264 l \u2264 r \u2264 n.\\n\\nExamples\\n\\nInput\\n\\n5\\n1 2 4 3 2\\n2 3 3 12 1\\n\\n\\nOutput\\n\\n22\\n\\nInput\\n\\n10\\n13 2 7 11 8 4 9 8 5 1\\n5 7 18 9 2 3 0 11 8 6\\n\\n\\nOutput\\n\\n46\\n\\nNote\\n\\nBitwise OR of two non-negative integers a and b is the number c = a OR b, such that each of its digits in binary notation is 1 if and only if at least one of a or b have 1 in the corresponding position in binary notation.\\n\\nIn the first sample, one of the optimal answers is l = 2 and r = 4, because f(a, 2, 4) + f(b, 2, 4) = (2 OR 4 OR 3) + (3 OR 3 OR 12) = 7 + 15 = 22. Other ways to get maximum value is to choose l = 1 and r = 4, l = 1 and r = 5, l = 2 and r = 4, l = 2 and r = 5, l = 3 and r = 4, or l = 3 and r = 5.\\n\\nIn the second sample, the maximum value is obtained for l = 1 and r = 9.\",\"targets\":\"#include \\nusing namespace std;\\nint main() {\\n int timer;\\n timer = 1;\\n while (timer--) {\\n long long n, i, j, a = 0, b = 0;\\n cin >> n;\\n long long dta[n];\\n for (i = 0; i < n; ++i) {\\n cin >> j;\\n a = a | j;\\n }\\n for (i = 0; i < n; ++i) {\\n cin >> j;\\n b = b | j;\\n }\\n cout << (a + b) << \\\"\\\\n\\\";\\n }\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"There are n points and m segments on the coordinate line. The initial coordinate of the i-th point is a_i. The endpoints of the j-th segment are l_j and r_j \u2014 left and right endpoints, respectively.\\n\\nYou can move the points. In one move you can move any point from its current coordinate x to the coordinate x - 1 or the coordinate x + 1. The cost of this move is 1.\\n\\nYou should move the points in such a way that each segment is visited by at least one point. A point visits the segment [l, r] if there is a moment when its coordinate was on the segment [l, r] (including endpoints).\\n\\nYou should find the minimal possible total cost of all moves such that all segments are visited.\\n\\nInput\\n\\nThe input consists of multiple test cases. The first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Description of the test cases follows.\\n\\nThe first line of each test case contains two integers n and m (1 \u2264 n, m \u2264 2 \u22c5 10^5) \u2014 the number of points and segments respectively.\\n\\nThe next line contains n distinct integers a_1, a_2, \u2026, a_n (-10^9 \u2264 a_i \u2264 10^9) \u2014 the initial coordinates of the points.\\n\\nEach of the next m lines contains two integers l_j, r_j (-10^9 \u2264 l_j \u2264 r_j \u2264 10^9) \u2014 the left and the right endpoints of the j-th segment.\\n\\nIt's guaranteed that the sum of n and the sum of m over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case print a single integer \u2014 the minimal total cost of all moves such that all segments are visited.\\n\\nExample\\n\\nInput\\n\\n\\n2\\n4 11\\n2 6 14 18\\n0 3\\n4 5\\n11 15\\n3 5\\n10 13\\n16 16\\n1 4\\n8 12\\n17 19\\n7 13\\n14 19\\n4 12\\n-9 -16 12 3\\n-20 -18\\n-14 -13\\n-10 -7\\n-3 -1\\n0 4\\n6 11\\n7 9\\n8 10\\n13 15\\n14 18\\n16 17\\n18 19\\n\\n\\nOutput\\n\\n\\n5\\n22\\n\\nNote\\n\\nIn the first test case the points can be moved as follows:\\n\\n * Move the second point from the coordinate 6 to the coordinate 5. \\n * Move the third point from the coordinate 14 to the coordinate 13. \\n * Move the fourth point from the coordinate 18 to the coordinate 17. \\n * Move the third point from the coordinate 13 to the coordinate 12. \\n * Move the...\",\"targets\":\"#include \\nusing namespace std;\\nchar gc() {\\n static char buf[1 << 16], *s, *t;\\n if (s == t) {\\n t = (s = buf) + fread(buf, 1, 1 << 16, stdin);\\n if (s == t) return EOF;\\n }\\n return *s++;\\n}\\nint read() {\\n char c;\\n int w = 1;\\n while ((c = getchar()) > '9' || c < '0')\\n if (c == '-') w = -1;\\n int ans = c - '0';\\n while ((c = getchar()) >= '0' && c <= '9')\\n ans = (ans << 1) + (ans << 3) + c - '0';\\n return ans * w;\\n}\\nchar st;\\nconst int xx = 2e5 + 5;\\nlong long n, m;\\nlong long a[xx];\\nstruct node {\\n long long l, r;\\n bool operator<(const node& w) const { return l < w.l; };\\n} e[xx], w[xx];\\nlong long vis[xx];\\nstruct no {\\n long long x, y;\\n bool operator<(const no& w) const { return x < w.x; }\\n};\\nlong long f[xx][2];\\nmultiset s;\\nlong long mn[xx << 2];\\nvoid build(long long k, long long l, long long r) {\\n if (l == r) return mn[k] = e[l].r, void();\\n long long mid = l + r >> 1;\\n build(k << 1, l, mid);\\n build(k << 1 | 1, mid + 1, r);\\n mn[k] = min(mn[k << 1], mn[k << 1 | 1]);\\n}\\nlong long ask(long long k, long long l, long long r, long long x, long long y) {\\n if (x <= l && r <= y) return mn[k];\\n long long mid = l + r >> 1, ans = 2e9 + 1000;\\n if (x <= mid) ans = min(ans, ask(k << 1, l, mid, x, y));\\n if (mid < y) ans = min(ans, ask(k << 1 | 1, mid + 1, r, x, y));\\n return ans;\\n}\\nchar ed;\\nsigned main() {\\n int T = read();\\n while (T--) {\\n n = read(), m = read();\\n for (int i = 1; i <= n; i++) a[i] = read();\\n a[++n] = -5e9 - 1000, a[++n] = 5e9 + 1000;\\n memset(vis, 0, sizeof(vis[0]) * (m + 1));\\n sort(a + 1, a + n + 1);\\n s.clear();\\n for (int i = 1; i <= m; i++) w[i].l = read(), w[i].r = read();\\n sort(w + 1, w + m + 1);\\n long long tt = 1;\\n for (int i = 1; i <= n; i++) {\\n while (tt <= m && w[tt].l <= a[i]) s.insert((no){w[tt].r, tt}), tt++;\\n while (s.size() && ((--s.end())->x) >= a[i])\\n vis[((--s.end())->y)] = 1, s.erase(--s.end());\\n }\\n long long oo = 0;\\n for (int i = 1; i <= m; i++)\\n if (!vis[i]) e[++oo] = w[i];\\n m = oo;\\n for...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"n players are playing a game. \\n\\nThere are two different maps in the game. For each player, we know his strength on each map. When two players fight on a specific map, the player with higher strength on that map always wins. No two players have the same strength on the same map. \\n\\nYou are the game master and want to organize a tournament. There will be a total of n-1 battles. While there is more than one player in the tournament, choose any map and any two remaining players to fight on it. The player who loses will be eliminated from the tournament. \\n\\nIn the end, exactly one player will remain, and he is declared the winner of the tournament. For each player determine if he can win the tournament.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 100) \u2014 the number of test cases. The description of test cases follows.\\n\\nThe first line of each test case contains a single integer n (1 \u2264 n \u2264 10^5) \u2014 the number of players.\\n\\nThe second line of each test case contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^9, a_i \u2260 a_j for i \u2260 j), where a_i is the strength of the i-th player on the first map. \\n\\nThe third line of each test case contains n integers b_1, b_2, ..., b_n (1 \u2264 b_i \u2264 10^9, b_i \u2260 b_j for i \u2260 j), where b_i is the strength of the i-th player on the second map. \\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 10^5.\\n\\nOutput\\n\\nFor each test case print a string of length n. i-th character should be \\\"1\\\" if the i-th player can win the tournament, or \\\"0\\\" otherwise.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n4\\n1 2 3 4\\n1 2 3 4\\n4\\n11 12 20 21\\n44 22 11 30\\n1\\n1000000000\\n1000000000\\n\\n\\nOutput\\n\\n\\n0001\\n1111\\n1\\n\\nNote\\n\\nIn the first test case, the 4-th player will beat any other player on any game, so he will definitely win the tournament.\\n\\nIn the second test case, everyone can be a winner. \\n\\nIn the third test case, there is only one player. Clearly, he will win the tournament.\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nbool isrange(int second, int first, int n, int m) {\\n if (0 <= second && second < n && 0 <= first && first < m) return true;\\n return false;\\n}\\nint dy[4] = {1, 0, -1, 0}, dx[4] = {0, 1, 0, -1},\\n ddy[8] = {1, 0, -1, 0, 1, 1, -1, -1}, ddx[8] = {0, 1, 0, -1, 1, -1, 1, -1};\\nconst int MAX = 1e5 + 100;\\nint A[MAX], B[MAX], vis[MAX];\\nset > a, b;\\nvoid del(int k) {\\n a.erase(make_pair(A[k], k));\\n b.erase(make_pair(B[k], k));\\n}\\nvoid solve(int tc) {\\n int n;\\n cin >> n;\\n a.clear();\\n b.clear();\\n for (int e = 1; e <= n; e++) {\\n vis[e] = 0;\\n cin >> A[e];\\n a.insert(make_pair(A[e], e));\\n }\\n for (int e = 1; e <= n; e++) {\\n cin >> B[e];\\n b.insert(make_pair(B[e], e));\\n }\\n int pos1 = prev(a.end())->second;\\n int pos2 = prev(b.end())->second;\\n del(pos1);\\n del(pos2);\\n vector candi;\\n candi.push_back(pos1);\\n candi.push_back(pos2);\\n int st = 0;\\n while ((int)candi.size() != n) {\\n int lim = (int)candi.size();\\n bool flag = false;\\n for (int p = st; p < lim; p++) {\\n int pos = candi[p];\\n set >::iterator lo1 = a.lower_bound(make_pair(A[pos], -1));\\n vector res;\\n for (; lo1 != a.end(); lo1++) {\\n res.push_back(lo1->second);\\n }\\n for (int e = 0; e < (int)res.size(); e++) {\\n flag = true;\\n candi.push_back(res[e]);\\n del(res[e]);\\n }\\n set >::iterator lo2 = b.lower_bound(make_pair(B[pos], -1));\\n res.clear();\\n for (; lo2 != b.end(); lo2++) {\\n res.push_back(lo2->second);\\n }\\n for (int e = 0; e < (int)res.size(); e++) {\\n flag = true;\\n candi.push_back(res[e]);\\n del(res[e]);\\n }\\n }\\n if (!flag) break;\\n st = lim;\\n }\\n for (int e = 0; e < (int)candi.size(); e++) vis[candi[e]] = 1;\\n for (int e = 1; e <= n; e++) cout << vis[e];\\n cout << \\\"\\\\n\\\";\\n}\\nint main(void) {\\n ios_base ::sync_with_stdio(false);\\n cin.tie(NULL);\\n cout.tie(NULL);\\n int tc = 1;\\n cin >> tc;\\n for (int test_number = 1;...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Bob loves everything sweet. His favorite chocolate bar consists of pieces, each piece may contain a nut. Bob wants to break the bar of chocolate into multiple pieces so that each part would contain exactly one nut and any break line goes between two adjacent pieces.\\n\\nYou are asked to calculate the number of ways he can do it. Two ways to break chocolate are considered distinct if one of them contains a break between some two adjacent pieces and the other one doesn't. \\n\\nPlease note, that if Bob doesn't make any breaks, all the bar will form one piece and it still has to have exactly one nut.\\n\\nInput\\n\\nThe first line of the input contains integer n (1 \u2264 n \u2264 100) \u2014 the number of pieces in the chocolate bar.\\n\\nThe second line contains n integers ai (0 \u2264 ai \u2264 1), where 0 represents a piece without the nut and 1 stands for a piece with the nut.\\n\\nOutput\\n\\nPrint the number of ways to break the chocolate into multiple parts so that each part would contain exactly one nut.\\n\\nExamples\\n\\nInput\\n\\n3\\n0 1 0\\n\\n\\nOutput\\n\\n1\\n\\n\\nInput\\n\\n5\\n1 0 1 0 1\\n\\n\\nOutput\\n\\n4\\n\\nNote\\n\\nIn the first sample there is exactly one nut, so the number of ways equals 1 \u2014 Bob shouldn't make any breaks.\\n\\nIn the second sample you can break the bar in four ways:\\n\\n10|10|1\\n\\n1|010|1\\n\\n10|1|01\\n\\n1|01|01\\n\\n\\nimp\",\"targets\":\"ort java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.io.PrintWriter;\\nimport java.math.BigInteger;\\nimport java.util.ArrayList;\\nimport java.util.Arrays;\\nimport java.util.Date;\\nimport java.util.HashMap;\\nimport java.util.Map;\\nimport java.util.Scanner;\\nimport java.util.StringTokenizer;\\n\\/**\\n *\\n * @author agavrikov\\n *\\/\\npublic class Solution {\\n\\t\\n\\tScanner scanner = new Scanner(System.in);\\n\\tBufferedReader cin = new BufferedReader(new InputStreamReader(System.in));\\n\\tPrintWriter cout = new PrintWriter(System.out);\\n\\tStringTokenizer tok;\\n\\t\\n\\tint n;\\n\\tint a[];\\n BigInteger ans = BigInteger.ONE;\\n \\n\\tprivate void run() throws IOException {\\n\\t\\t\\n\\t\\tn = scanner.nextInt();\\n\\t\\t\\n a = new int[n];\\n \\n\\t\\tfor (int i = 0; i < n; ++i) {\\n a[i] = scanner.nextInt();\\n }\\n \\n int cur = 0;\\n while (cur < n && a[cur] == 0) {\\n cur++;\\n } \\n \\n if (cur == n) {\\n cout.println(0);\\n scanner.close();\\n cin.close();\\n cout.close();\\n return;\\n }\\n \\n long curCnt = 1;\\n while (cur < n) {\\n if (a[cur] == 1) {\\n ans = ans.multiply(BigInteger.valueOf(curCnt));\\n curCnt = 1;\\n } else {\\n curCnt++;\\n }\\n cur++;\\n }\\n \\n cout.println(ans);\\n \\n\\t\\tscanner.close();\\n\\t\\tcin.close();\\n\\t\\tcout.close();\\n\\t}\\n\\t\\n\\tpublic static void main(String[] args) throws IOException {\\n\\t\\tSolution solution = new Solution();\\n\\t\\tsolution.run();\\n\\t}\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"JAVA solution for \\\"Recently, Petya learned about a new game \\\"Slay the Dragon\\\". As the name suggests, the player will have to fight with dragons. To defeat a dragon, you have to kill it and defend your castle. To do this, the player has a squad of n heroes, the strength of the i-th hero is equal to a_i.\\n\\nAccording to the rules of the game, exactly one hero should go kill the dragon, all the others will defend the castle. If the dragon's defense is equal to x, then you have to send a hero with a strength of at least x to kill it. If the dragon's attack power is y, then the total strength of the heroes defending the castle should be at least y.\\n\\nThe player can increase the strength of any hero by 1 for one gold coin. This operation can be done any number of times.\\n\\nThere are m dragons in the game, the i-th of them has defense equal to x_i and attack power equal to y_i. Petya was wondering what is the minimum number of coins he needs to spend to defeat the i-th dragon.\\n\\nNote that the task is solved independently for each dragon (improvements are not saved).\\n\\nInput\\n\\nThe first line contains a single integer n (2 \u2264 n \u2264 2 \u22c5 10^5) \u2014 number of heroes.\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^{12}), where a_i is the strength of the i-th hero.\\n\\nThe third line contains a single integer m (1 \u2264 m \u2264 2 \u22c5 10^5) \u2014 the number of dragons.\\n\\nThe next m lines contain two integers each, x_i and y_i (1 \u2264 x_i \u2264 10^{12}; 1 \u2264 y_i \u2264 10^{18}) \u2014 defense and attack power of the i-th dragon.\\n\\nOutput\\n\\nPrint m lines, i-th of which contains a single integer \u2014 the minimum number of coins that should be spent to defeat the i-th dragon.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n3 6 2 3\\n5\\n3 12\\n7 9\\n4 14\\n1 10\\n8 7\\n\\n\\nOutput\\n\\n\\n1\\n2\\n4\\n0\\n2\\n\\nNote\\n\\nTo defeat the first dragon, you can increase the strength of the third hero by 1, then the strength of the heroes will be equal to [3, 6, 3, 3]. To kill the dragon, you can choose the first hero.\\n\\nTo defeat the second dragon, you can increase the forces of the second and third heroes by 1, then the strength of the heroes will...\\\":\",\"targets\":\"import javax.swing.*;\\nimport java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.io.PrintWriter;\\nimport java.util.*;\\n\\npublic class Codeforces {\\n\\n static FastScanner sc;\\n static PrintWriter out;\\n static int mod = (int) (1e9+7);\\n\\n public static void main(String[] args){\\n sc = new FastScanner();\\n out = new PrintWriter(System.out);\\n\\n int t = 1;\\n while(t-- > 0){\\n solve();\\n }\\n\\n out.close();\\n }\\n\\n private static void solve() {\\n\\n int n = sc.nextInt();\\n long[] heros = new long[n];\\n long sum = 0;\\n for(int i=0; i= 0){\\n index = temp;\\n System.out.println((sum-heros[index]) >= attack ? 0 : attack-(sum-heros[index]));\\n }\\n else{\\n index = -(temp+1);\\n long val1 = Long.MAX_VALUE, val2 = Long.MAX_VALUE;\\n \\/\\/ focus on index-1;\\n if(index-1 >= 0){\\n val1 = ((sum-heros[index-1]) >= attack ? 0 : attack-(sum-heros[index-1])) +\\n defense - heros[index-1];\\n }\\n \\/\\/focus on index\\n if(index < n)\\n val2 = ((sum-heros[index]) >= attack ? 0 : attack-(sum-heros[index]));\\n System.out.println(Math.min(val1, val2));\\n }\\n\\n }\\n\\n\\n\\n }\\n\\n public static int nCr(int n, int k) {\\n int C[] = new int[k + 1];\\n\\n \\/\\/ nC0 is 1\\n C[0] = 1;\\n\\n for (int i = 1; i <= n; i++) {\\n \\/\\/ Compute next row of pascal\\n \\/\\/ triangle using the...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given a keyboard that consists of 26 keys. The keys are arranged sequentially in one row in a certain order. Each key corresponds to a unique lowercase Latin letter.\\n\\nYou have to type the word s on this keyboard. It also consists only of lowercase Latin letters.\\n\\nTo type a word, you need to type all its letters consecutively one by one. To type each letter you must position your hand exactly over the corresponding key and press it.\\n\\nMoving the hand between the keys takes time which is equal to the absolute value of the difference between positions of these keys (the keys are numbered from left to right). No time is spent on pressing the keys and on placing your hand over the first letter of the word.\\n\\nFor example, consider a keyboard where the letters from 'a' to 'z' are arranged in consecutive alphabetical order. The letters 'h', 'e', 'l' and 'o' then are on the positions 8, 5, 12 and 15, respectively. Therefore, it will take |5 - 8| + |12 - 5| + |12 - 12| + |15 - 12| = 13 units of time to type the word \\\"hello\\\". \\n\\nDetermine how long it will take to print the word s.\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases.\\n\\nThe next 2t lines contain descriptions of the test cases.\\n\\nThe first line of a description contains a keyboard \u2014 a string of length 26, which consists only of lowercase Latin letters. Each of the letters from 'a' to 'z' appears exactly once on the keyboard.\\n\\nThe second line of the description contains the word s. The word has a length from 1 to 50 letters inclusive and consists of lowercase Latin letters.\\n\\nOutput\\n\\nPrint t lines, each line containing the answer to the corresponding test case. The answer to the test case is the minimal time it takes to type the word s on the given keyboard.\\n\\nExample\\n\\nInput\\n\\n\\n5\\nabcdefghijklmnopqrstuvwxyz\\nhello\\nabcdefghijklmnopqrstuvwxyz\\ni\\nabcdefghijklmnopqrstuvwxyz\\ncodeforces\\nqwertyuiopasdfghjklzxcvbnm\\nqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq\\nqwertyuiopasdfghjklzxcvbnm\\nabacaba\\n\\n\\nOutput\\n\\n\\n13\\n0\\n68\\n0\\n74\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nconst int maxn = 100;\\nchar s1[maxn];\\nchar s2[maxn];\\nint main() {\\n ios_base ::sync_with_stdio(0);\\n cin.tie(0);\\n cout.tie(0);\\n int t;\\n cin >> t;\\n while (t--) {\\n cin >> s1 + 1;\\n cin >> s2 + 1;\\n int len1 = strlen(s1 + 1);\\n int len2 = strlen(s2 + 1);\\n int sum = 0;\\n int pos1, pos2;\\n for (int i = 1; i <= len2; i++) {\\n for (int j = 1; j <= len1; j++) {\\n if (s2[i] == s1[j]) {\\n pos1 = j;\\n }\\n if (s2[i + 1] == s1[j]) {\\n pos2 = j;\\n }\\n }\\n sum += abs(pos2 - pos1);\\n }\\n if (len2 == 1)\\n cout << 0 << endl;\\n else\\n cout << sum << endl;\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Consider the insertion sort algorithm used to sort an integer sequence [a_1, a_2, \u2026, a_n] of length n in non-decreasing order.\\n\\nFor each i in order from 2 to n, do the following. If a_i \u2265 a_{i-1}, do nothing and move on to the next value of i. Otherwise, find the smallest j such that a_i < a_j, shift the elements on positions from j to i-1 by one position to the right, and write down the initial value of a_i to position j. In this case we'll say that we performed an insertion of an element from position i to position j.\\n\\nIt can be noticed that after processing any i, the prefix of the sequence [a_1, a_2, \u2026, a_i] is sorted in non-decreasing order, therefore, the algorithm indeed sorts any sequence.\\n\\nFor example, sorting [4, 5, 3, 1, 3] proceeds as follows: \\n\\n * i = 2: a_2 \u2265 a_1, do nothing; \\n * i = 3: j = 1, insert from position 3 to position 1: [3, 4, 5, 1, 3]; \\n * i = 4: j = 1, insert from position 4 to position 1: [1, 3, 4, 5, 3]; \\n * i = 5: j = 3, insert from position 5 to position 3: [1, 3, 3, 4, 5]. \\n\\n\\n\\nYou are given an integer n and a list of m integer pairs (x_i, y_i). We are interested in sequences such that if you sort them using the above algorithm, exactly m insertions will be performed: first from position x_1 to position y_1, then from position x_2 to position y_2, ..., finally, from position x_m to position y_m.\\n\\nHow many sequences of length n consisting of (not necessarily distinct) integers between 1 and n, inclusive, satisfy the above condition? Print this number modulo 998 244 353.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10^5). Description of the test cases follows.\\n\\nThe first line of each test case contains two integers n and m (2 \u2264 n \u2264 2 \u22c5 10^5; 0 \u2264 m < n) \u2014 the length of the sequence and the number of insertions.\\n\\nThe i-th of the following m lines contains two integers x_i and y_i (2 \u2264 x_1 < x_2 < \u2026 < x_m \u2264 n; 1 \u2264 y_i < x_i). These lines describe the sequence of insertions in chronological order.\\n\\nIt is guaranteed...\\n#incl\",\"targets\":\"ude \\n#pragma GCC optimize(\\\"Ofast,no-stack-protector,unroll-loops,fast-math\\\")\\nusing namespace std;\\ntemplate \\nusing rque = priority_queue, greater>;\\ntemplate \\nbool chmin(T &a, const T &b) {\\n if (b < a) {\\n a = b;\\n return 1;\\n }\\n return 0;\\n}\\ntemplate \\nbool chmax(T &a, const T &b) {\\n if (b > a) {\\n a = b;\\n return 1;\\n }\\n return 0;\\n}\\nlong long gcd(long long a, long long b) {\\n if (a == 0) return b;\\n if (b == 0) return a;\\n long long cnt = a % b;\\n while (cnt != 0) {\\n a = b;\\n b = cnt;\\n cnt = a % b;\\n }\\n return b;\\n}\\nlong long extGCD(long long a, long long b, long long &x, long long &y) {\\n if (b == 0) {\\n x = 1;\\n y = 0;\\n return a;\\n }\\n long long d = extGCD(b, a % b, y, x);\\n y -= a \\/ b * x;\\n return d;\\n}\\nstruct UnionFind {\\n vector data;\\n int num;\\n UnionFind(int sz) {\\n data.assign(sz, -1);\\n num = sz;\\n }\\n bool unite(int x, int y) {\\n x = find(x), y = find(y);\\n if (x == y) return (false);\\n if (data[x] > data[y]) swap(x, y);\\n data[x] += data[y];\\n data[y] = x;\\n num--;\\n return (true);\\n }\\n int find(int k) {\\n if (data[k] < 0) return (k);\\n return (data[k] = find(data[k]));\\n }\\n long long size(int k) { return (-data[find(k)]); }\\n bool same(int x, int y) { return find(x) == find(y); }\\n};\\ntemplate \\nstruct ModInt {\\n int x;\\n ModInt() : x(0) {}\\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\\n ModInt &operator+=(const ModInt &p) {\\n if ((x += p.x) >= mod) x -= mod;\\n return *this;\\n }\\n ModInt &operator-=(const ModInt &p) {\\n if ((x += mod - p.x) >= mod) x -= mod;\\n return *this;\\n }\\n ModInt &operator*=(const ModInt &p) {\\n x = (int)(1LL * x * p.x % mod);\\n return *this;\\n }\\n ModInt &operator\\/=(const ModInt &p) {\\n *this *= p.inverse();\\n return *this;\\n }\\n ModInt operator-() const { return ModInt(-x); }\\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\\n ModInt operator-(const ModInt &p) const { return...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nAlice and Bob play a game. There is a paper strip which is divided into n + 1 cells numbered from left to right starting from 0. There is a chip placed in the n-th cell (the last one).\\n\\nPlayers take turns, Alice is first. Each player during his or her turn has to move the chip 1, 2 or k cells to the left (so, if the chip is currently in the cell i, the player can move it into cell i - 1, i - 2 or i - k). The chip should not leave the borders of the paper strip: it is impossible, for example, to move it k cells to the left if the current cell has number i < k. The player who can't make a move loses the game.\\n\\nWho wins if both participants play optimally?\\n\\nAlice and Bob would like to play several games, so you should determine the winner in each game.\\n\\nInput\\n\\nThe first line contains the single integer T (1 \u2264 T \u2264 100) \u2014 the number of games. Next T lines contain one game per line. All games are independent.\\n\\nEach of the next T lines contains two integers n and k (0 \u2264 n \u2264 109, 3 \u2264 k \u2264 109) \u2014 the length of the strip and the constant denoting the third move, respectively.\\n\\nOutput\\n\\nFor each game, print Alice if Alice wins this game and Bob otherwise.\\n\\nExample\\n\\nInput\\n\\n4\\n0 3\\n3 3\\n3 4\\n4 4\\n\\n\\nOutput\\n\\nBob\\nAlice\\nBob\\nAlice\",\"targets\":\"#include \\nusing namespace std;\\nint n, t, k;\\nint main() {\\n cin >> t;\\n while (t--) {\\n cin >> n >> k;\\n if (n == 0)\\n cout << \\\"Bob\\\" << endl;\\n else if (k % 3 != 0) {\\n if (n % 3 == 0)\\n cout << \\\"Bob\\\" << endl;\\n else\\n cout << \\\"Alice\\\" << endl;\\n } else if ((n % (k + 1)) % 3 == 0 && (n % (k + 1)) != k)\\n cout << \\\"Bob\\\" << endl;\\n else\\n cout << \\\"Alice\\\" << endl;\\n }\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Two players, Red and Blue, are at it again, and this time they're playing with crayons! The mischievous duo is now vandalizing a rooted tree, by coloring the nodes while playing their favorite game.\\n\\nThe game works as follows: there is a tree of size n, rooted at node 1, where each node is initially white. Red and Blue get one turn each. Red goes first. \\n\\nIn Red's turn, he can do the following operation any number of times: \\n\\n * Pick any subtree of the rooted tree, and color every node in the subtree red. \\n\\nHowever, to make the game fair, Red is only allowed to color k nodes of the tree. In other words, after Red's turn, at most k of the nodes can be colored red.\\n\\nThen, it's Blue's turn. Blue can do the following operation any number of times: \\n\\n * Pick any subtree of the rooted tree, and color every node in the subtree blue. However, he's not allowed to choose a subtree that contains a node already colored red, as that would make the node purple and no one likes purple crayon. \\n\\nNote: there's no restriction on the number of nodes Blue can color, as long as he doesn't color a node that Red has already colored.\\n\\nAfter the two turns, the score of the game is determined as follows: let w be the number of white nodes, r be the number of red nodes, and b be the number of blue nodes. The score of the game is w \u22c5 (r - b).\\n\\nRed wants to maximize this score, and Blue wants to minimize it. If both players play optimally, what will the final score of the game be?\\n\\nInput\\n\\nThe first line contains two integers n and k (2 \u2264 n \u2264 2 \u22c5 10^5; 1 \u2264 k \u2264 n) \u2014 the number of vertices in the tree and the maximum number of red nodes.\\n\\nNext n - 1 lines contains description of edges. The i-th line contains two space separated integers u_i and v_i (1 \u2264 u_i, v_i \u2264 n; u_i \u2260 v_i) \u2014 the i-th edge of the tree.\\n\\nIt's guaranteed that given edges form a tree.\\n\\nOutput\\n\\nPrint one integer \u2014 the resulting score if both Red and Blue play optimally.\\n\\nExamples\\n\\nInput\\n\\n\\n4 2\\n1 2\\n1 3\\n1 4\\n\\n\\nOutput\\n\\n\\n1\\n\\n\\nInput\\n\\n\\n5 2\\n1 2\\n2 3\\n3 4\\n4 5\\n\\n\\nOutput\\n\\n\\n6\\n\\n\\nInput\\n\\n\\n7...\\\":\",\"targets\":\"#include \\nusing namespace std;\\nconst int N = 2e5 + 10;\\nint n, k;\\nint dep[N];\\nint len[N], tot = 0;\\nvector son[N];\\nvoid dfs(int u, int fa) {\\n int dson = -1;\\n int deg = 0;\\n for (int v : son[u])\\n if (v != fa) {\\n dfs(v, u), deg++;\\n if (dson == -1 || dep[v] > dep[dson]) dson = v;\\n }\\n if (deg == 0) {\\n dep[u] = 1;\\n return;\\n }\\n for (int v : son[u])\\n if (v != fa) {\\n if (v != dson) {\\n len[++tot] = dep[v];\\n }\\n }\\n dep[u] = dep[dson] + 1;\\n return;\\n}\\nlong long f(int b) { return 1ll * (n - k - b) * (k - b); }\\nvoid solve() {\\n tot = 0;\\n cin >> n >> k;\\n for (int i = 1; i <= n; i++) son[i].clear();\\n for (int i = 1, u, v; i < n; i++) {\\n cin >> u >> v;\\n son[u].emplace_back(v), son[v].emplace_back(u);\\n }\\n dfs(1, 0);\\n len[++tot] = dep[1];\\n sort(len + 1, len + tot + 1, greater());\\n if (k >= tot) {\\n long long ans = 0;\\n for (int i = tot; i <= k; i++) ans = max(ans, 1ll * i * (n - i));\\n cout << ans << endl;\\n } else {\\n int r = 0;\\n for (int i = 1; i <= k; i++) r += len[i];\\n r -= k;\\n long long ans = f(0);\\n for (int i = 1; i <= n - r - k; i++) ans = min(ans, f(i));\\n cout << ans << endl;\\n }\\n return;\\n}\\nint main() {\\n ios::sync_with_stdio(0);\\n cin.tie(0), cout.tie(0);\\n solve();\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"An ant moves on the real line with constant speed of 1 unit per second. It starts at 0 and always moves to the right (so its position increases by 1 each second).\\n\\nThere are n portals, the i-th of which is located at position x_i and teleports to position y_i < x_i. Each portal can be either active or inactive. The initial state of the i-th portal is determined by s_i: if s_i=0 then the i-th portal is initially inactive, if s_i=1 then the i-th portal is initially active. When the ant travels through a portal (i.e., when its position coincides with the position of a portal): \\n\\n * if the portal is inactive, it becomes active (in this case the path of the ant is not affected); \\n * if the portal is active, it becomes inactive and the ant is instantly teleported to the position y_i, where it keeps on moving as normal. \\n\\n\\n\\nHow long (from the instant it starts moving) does it take for the ant to reach the position x_n + 1? It can be shown that this happens in a finite amount of time. Since the answer may be very large, compute it modulo 998 244 353.\\n\\nInput\\n\\nThe first line contains the integer n (1\u2264 n\u2264 2\u22c5 10^5) \u2014 the number of portals.\\n\\nThe i-th of the next n lines contains three integers x_i, y_i and s_i (1\u2264 y_i < x_i\u2264 10^9, s_i\u2208\\\\{0,1\\\\}) \u2014 the position of the i-th portal, the position where the ant is teleported when it travels through the i-th portal (if it is active), and the initial state of the i-th portal.\\n\\nThe positions of the portals are strictly increasing, that is x_1\\nusing ll = long long;\\nusing ld = long double;\\nusing ull = unsigned long long;\\nusing namespace std;\\nconst int N = 2e5 + 3, mod = 998244353;\\nint n, x[N], y[N];\\nll s[N];\\nvector > eve;\\nint main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(nullptr);\\n cin >> n;\\n for (int i = (1); i <= (n); ++i) {\\n cin >> x[i] >> y[i] >> s[i];\\n eve.push_back({x[i], i, 1});\\n eve.push_back({y[i], i, -1});\\n }\\n sort((eve).begin(), (eve).end(), greater >());\\n int sum = 0;\\n for (auto &E : eve) {\\n if (E[2] == 1)\\n (s[E[1]] += sum) %= mod, (sum += s[E[1]]) %= mod;\\n else\\n (sum -= s[E[1]] - mod) %= mod;\\n }\\n int ans = x[n] + 1;\\n for (int i = (1); i <= (n); ++i)\\n (ans += s[i] * 1LL * (x[i] - y[i]) % mod) %= mod;\\n cout << ans;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"\\n\\nWilliam has an array of n integers a_1, a_2, ..., a_n. In one move he can swap two neighboring items. Two items a_i and a_j are considered neighboring if the condition |i - j| = 1 is satisfied.\\n\\nWilliam wants you to calculate the minimal number of swaps he would need to perform to make it so that the array does not contain two neighboring items with the same parity.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10^4). Description of the test cases follows.\\n\\nThe first line of each test case contains an integer n (1 \u2264 n \u2264 10^5) which is the total number of items in William's array.\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^9) which are William's array.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 10^5.\\n\\nOutput\\n\\nFor each test case output the minimal number of operations needed or -1 if it is impossible to get the array to a state when no neighboring numbers have the same parity.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n3\\n6 6 1\\n1\\n9\\n6\\n1 1 1 2 2 2\\n2\\n8 6\\n6\\n6 2 3 4 5 1\\n\\n\\nOutput\\n\\n\\n1\\n0\\n3\\n-1\\n2\\n\\nNote\\n\\nIn the first test case the following sequence of operations would satisfy the requirements: \\n\\n 1. swap(2, 3). Array after performing the operation: [6, 1, 6] \\n\\n\\n\\nIn the second test case the array initially does not contain two neighboring items of the same parity.\\n\\nIn the third test case the following sequence of operations would satisfy the requirements: \\n\\n 1. swap(3, 4). Array after performing the operation: [1, 1, 2, 1, 2, 2] \\n 2. swap(2, 3). Array after performing the operation: [1, 2, 1, 1, 2, 2] \\n 3. swap(4, 5). Array after performing the operation: [1, 2, 1, 2, 1, 2] \\n\\n\\n\\nIn the fourth test case it is impossible to satisfy the requirements.\\n\\nIn the fifth test case the following sequence of operations would satisfy the requirements: \\n\\n 1. swap(2, 3). Array after performing the operation: [6, 3, 2, 4, 5, 1] \\n 2. swap(4, 5). Array after performing the operation: [6, 3, 2, 5, 4, 1]\",\"targets\":\"#include \\nusing namespace std;\\nconst int N = 5e6 + 10;\\nlong long a[N], n;\\nbool is[N];\\ninline long long Read() {\\n long long x = 0, f = 1;\\n char ch = getchar();\\n while (ch > '9' || ch < '0') {\\n if (ch == '-') f = -1;\\n ch = getchar();\\n }\\n while (ch >= '0' && ch <= '9') {\\n x = x * 10 + ch - '0';\\n ch = getchar();\\n }\\n return x * f;\\n}\\nvoid work() {\\n long long ans = 1e18;\\n int e = 0, o = 0;\\n n = Read();\\n for (int i = 1; i <= n; ++i) {\\n a[i] = Read();\\n if (a[i] % 2 == 0)\\n e++, is[i] = 0;\\n else\\n o++, is[i] = 1;\\n }\\n if (n % 2 == 0) {\\n if (o != e)\\n puts(\\\"-1\\\");\\n else {\\n long long c1 = 0, c0 = 0;\\n for (int i = 1, j = 1, k = 1; i <= n; ++i) {\\n if (is[i] == 1) {\\n c1 += abs(i - j);\\n j += 2;\\n } else {\\n c0 += abs(i - k);\\n k += 2;\\n }\\n }\\n ans = min(min(ans, c0), c1);\\n cout << ans << '\\\\n';\\n }\\n } else {\\n if (o == n \\/ 2 && e == n \\/ 2 + 1) {\\n long long c = 0;\\n for (int i = 1, j = 1; i <= n; ++i) {\\n if (is[i] == 0) {\\n c += abs(i - j);\\n j += 2;\\n }\\n }\\n ans = min(ans, c);\\n cout << ans << '\\\\n';\\n } else if (e == n \\/ 2 && o == n \\/ 2 + 1) {\\n long long c = 0;\\n for (int i = 1, j = 1; i <= n; ++i) {\\n if (is[i] == 1) {\\n c += abs(i - j);\\n j += 2;\\n }\\n }\\n ans = min(ans, c);\\n cout << ans << '\\\\n';\\n } else\\n puts(\\\"-1\\\");\\n }\\n}\\nint main() {\\n int T;\\n cin >> T;\\n while (T--) work();\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Arthur has bought a beautiful big table into his new flat. When he came home, Arthur noticed that the new table is unstable.\\n\\nIn total the table Arthur bought has n legs, the length of the i-th leg is li.\\n\\nArthur decided to make the table stable and remove some legs. For each of them Arthur determined number di \u2014 the amount of energy that he spends to remove the i-th leg.\\n\\nA table with k legs is assumed to be stable if there are more than half legs of the maximum length. For example, to make a table with 5 legs stable, you need to make sure it has at least three (out of these five) legs of the maximum length. Also, a table with one leg is always stable and a table with two legs is stable if and only if they have the same lengths.\\n\\nYour task is to help Arthur and count the minimum number of energy units Arthur should spend on making the table stable.\\n\\nInput\\n\\nThe first line of the input contains integer n (1 \u2264 n \u2264 105) \u2014 the initial number of legs in the table Arthur bought.\\n\\nThe second line of the input contains a sequence of n integers li (1 \u2264 li \u2264 105), where li is equal to the length of the i-th leg of the table.\\n\\nThe third line of the input contains a sequence of n integers di (1 \u2264 di \u2264 200), where di is the number of energy units that Arthur spends on removing the i-th leg off the table.\\n\\nOutput\\n\\nPrint a single integer \u2014 the minimum number of energy units that Arthur needs to spend in order to make the table stable.\\n\\nExamples\\n\\nInput\\n\\n2\\n1 5\\n3 2\\n\\n\\nOutput\\n\\n2\\n\\n\\nInput\\n\\n3\\n2 4 4\\n1 1 1\\n\\n\\nOutput\\n\\n0\\n\\n\\nInput\\n\\n6\\n2 2 1 1 3 3\\n4 3 5 5 2 1\\n\\n\\nOutput\\n\\n8\\nUsing java can you solve the prior task?\",\"targets\":\"import java.util.*;\\nimport java.util.LinkedList;\\nimport java.io.BufferedReader;\\nimport java.io.InputStreamReader;\\nimport java.util.StringTokenizer;\\n\\npublic class tmp {\\n public static void main(String [] args) throws Exception{\\n BufferedReader in = new BufferedReader(new InputStreamReader(System.in));\\n StringTokenizer st = new StringTokenizer(in.readLine());\\n StringBuilder sb = new StringBuilder();\\n \\n int n = Integer.parseInt(st.nextToken());\\n\\tint tot = n;\\n\\tint array[] = new int[n];\\n\\t\\n\\tArrayList[] list = new ArrayList[100005];\\n\\t\\n\\tfor(int i = 0;i();\\n\\t\\t\\n\\tst = new StringTokenizer(in.readLine());\\n\\t\\n\\tfor(int i = 0;i < n;i++){\\n\\t\\tarray[i] = Integer.parseInt(st.nextToken());\\n\\t}\\n\\tint d[] = new int[205];\\n\\tst = new StringTokenizer(in.readLine());\\n\\tfor(int i = 0;i < n;i++){\\n\\t\\tint cost = Integer.parseInt(st.nextToken());\\n\\t\\td[cost]++;\\n\\t\\tlist[array[i]].add(cost);\\n\\t}\\n\\t\\n\\tlong cnt = 0;\\n\\tlong ans = 100000005;\\n\\tfor(int i = list.length - 1;i>=0;i--){\\n\\t\\tif(list[i].isEmpty())\\n continue;\\n\\t\\tint var = 0;\\n\\t\\tint aux = 0;\\n\\t\\tfor(int j = 0;j < list[i].size();j++){\\n int tmp = list[i].get(j);\\n d[tmp]--;\\n var += tmp;\\n\\t\\t}\\n\\t\\tint left = tot - (2*list[i].size() - 1);\\n\\t\\t\\/\\/System.out.println(left);\\n\\t\\tfor(int j = 1;j < d.length && left > 0;j++){\\n\\t\\t\\taux += Math.min(left,d[j])*j;\\n\\t\\t\\tleft -= d[j];\\n\\t\\t}\\n\\t\\tans = Math.min(ans,cnt + aux);\\n\\t\\tcnt += var;\\n\\t\\ttot -= list[i].size();\\n\\t\\t\\n\\t}\\n\\tSystem.out.println(ans);\\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n }\\n \\n \\n\\n \\n \\n \\n \\n \\n\\n\\n \\n \\n \\n \\n}\\n\\n \\nclass P implements Comparable

{\\n int val, idx;\\n public P(int val, int idx){\\n this.val = val;\\n this.idx = idx;\\n }\\n\\n public int compareTo(P other){\\n if (this.val != other.val) return -this.val +...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"JAVA solution for \\\"The only difference between this problem and D2 is that you don't have to provide the way to construct the answer in this problem, but you have to do it in D2.\\n\\nThere's a table of n \u00d7 m cells (n rows and m columns). The value of n \u22c5 m is even.\\n\\nA domino is a figure that consists of two cells having a common side. It may be horizontal (one of the cells is to the right of the other) or vertical (one of the cells is above the other).\\n\\nYou need to find out whether it is possible to place nm\\/2 dominoes on the table so that exactly k of them are horizontal and all the other dominoes are vertical. The dominoes cannot overlap and must fill the whole table.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of a single line. The line contains three integers n, m, k (1 \u2264 n,m \u2264 100, 0 \u2264 k \u2264 nm\\/2, n \u22c5 m is even) \u2014 the number of rows, columns and horizontal dominoes, respectively.\\n\\nOutput\\n\\nFor each test case output \\\"YES\\\", if it is possible to place dominoes in the desired way, or \\\"NO\\\" otherwise.\\n\\nYou may print each letter in any case (YES, yes, Yes will all be recognized as positive answer, NO, no and nO will all be recognized as negative answer).\\n\\nExample\\n\\nInput\\n\\n\\n8\\n4 4 2\\n2 3 0\\n3 2 3\\n1 2 0\\n2 4 2\\n5 2 2\\n2 17 16\\n2 1 1\\n\\n\\nOutput\\n\\n\\nYES\\nYES\\nYES\\nNO\\nYES\\nNO\\nYES\\nNO\\\":\",\"targets\":\"\\/\\/ package com.company;\\nimport java.util.*;\\nimport java.io.*;\\nimport java.lang.*;\\nimport java.util.jar.JarEntry;\\n\\npublic class Main{\\n \\/* || \u0936\u094d\u0930\u0940 \u0917\u0923\u0947\u0936\u093e\u092f \u0928\u092e\u0903 ||\\n @\ud835\udc1a\ud835\udc2e\ud835\udc2d\ud835\udc21\ud835\udc28\ud835\udc2b \ud835\udc09\ud835\udc22\ud835\udc20\ud835\udc1a\ud835\udc2b \ud835\udc0d\ud835\udc1a\ud835\udc22\ud835\udc27\ud835\udc2e\ud835\udc23\ud835\udc22\\n \ud835\udc12\ud835\udc15\ud835\udc0d\ud835\udc08\ud835\udc13- \ud835\udc12\ud835\udc2e\ud835\udc2b\ud835\udc1a\ud835\udc2d\\n *\\/\\n public static void main(String args[]){\\n InputReader in=new InputReader(System.in);\\n TASK solver = new TASK();\\n int t=1;\\n t = in.nextInt();\\n for(int i=1;i<=t;i++)\\n {\\n solver.solve(in,i);\\n }\\n }\\n static class TASK {\\n\\n\\n void solve(InputReader in, int testNumber) {\\n int n = in.nextInt();\\n int m = in.nextInt();\\n int k = in.nextInt();\\n if(n==1)\\n {\\n if(k==m\\/2)\\n System.out.println(\\\"YES\\\");\\n else\\n System.out.println(\\\"NO\\\");\\n return;\\n }\\n if(m==1)\\n {\\n if(k==0)\\n System.out.println(\\\"YES\\\");\\n else\\n System.out.println(\\\"NO\\\");\\n return;\\n }\\n if(n%2==1 && m%2==0)\\n {\\n int min = m\\/2;\\n if(k\\nconst long long _INF = 1e18;\\nconst int INF = 1e9;\\nusing namespace std;\\nint T;\\nvoid solved() {\\n long long n = 0;\\n cin >> n;\\n if (n % 2 == 1) n++;\\n if (n <= 6)\\n cout << 15 << \\\"\\\\n\\\";\\n else\\n cout << n * 5 \\/ 2 << \\\"\\\\n\\\";\\n}\\nint main() {\\n setbuf(stdout, NULL);\\n ios::sync_with_stdio(0);\\n cin.tie(0);\\n cin >> T;\\n for (int i = 0; i < (T); i++) {\\n solved();\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"There are n block towers in a row, where tower i has a height of a_i. You're part of a building crew, and you want to make the buildings look as nice as possible. In a single day, you can perform the following operation:\\n\\n * Choose two indices i and j (1 \u2264 i, j \u2264 n; i \u2260 j), and move a block from tower i to tower j. This essentially decreases a_i by 1 and increases a_j by 1. \\n\\n\\n\\nYou think the ugliness of the buildings is the height difference between the tallest and shortest buildings. Formally, the ugliness is defined as max(a)-min(a). \\n\\nWhat's the minimum possible ugliness you can achieve, after any number of days?\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases. Then t cases follow.\\n\\nThe first line of each test case contains one integer n (2 \u2264 n \u2264 100) \u2014 the number of buildings.\\n\\nThe second line of each test case contains n space separated integers a_1, a_2, \u2026, a_n (1 \u2264 a_i \u2264 10^7) \u2014 the heights of the buildings.\\n\\nOutput\\n\\nFor each test case, output a single integer \u2014 the minimum possible ugliness of the buildings.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3\\n10 10 10\\n4\\n3 2 1 2\\n5\\n1 2 3 1 5\\n\\n\\nOutput\\n\\n\\n0\\n0\\n1\\n\\nNote\\n\\nIn the first test case, the ugliness is already 0.\\n\\nIn the second test case, you should do one operation, with i = 1 and j = 3. The new heights will now be [2, 2, 2, 2], with an ugliness of 0.\\n\\nIn the third test case, you may do three operations: \\n\\n 1. with i = 3 and j = 1. The new array will now be [2, 2, 2, 1, 5], \\n 2. with i = 5 and j = 4. The new array will now be [2, 2, 2, 2, 4], \\n 3. with i = 5 and j = 3. The new array will now be [2, 2, 3, 2, 3]. \\n\\nThe resulting ugliness is 1. It can be proven that this is the minimum possible ugliness for this test.\\nSolve the task in PYTHON3.\",\"targets\":\"tcase = int(input())\\nfor i in range(tcase):\\n n = int(input())\\n lst = list(map(int,input().split()))\\n v = sum(lst)\\n if v%n == 0:\\n print(0)\\n else:\\n print(1)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"It is the easy version of the problem. The only difference is that in this version n = 1.\\n\\nIn the cinema seats can be represented as the table with n rows and m columns. The rows are numbered with integers from 1 to n. The seats in each row are numbered with consecutive integers from left to right: in the k-th row from m (k - 1) + 1 to m k for all rows 1 \u2264 k \u2264 n.\\n\\n1| 2| \u22c5\u22c5\u22c5| m - 1| m \\n---|---|---|---|--- \\nm + 1| m + 2| \u22c5\u22c5\u22c5| 2 m - 1| 2 m \\n2m + 1| 2m + 2| \u22c5\u22c5\u22c5| 3 m - 1| 3 m \\n\\\\vdots| \\\\vdots| \\\\ddots| \\\\vdots| \\\\vdots \\nm (n - 1) + 1| m (n - 1) + 2| \u22c5\u22c5\u22c5| n m - 1| n m \\nThe table with seats indices\\n\\nThere are nm people who want to go to the cinema to watch a new film. They are numbered with integers from 1 to nm. You should give exactly one seat to each person.\\n\\nIt is known, that in this cinema as lower seat index you have as better you can see everything happening on the screen. i-th person has the level of sight a_i. Let's define s_i as the seat index, that will be given to i-th person. You want to give better places for people with lower sight levels, so for any two people i, j such that a_i < a_j it should be satisfied that s_i < s_j.\\n\\nAfter you will give seats to all people they will start coming to their seats. In the order from 1 to nm, each person will enter the hall and sit in their seat. To get to their place, the person will go to their seat's row and start moving from the first seat in this row to theirs from left to right. While moving some places will be free, some will be occupied with people already seated. The inconvenience of the person is equal to the number of occupied seats he or she will go through.\\n\\nLet's consider an example: m = 5, the person has the seat 4 in the first row, the seats 1, 3, 5 in the first row are already occupied, the seats 2 and 4 are free. The inconvenience of this person will be 2, because he will go through occupied seats 1 and 3.\\n\\nFind the minimal total inconvenience (the sum of inconveniences of all people), that is possible to have by giving places for all people...\\nUsing python3 can you solve the prior task?\",\"targets\":\"# Author : nitish420 --------------------------------------------------------------------\\nimport os\\nimport sys\\nfrom io import BytesIO, IOBase\\n\\nclass SortedList:\\n def __init__(self, iterable=None, _load=200):\\n \\\"\\\"\\\"Initialize sorted list instance.\\\"\\\"\\\"\\n if iterable is None:\\n iterable = []\\n values = sorted(iterable)\\n self._len = _len = len(values)\\n self._load = _load\\n self._lists = _lists = [values[i:i + _load] for i in range(0, _len, _load)]\\n self._list_lens = [len(_list) for _list in _lists]\\n self._mins = [_list[0] for _list in _lists]\\n self._fen_tree = []\\n self._rebuild = True\\n\\n def _fen_build(self):\\n \\\"\\\"\\\"Build a fenwick tree instance.\\\"\\\"\\\"\\n self._fen_tree[:] = self._list_lens\\n _fen_tree = self._fen_tree\\n for i in range(len(_fen_tree)):\\n if i | i + 1 < len(_fen_tree):\\n _fen_tree[i | i + 1] += _fen_tree[i]\\n self._rebuild = False\\n\\n def _fen_update(self, index, value):\\n \\\"\\\"\\\"Update `fen_tree[index] += value`.\\\"\\\"\\\"\\n if not self._rebuild:\\n _fen_tree = self._fen_tree\\n while index < len(_fen_tree):\\n _fen_tree[index] += value\\n index |= index + 1\\n\\n def _fen_query(self, end):\\n \\\"\\\"\\\"Return `sum(_fen_tree[:end])`.\\\"\\\"\\\"\\n if self._rebuild:\\n self._fen_build()\\n\\n _fen_tree = self._fen_tree\\n x = 0\\n while end:\\n x += _fen_tree[end - 1]\\n end &= end - 1\\n return x\\n\\n def _fen_findkth(self, k):\\n \\\"\\\"\\\"Return a pair of (the largest `idx` such that `sum(_fen_tree[:idx]) <= k`, `k - sum(_fen_tree[:idx])`).\\\"\\\"\\\"\\n _list_lens = self._list_lens\\n if k < _list_lens[0]:\\n return 0, k\\n if k >= self._len - _list_lens[-1]:\\n return len(_list_lens) - 1, k + _list_lens[-1] - self._len\\n if self._rebuild:\\n self._fen_build()\\n\\n _fen_tree = self._fen_tree\\n idx = -1\\n for d in...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given a binary string (i. e. a string consisting of characters 0 and\\/or 1) s of length n. You can perform the following operation with the string s at most once: choose a substring (a contiguous subsequence) of s having exactly k characters 1 in it, and shuffle it (reorder the characters in the substring as you wish).\\n\\nCalculate the number of different strings which can be obtained from s by performing this operation at most once.\\n\\nInput\\n\\nThe first line contains two integers n and k (2 \u2264 n \u2264 5000; 0 \u2264 k \u2264 n).\\n\\nThe second line contains the string s of length n, consisting of characters 0 and\\/or 1.\\n\\nOutput\\n\\nPrint one integer \u2014 the number of different strings which can be obtained from s by performing the described operation at most once. Since the answer can be large, output it modulo 998244353.\\n\\nExamples\\n\\nInput\\n\\n\\n7 2\\n1100110\\n\\n\\nOutput\\n\\n\\n16\\n\\n\\nInput\\n\\n\\n5 0\\n10010\\n\\n\\nOutput\\n\\n\\n1\\n\\n\\nInput\\n\\n\\n8 1\\n10001000\\n\\n\\nOutput\\n\\n\\n10\\n\\n\\nInput\\n\\n\\n10 8\\n0010011000\\n\\n\\nOutput\\n\\n\\n1\\n\\nNote\\n\\nSome strings you can obtain in the first example:\\n\\n * to obtain 0110110, you can take the substring from the 1-st character to the 4-th character, which is 1100, and reorder its characters to get 0110; \\n * to obtain 1111000, you can take the substring from the 3-rd character to the 7-th character, which is 00110, and reorder its characters to get 11000; \\n * to obtain 1100101, you can take the substring from the 5-th character to the 7-th character, which is 110, and reorder its characters to get 101. \\n\\n\\n\\nIn the second example, k = 0 so you can only choose the substrings consisting only of 0 characters. Reordering them doesn't change the string at all, so the only string you can obtain is 10010.\\nimpor\",\"targets\":\"t java.io.BufferedReader;\\nimport java.io.BufferedWriter;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.io.OutputStreamWriter;\\nimport java.util.*;\\nimport java.util.stream.Stream;\\n\\npublic class Program {\\n\\n static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));\\n static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));\\n\\n public static void main(String[] args) throws NumberFormatException, IOException {\\n\\n\\/\\/ int cases = Integer.parseInt(reader.readLine());\\n int cases = 1;\\n int mod = 998244353;\\n\\n long[] fact = factorial(10000, mod);\\n long[] invfact = invfactorial(10000, mod, fact);\\n\\n while(cases-- > 0) {\\n\\n String[] firstLine = reader.readLine().split(\\\" \\\");\\n\\n int n = Integer.parseInt(firstLine[0]);\\n int k = Integer.parseInt(firstLine[1]);\\n\\n String str = reader.readLine();\\n\\n int[] arr = new int[n];\\n int sum = 0;\\n\\n for(int i=0;ik) {\\n break;\\n }\\n en = i;\\n }\\n\\n ans += ncr(en-st+1, k, mod, fact, invfact);\\n\\n for(int j=en+1;j0) {\\n\\t\\t\\t\\n\\t\\t\\tint n = sc.nextInt();\\n\\t\\t\\tString s = String.valueOf(n);\\n\\t\\t\\tint ans = s.length()+1; \\n\\t\\t\\tfor(int i=0;i\\nusing namespace std;\\nlong long n, i, a[1010], m, j;\\nstring s;\\nlong long min(long long a, long long b) {\\n if (a > b)\\n return b;\\n else\\n return a;\\n}\\nlong long max(long long a, long long b) {\\n if (a > b)\\n return a;\\n else\\n return b;\\n}\\nlong long fabs(long long a) {\\n if (a >= 0)\\n return a;\\n else\\n return -a;\\n}\\nint main() {\\n cin >> n;\\n cin >> s;\\n m = n - 1;\\n a[1] = 1;\\n for (i = 1; i <= m; i++) {\\n if (s[i - 1] == '=') a[i + 1] = a[i];\\n if (s[i - 1] == 'R') a[i + 1] = a[i] + 1;\\n if (s[i - 1] == 'L') {\\n if (a[i] != 1)\\n a[i + 1] = 1;\\n else {\\n a[i + 1] = 1;\\n j = i;\\n while (j > 0) {\\n if ((s[j - 1] == 'L') && (a[j + 1] >= a[j]))\\n a[j] = a[j + 1] + 1;\\n else if ((s[j - 1] == '=') && (a[j] != a[j + 1]))\\n a[j] = a[j + 1];\\n else\\n j = -1;\\n j--;\\n }\\n }\\n }\\n }\\n for (i = 1; i <= n; i++) cout << a[i] << \\\" \\\";\\n cout << endl;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"It is a complicated version of problem F1. The difference between them is the constraints (F1: k \u2264 2, F2: k \u2264 10).\\n\\nYou are given an integer n. Find the minimum integer x such that x \u2265 n and the number x is k-beautiful.\\n\\nA number is called k-beautiful if its decimal representation having no leading zeroes contains no more than k different digits. E.g. if k = 2, the numbers 3434443, 55550, 777 and 21 are k-beautiful whereas the numbers 120, 445435 and 998244353 are not.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of one line containing two integers n and k (1 \u2264 n \u2264 10^9, 1 \u2264 k \u2264 10).\\n\\nOutput\\n\\nFor each test case output on a separate line x \u2014 the minimum k-beautiful integer such that x \u2265 n.\\n\\nExample\\n\\nInput\\n\\n\\n6\\n2021 3\\n177890 2\\n34512 3\\n724533 4\\n998244353 1\\n12345678 10\\n\\n\\nOutput\\n\\n\\n2021\\n181111\\n34533\\n724542\\n999999999\\n12345678\\nSolve the task in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nstring solve() {\\n string n;\\n int k;\\n cin >> n >> k;\\n while (1) {\\n set s;\\n for (auto c : n) s.insert(c);\\n if (s.size() <= k) return n;\\n s.clear();\\n for (int ptr = 0;; ptr++) {\\n s.insert(n[ptr]);\\n if (s.size() > k) {\\n while (n[ptr] == '9') {\\n ptr--;\\n }\\n n[ptr]++;\\n for (int i = ptr + 1; i < n.size(); i++) {\\n n[i] = '0';\\n }\\n break;\\n }\\n }\\n }\\n}\\nint main() {\\n int T;\\n cin >> T;\\n while (T--) {\\n cout << solve() << '\\\\n';\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Chef talks a lot on his mobile phone. As a result he exhausts his talk-value (in Rokdas) very quickly. One day at a mobile recharge shop, he noticed that his service provider gives add-on plans which can lower his calling rates (Rokdas\\/minute). One of the plans said \\\"Recharge for 28 Rokdas and enjoy call rates of 0.50 Rokdas\\/min for one month\\\". Chef was very pleased. His normal calling rate is 1 Rokda\\/min. And he talked for 200 minutes in last month, which costed him 200 Rokdas. If he had this plan activated, it would have costed him: 28 + 0.5*200 = 128 Rokdas only! Chef could have saved 72 Rokdas. But if he pays for this add-on and talks for very little in the coming month, he may end up saving nothing or even wasting money. Now, Chef is a simple guy and he doesn't worry much about future. He decides to choose the plan based upon his last month\u2019s usage.\\nThere are numerous plans. Some for 1 month, some for 15 months. Some reduce call rate to 0.75 Rokdas\\/min, some reduce it to 0.60 Rokdas\\/min. And of course each of them differ in their activation costs. Note - If a plan is valid for M months, then we must pay for (re)activation after every M months (once in M months). Naturally, Chef is confused, and you (as always) are given the task to help him choose the best plan.\\n\\nInput\\nFirst line contains T- the number of test cases. In each test case, first line contains D- the default rate (Rokdas\\/minute, real number), U- the number of minutes Chef talked in last month and N- the number of add-on plans available. Then N lines follow, each containing M- the number of months the plan is valid for, R- the calling rate for the plan (Rokdas\\/minute, real number) and C- the cost of the plan.\\n\\nOutput\\nFor each test case, output one integer- the number of the best plan (from 1 to N). Output '0' if no plan is advantageous for Chef. No two plans are equally advantageous.\\n\\nConstraints\\n1 \u2264 T \u2264 1000.5 \u2264 D \u2264 10.0 (exactly 2 digits after the decimal point)1 \u2264 U \u2264 100001 \u2264 N \u2264 1001 \u2264 M \u2264 360.05 \u2264 R < D (exactly 2 digits after the...\\nUsing python can you solve the prior task?\",\"targets\":\"for t in range(int(raw_input())):\\n\\td,u,n = tuple(map(lambda x: float(x),raw_input().split()))\\n\\tp=[]\\n\\tn = int(n)\\n\\tfor i in range(n):\\n\\t\\tp.append(tuple(map(lambda x: float(x),raw_input().split())))\\n\\tplan=0\\n\\tprice=u*d\\n\\t# print\\n\\t# print \\\"price:\\\",price\\n\\t# print \\\"p:\\\",p\\n\\tfor j,i in enumerate(p):\\n\\t\\ttemp = i[1]*u + i[2]\\/i[0]\\n\\t\\t# print \\\"temp_price:\\\",temp\\n\\t\\tif temp < price:\\n\\t\\t\\tplan = j+1\\n\\t\\t\\tprice = temp\\n\\tprint plan\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"...Mike the TV greets you again!\\n\\nTired of the monotonous furniture? Sick of gray routine? Dreaming about dizzying changes in your humble abode? We have something to offer you!\\n\\nThis domino carpet for only $99.99 will change your life! You can lay it on the floor, hang it on the wall or even on the ceiling! Among other things ...\\n\\nHaving watched the commercial, virus Hexadecimal also wanted to get a Domino Carpet and wanted badly to be photographed in front of it. But of course, a virus will never consent to buying a licensed Carpet! So she ordered a truck of dominoes and decided to make such a Carpet herself. \\n\\nThe original Domino Carpet is a field of squares n \u00d7 m in size. Each square is half of a domino, and can be rotated either vertically or horizontally, independently from its neighbors. Vertically rotated domino halves look like this: \\n\\n\\n\\nAnd horizontally rotated halves look like this: \\n\\n\\n\\nNotice, that some halves looks the same in both rotations, but other halves differ.\\n\\nDominoes bought by Hexadecimal are represented by uncuttable chips 1 \u00d7 2 in size, which can be laid either vertically or horizontally. If the chip is laid vertically, then both of it's halves should be laid vertically orientated; if the chip is laid horizontally, then both of it's halves should be laid horizontally.\\n\\nThe samples of valid and invalid dominoes laid vertically and horizontally are: \\n\\n\\n\\nVirus Hexadecimal assembles her own Domino Carpet so that the following conditions are satisfied:\\n\\n * each carpet square is covered by a domino chip, i.e. there are no empty squares; \\n * all domino chips lie entirely within the carpet and don't overlap with each other; \\n * if there is a horizontal domino chip with its left half in column j then there are no horizontal domino chips with their left halves in columns j - 1 or j + 1. \\n\\n\\n\\nBefore starting to assemble her own Domino Carpet, the virus wants to know the number of ways to achieve the intended purpose modulo 109 + 7.\\n\\nYou can assume that the virus has an...\\n#incl\",\"targets\":\"ude \\n#pragma comment(linker, \\\"\\/STACK:268435456\\\")\\nusing namespace std;\\ntemplate \\ninline T abs(T a) {\\n return ((a < 0) ? -a : a);\\n}\\ntemplate \\ninline T sqr(T a) {\\n return a * a;\\n}\\ntemplate \\nT gcd(T a, T b) {\\n return a ? gcd(b % a, a) : b;\\n}\\ntemplate \\nT lcm(T a, T b) {\\n return a \\/ gcd(a, b) * b;\\n}\\ntemplate \\nT sign(T a) {\\n return a > 0 ? 1 : (a < 0 ? -1 : 0);\\n}\\nconst int dx[] = {-1, 0, 1, 0};\\nconst int dy[] = {0, 1, 0, -1};\\nconst int dxK[] = {-1, -1, 0, 1, 1, 1, 0, -1};\\nconst int dyK[] = {0, 1, 1, 1, 0, -1, -1, -1};\\nconst int dxKn[] = {-2, -1, 1, 2, 2, 1, -1, -2};\\nconst int dyKn[] = {1, 2, 2, 1, -1, -2, -2, -1};\\nconst int N = int(3e2) + 5;\\nconst int M = int(3e2) + 9;\\nconst int LOGN = 21;\\nconst int SQN = 350;\\nconst int MOD = int(1e9) + 7;\\nconst int INF = int(1e9) + 100;\\nconst long long INF64 = 2e18;\\nconst double PI = double(3.1415926535897932384626433832795);\\nconst double e = double(2.7182818284590452353602874713527);\\nconst double EPS = 1e-9;\\nint n, m;\\nstring s[N * 4];\\nint a[N][N];\\nint dp[N][N][2][2];\\nint DP[N];\\nint f(string cur, int cnt) {\\n string s3 = \\\"O...O...O\\\";\\n string s2 = \\\"O.......O\\\";\\n string s6 = \\\"OOO...OOO\\\";\\n if (cnt == 2) return (cur == s2 ? 1 : 2);\\n if (cnt == 3) return (cur == s3 ? 1 : 2);\\n if (cnt == 6) return (cur == s6 ? 1 : 2);\\n}\\nint calc(int i);\\nint calc(int i, int j, bool needH, bool uH) {\\n int &res = dp[i][j][needH][uH];\\n if (res != -1) return res;\\n if (i == n) {\\n int res = 1;\\n if (needH && !uH) res = 0;\\n res *= calc(j + 1 + needH);\\n res %= MOD;\\n return res;\\n }\\n res = 0;\\n if (needH) {\\n if (a[i][j] != 2 && a[i][j + 1] != 2) {\\n res += calc(i + 1, j, needH, true);\\n res %= MOD;\\n }\\n if (i + 1 < n && a[i][j] != 1 && a[i + 1][j] != 1 && a[i][j + 1] != 1 &&\\n a[i + 1][j + 1] != 1) {\\n res += calc(i + 2, j, needH, uH);\\n res %= MOD;\\n }\\n return res;\\n } else {\\n if (i == n - 1) return res = 0;\\n if (a[i][j] == 1 || a[i + 1][j] == 1) return res = 0;\\n return calc(i +...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Monocarp wrote down two numbers on a whiteboard. Both numbers follow a specific format: a positive integer x with p zeros appended to its end.\\n\\nNow Monocarp asks you to compare these two numbers. Can you help him?\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of testcases.\\n\\nThe first line of each testcase contains two integers x_1 and p_1 (1 \u2264 x_1 \u2264 10^6; 0 \u2264 p_1 \u2264 10^6) \u2014 the description of the first number.\\n\\nThe second line of each testcase contains two integers x_2 and p_2 (1 \u2264 x_2 \u2264 10^6; 0 \u2264 p_2 \u2264 10^6) \u2014 the description of the second number.\\n\\nOutput\\n\\nFor each testcase print the result of the comparison of the given two numbers. If the first number is smaller than the second one, print '<'. If the first number is greater than the second one, print '>'. If they are equal, print '='.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n2 1\\n19 0\\n10 2\\n100 1\\n1999 0\\n2 3\\n1 0\\n1 0\\n99 0\\n1 2\\n\\n\\nOutput\\n\\n\\n>\\n=\\n<\\n=\\n<\\n\\nNote\\n\\nThe comparisons in the example are: 20 > 19, 1000 = 1000, 1999 < 2000, 1 = 1, 99 < 100.\\n#incl\",\"targets\":\"ude \\nusing namespace std;\\nconst int maxn = 1e6 + 5;\\nconst int mod = 998244353;\\nconst int INF = 0x3f3f3f3f;\\nconst long long llINF = 0x3f3f3f3f3f3f3f3f;\\nlong long make_compiler_happy() { return INF ^ 3 ^ maxn ^ mod ^ llINF; }\\nlong long fpow(long long a, long long b) {\\n long long res = 1;\\n a %= mod;\\n assert(b >= 0);\\n for (; b; b >>= 1) {\\n if (b & 1) res = res * a % mod;\\n a = a * a % mod;\\n }\\n return res;\\n}\\nlong long inv(long long x) { return fpow(x, mod - 2); }\\nmt19937 gen(chrono::high_resolution_clock::now().time_since_epoch().count());\\nvoid solve() {\\n string s[2];\\n int p[2];\\n for (int i = 0; i < (2); i++) cin >> s[i] >> p[i];\\n if (((int)s[0].size()) + p[0] < ((int)s[1].size()) + p[1]) {\\n cout << \\\"<\\\\n\\\";\\n } else if (((int)s[0].size()) + p[0] > ((int)s[1].size()) + p[1]) {\\n cout << \\\">\\\\n\\\";\\n } else {\\n while (((int)s[0].size()) < ((int)s[1].size())) {\\n p[0]--;\\n s[0] += '0';\\n }\\n while (((int)s[1].size()) < ((int)s[0].size())) {\\n p[1]--;\\n s[1] += '0';\\n }\\n if (s[0] < s[1]) {\\n cout << \\\"<\\\\n\\\";\\n } else if (s[0] > s[1]) {\\n cout << \\\">\\\\n\\\";\\n } else {\\n cout << \\\"=\\\\n\\\";\\n }\\n }\\n}\\nint main() {\\n ios::sync_with_stdio(0), cin.tie(0);\\n int T;\\n cin >> T;\\n for (int kase = (1); kase <= (T); kase++) {\\n solve();\\n }\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"The Olympic Games have just started and Federico is eager to watch the marathon race.\\n\\nThere will be n athletes, numbered from 1 to n, competing in the marathon, and all of them have taken part in 5 important marathons, numbered from 1 to 5, in the past. For each 1\u2264 i\u2264 n and 1\u2264 j\u2264 5, Federico remembers that athlete i ranked r_{i,j}-th in marathon j (e.g., r_{2,4}=3 means that athlete 2 was third in marathon 4).\\n\\nFederico considers athlete x superior to athlete y if athlete x ranked better than athlete y in at least 3 past marathons, i.e., r_{x,j}=3){\\n max=i;\\n }\\n }\\n for(int i=0;i=3){\\n max=-1;\\n break;\\n }\\n }\\n }\\n if(max==-1)System.out.println(-1);\\n else System.out.println(max+1);\\n }\\n\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"JAVA solution for \\\"\\n\\nWilliam has an array of n integers a_1, a_2, ..., a_n. In one move he can swap two neighboring items. Two items a_i and a_j are considered neighboring if the condition |i - j| = 1 is satisfied.\\n\\nWilliam wants you to calculate the minimal number of swaps he would need to perform to make it so that the array does not contain two neighboring items with the same parity.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10^4). Description of the test cases follows.\\n\\nThe first line of each test case contains an integer n (1 \u2264 n \u2264 10^5) which is the total number of items in William's array.\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^9) which are William's array.\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 10^5.\\n\\nOutput\\n\\nFor each test case output the minimal number of operations needed or -1 if it is impossible to get the array to a state when no neighboring numbers have the same parity.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n3\\n6 6 1\\n1\\n9\\n6\\n1 1 1 2 2 2\\n2\\n8 6\\n6\\n6 2 3 4 5 1\\n\\n\\nOutput\\n\\n\\n1\\n0\\n3\\n-1\\n2\\n\\nNote\\n\\nIn the first test case the following sequence of operations would satisfy the requirements: \\n\\n 1. swap(2, 3). Array after performing the operation: [6, 1, 6] \\n\\n\\n\\nIn the second test case the array initially does not contain two neighboring items of the same parity.\\n\\nIn the third test case the following sequence of operations would satisfy the requirements: \\n\\n 1. swap(3, 4). Array after performing the operation: [1, 1, 2, 1, 2, 2] \\n 2. swap(2, 3). Array after performing the operation: [1, 2, 1, 1, 2, 2] \\n 3. swap(4, 5). Array after performing the operation: [1, 2, 1, 2, 1, 2] \\n\\n\\n\\nIn the fourth test case it is impossible to satisfy the requirements.\\n\\nIn the fifth test case the following sequence of operations would satisfy the requirements: \\n\\n 1. swap(2, 3). Array after performing the operation: [6, 3, 2, 4, 5, 1] \\n 2. swap(4, 5). Array after performing the operation: [6, 3, 2, 5, 4, 1] \\\":\",\"targets\":\"import java.io.*;\\nimport java.util.*;\\n\\npublic class MainClass {\\n public static void main(String[] args) {\\n Reader in = new Reader(System.in);\\n StringBuilder stringBuilder = new StringBuilder();\\n int t = in.nextInt();\\n while (t-- > 0) {\\n int n = in.nextInt();\\n long[] a = new long[n];\\n for (int i = 0; i < n; i++) {\\n a[i] = in.nextLong();\\n }\\n TreeSet even = new TreeSet<>();\\n TreeSet odd = new TreeSet<>();\\n for (int i = 0; i < n; i++) {\\n if (i % 2 == a[i] % 2) {\\n if (i % 2 == 0)\\n even.add(i);\\n else\\n odd.add(i);\\n }\\n }\\n int min = Integer.MAX_VALUE;\\n if (even.size() == odd.size()) {\\n int ans = 0;\\n for (int x : even) {\\n int first = odd.first();\\n odd.remove(first);\\n ans += Math.abs(x - first);\\n }\\n min = Math.min(min, ans);\\n }\\n even.clear();\\n odd.clear();\\n for (int i = 0; i < n; i++) {\\n if (i % 2 != a[i] % 2) {\\n if (i % 2 == 0)\\n even.add(i);\\n else\\n odd.add(i);\\n }\\n }\\n if (even.size() == odd.size()) {\\n int ans = 0;\\n for (int x : even) {\\n int first = odd.first();\\n odd.remove(first);\\n ans += Math.abs(x - first);\\n }\\n min = Math.min(min, ans);\\n }\\n if (min == Integer.MAX_VALUE) {\\n stringBuilder.append(-1);\\n } else {\\n stringBuilder.append(min);\\n }\\n stringBuilder.append(\\\"\\\\n\\\");\\n }\\n System.out.println(stringBuilder);\\n }\\n}\\nclass Reader {\\n ...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Given n, find any array a_1, a_2, \u2026, a_n of integers such that all of the following conditions hold: \\n\\n * 1 \u2264 a_i \u2264 10^9 for every i from 1 to n.\\n\\n * a_1 < a_2 < \u2026 \\n#pragma GCC optimize(\\\"Ofast\\\")\\nusing namespace std;\\nvoid solve() {\\n long long n;\\n cin >> n;\\n long long j = 2;\\n for (long long i = 2; i <= n + 1; i++) {\\n cout << i << \\\" \\\";\\n }\\n cout << \\\"\\\\n\\\";\\n}\\nint32_t main() {\\n ios_base::sync_with_stdio(false), cin.tie(NULL);\\n cout << fixed << setprecision(20);\\n long long t = 1;\\n cin >> t;\\n for (long long tt = 1; tt <= t; tt++) {\\n solve();\\n }\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Consider a tunnel on a one-way road. During a particular day, n cars numbered from 1 to n entered and exited the tunnel exactly once. All the cars passed through the tunnel at constant speeds.\\n\\nA traffic enforcement camera is mounted at the tunnel entrance. Another traffic enforcement camera is mounted at the tunnel exit. Perfectly balanced.\\n\\nThanks to the cameras, the order in which the cars entered and exited the tunnel is known. No two cars entered or exited at the same time.\\n\\nTraffic regulations prohibit overtaking inside the tunnel. If car i overtakes any other car j inside the tunnel, car i must be fined. However, each car can be fined at most once.\\n\\nFormally, let's say that car i definitely overtook car j if car i entered the tunnel later than car j and exited the tunnel earlier than car j. Then, car i must be fined if and only if it definitely overtook at least one other car.\\n\\nFind the number of cars that must be fined. \\n\\nInput\\n\\nThe first line contains a single integer n (2 \u2264 n \u2264 10^5), denoting the number of cars.\\n\\nThe second line contains n integers a_1, a_2, \u2026, a_n (1 \u2264 a_i \u2264 n), denoting the ids of cars in order of entering the tunnel. All a_i are pairwise distinct.\\n\\nThe third line contains n integers b_1, b_2, \u2026, b_n (1 \u2264 b_i \u2264 n), denoting the ids of cars in order of exiting the tunnel. All b_i are pairwise distinct.\\n\\nOutput\\n\\nOutput the number of cars to be fined.\\n\\nExamples\\n\\nInput\\n\\n\\n5\\n3 5 2 1 4\\n4 3 2 5 1\\n\\n\\nOutput\\n\\n\\n2\\n\\n\\nInput\\n\\n\\n7\\n5 2 3 6 7 1 4\\n2 3 6 7 1 4 5\\n\\n\\nOutput\\n\\n\\n6\\n\\n\\nInput\\n\\n\\n2\\n1 2\\n1 2\\n\\n\\nOutput\\n\\n\\n0\\n\\nNote\\n\\nThe first example is depicted below:\\n\\n\\n\\nCar 2 definitely overtook car 5, while car 4 definitely overtook cars 1, 2, 3 and 5. Cars 2 and 4 must be fined.\\n\\nIn the second example car 5 was definitely overtaken by all other cars.\\n\\nIn the third example no car must be fined.\\nimpor\",\"targets\":\"t java.io.OutputStream;\\nimport java.io.IOException;\\nimport java.io.InputStream;\\nimport java.io.PrintWriter;\\nimport java.util.Scanner;\\n\\n\\/**\\n * Built using CHelper plug-in\\n * Actual solution is at the top\\n *\\/\\npublic class Main {\\n public static void main(String[] args) {\\n InputStream inputStream = System.in;\\n OutputStream outputStream = System.out;\\n Scanner in = new Scanner(inputStream);\\n PrintWriter out = new PrintWriter(outputStream);\\n BSbalansirovanniiTonnel solver = new BSbalansirovanniiTonnel();\\n solver.solve(1, in, out);\\n out.close();\\n }\\n\\n static class BSbalansirovanniiTonnel {\\n public void solve(int testNumber, Scanner in, PrintWriter out) {\\n int n = in.nextInt();\\n int[] a = new int[n];\\n int[] a1 = new int[n];\\n for (int i = 0; i < n; i++) {\\n a[i] = in.nextInt() - 1;\\n a1[a[i]] = i;\\n }\\n\\n int[] b = new int[n];\\n for (int i = 0; i < n; i++) {\\n int x = in.nextInt() - 1;\\n b[i] = a1[x];\\n }\\n\\n int[] sufmin = new int[n];\\n sufmin[n - 1] = b[n - 1];\\n int ans = 0;\\n for (int i = n - 2; i >= 0; i--) {\\n sufmin[i] = Math.min(sufmin[i + 1], b[i]);\\n if (sufmin[i] != b[i]) {\\n ans++;\\n }\\n }\\n\\n out.println(ans);\\n }\\n\\n }\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given an array of n positive integers a_1, a_2, \u2026, a_n. Your task is to calculate the number of arrays of n positive integers b_1, b_2, \u2026, b_n such that: \\n\\n * 1 \u2264 b_i \u2264 a_i for every i (1 \u2264 i \u2264 n), and \\n * b_i \u2260 b_{i+1} for every i (1 \u2264 i \u2264 n - 1). \\n\\n\\n\\nThe number of such arrays can be very large, so print it modulo 998 244 353.\\n\\nInput\\n\\nThe first line contains a single integer n (1 \u2264 n \u2264 2 \u22c5 10^5) \u2014 the length of the array a.\\n\\nThe second line contains n integers a_1, a_2, \u2026, a_n (1 \u2264 a_i \u2264 10^9).\\n\\nOutput\\n\\nPrint the answer modulo 998 244 353 in a single line.\\n\\nExamples\\n\\nInput\\n\\n\\n3\\n2 2 2\\n\\n\\nOutput\\n\\n\\n2\\n\\nInput\\n\\n\\n2\\n2 3\\n\\n\\nOutput\\n\\n\\n4\\n\\nInput\\n\\n\\n3\\n1 1 1\\n\\n\\nOutput\\n\\n\\n0\\n\\nNote\\n\\nIn the first test case possible arrays are [1, 2, 1] and [2, 1, 2].\\n\\nIn the second test case possible arrays are [1, 2], [1, 3], [2, 1] and [2, 3].\",\"targets\":\"#include \\nusing namespace std;\\nconst int p = 998244353;\\nlong long powmod(long long a, long long b) {\\n b %= p - 1;\\n long long r = 1;\\n while (b) {\\n if (b & 1) r = r * a % p;\\n a = a * a % p;\\n b >>= 1;\\n }\\n return r;\\n}\\nlong long C(long long n, long long m) {\\n if (n < m) return m;\\n static vector fac({1});\\n for (int i = fac.size(); i < n + 1; i++)\\n fac.push_back(1ll * i * fac.back() % p);\\n return fac[n] * powmod(m, p - 2) % p * powmod(n - m, p - 2) % p;\\n}\\nint main() {\\n int n;\\n cin >> n;\\n vector f(n + 1, 0), sf(n + 1, 0);\\n auto sum = [&sf](const int &l, const int &r) {\\n if (!l) return sf[r];\\n return (sf[r] + p - sf[l - 1]) % p;\\n };\\n sf[0] = 1;\\n auto add = [](long long &a, long long b) { a = (a + b) % p; };\\n stack > st;\\n st.push({0, 0});\\n for (int i = 1; i <= n; i++) {\\n int x;\\n cin >> x;\\n while (!st.empty() && st.top()[0] > x) st.pop();\\n int fa = st.top()[1];\\n st.push({x, i});\\n f[i] = (1ll * x * (i - 1 & 1 ? p - 1 : 1) % p * sum(fa, i - 1) % p +\\n (i - fa & 1 ? p - 1ll : 1ll) * f[fa] % p) %\\n p;\\n sf[i] = (sf[i - 1] + (i & 1 ? p - 1ll : 1ll) * f[i]) % p;\\n }\\n cout << f[n] << endl;\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CQXYM is counting permutations length of 2n.\\n\\nA permutation is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).\\n\\nA permutation p(length of 2n) will be counted only if the number of i satisfying p_ip_2. Because 0\\nusing namespace std;\\ntemplate \\ninline void read(T &x) {\\n x = 0;\\n char ch = getchar();\\n bool f = false;\\n while (!isdigit(ch)) f |= ch == '-', ch = getchar();\\n while (isdigit(ch)) x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar();\\n x = f ? -x : x;\\n return;\\n}\\ntemplate \\ninline void print(T x) {\\n if (x < 0) putchar('-'), x = -x;\\n if (x > 9) print(x \\/ 10);\\n putchar(x % 10 ^ 48);\\n return;\\n}\\nconst long long MOD = 1e9 + 7, N = 2e5 + 3;\\nlong long T;\\nlong long f[N];\\nsigned main() {\\n read(T);\\n while (T--) {\\n long long n;\\n read(n);\\n long long ans = 1;\\n for (register long long i = 1; i <= (n * 2); ++i) {\\n if (i == 2) continue;\\n ans = (ans * i) % MOD;\\n }\\n print(ans), putchar('\\\\n');\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"A string S of an odd length is said to be a strong palindrome if and only if all of the following conditions are satisfied:\\n\\n* S is a palindrome.\\n* Let N be the length of S. The string formed by the 1-st through ((N-1)\\/2)-th characters of S is a palindrome.\\n* The string consisting of the (N+3)\\/2-st through N-th characters of S is a palindrome.\\n\\n\\n\\nDetermine whether S is a strong palindrome.\\n\\nConstraints\\n\\n* S consists of lowercase English letters.\\n* The length of S is an odd number between 3 and 99 (inclusive).\\n\\nInput\\n\\nInput is given from Standard Input in the following format:\\n\\n\\nS\\n\\n\\nOutput\\n\\nIf S is a strong palindrome, print `Yes`; otherwise, print `No`.\\n\\nExamples\\n\\nInput\\n\\nakasaka\\n\\n\\nOutput\\n\\nYes\\n\\n\\nInput\\n\\nlevel\\n\\n\\nOutput\\n\\nNo\\n\\n\\nInput\\n\\natcoder\\n\\n\\nOutput\\n\\nNo\\n#incl\",\"targets\":\"ude\\nusing namespace std;\\n \\n \\nint main(){\\n string s, ans;\\n int n;\\n cin >> s;\\n n = s.size();\\n ans = \\\"Yes\\\";\\n\\n if(s.substr(0, (n - 1) \\/ 2) != s.substr((n + 3) \\/ 2 - 1, n)){\\n ans = \\\"No\\\";\\n }\\n\\n cout << ans << endl;\\n \\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given n integers a_1, a_2, \u2026, a_n. Find the maximum value of max(a_l, a_{l + 1}, \u2026, a_r) \u22c5 min(a_l, a_{l + 1}, \u2026, a_r) over all pairs (l, r) of integers for which 1 \u2264 l < r \u2264 n.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10 000) \u2014 the number of test cases.\\n\\nThe first line of each test case contains a single integer n (2 \u2264 n \u2264 10^5).\\n\\nThe second line of each test case contains n integers a_1, a_2, \u2026, a_n (1 \u2264 a_i \u2264 10^6).\\n\\nIt is guaranteed that the sum of n over all test cases doesn't exceed 3 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, print a single integer \u2014 the maximum possible value of the product from the statement.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n3\\n2 4 3\\n4\\n3 2 3 1\\n2\\n69 69\\n6\\n719313 273225 402638 473783 804745 323328\\n\\n\\nOutput\\n\\n\\n12\\n6\\n4761\\n381274500335\\n\\nNote\\n\\nLet f(l, r) = max(a_l, a_{l + 1}, \u2026, a_r) \u22c5 min(a_l, a_{l + 1}, \u2026, a_r).\\n\\nIn the first test case, \\n\\n * f(1, 2) = max(a_1, a_2) \u22c5 min(a_1, a_2) = max(2, 4) \u22c5 min(2, 4) = 4 \u22c5 2 = 8. \\n * f(1, 3) = max(a_1, a_2, a_3) \u22c5 min(a_1, a_2, a_3) = max(2, 4, 3) \u22c5 min(2, 4, 3) = 4 \u22c5 2 = 8. \\n * f(2, 3) = max(a_2, a_3) \u22c5 min(a_2, a_3) = max(4, 3) \u22c5 min(4, 3) = 4 \u22c5 3 = 12. \\n\\n\\n\\nSo the maximum is f(2, 3) = 12.\\n\\nIn the second test case, the maximum is f(1, 2) = f(1, 3) = f(2, 3) = 6.\\nThe above is tricky. Write me a correct solution in JAVA.\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.util.StringTokenizer;\\n\\npublic class Main {\\n\\tpublic static int N;\\n\\n\\tpublic static void main(String[] args) throws IOException {\\n\\t\\tBufferedReader br = new BufferedReader(new InputStreamReader(System.in));\\n\\t\\tStringTokenizer st;\\n\\t\\t\\n\\t\\tint T = Integer.parseInt(br.readLine());\\n\\t\\t\\n\\t\\tfor(int testcase = 0; testcase < T; testcase++) {\\n\\t\\t\\tN = Integer.parseInt(br.readLine());\\n\\t\\t\\tst = new StringTokenizer(br.readLine());\\n\\t\\t\\tlong[] arr = new long[N + 2];\\n\\t\\t\\t\\n\\t\\t\\tfor(int i = 1; i <= N; i++) {\\n\\t\\t\\t\\tarr[i] = Long.parseLong(st.nextToken());\\n\\t\\t\\t}\\n\\t\\t\\tarr[N + 1] = arr[N] - 1;\\n\\t\\t\\t\\n\\t\\t\\tSystem.out.println(solve(arr));\\n\\t\\t}\\n\\n\\t}\\n\\t\\n\\tpublic static long solve(long[] arr) {\\n\\t\\tlong max = 0;\\n\\t\\t\\n\\t\\tfor(int i = 1; i <= N; i++) {\\n\\t\\t\\tif(i == 1) {\\n\\t\\t\\t\\tif(arr[i - 1] <= arr[i] && arr[i] >= arr[i + 1]) {\\n\\t\\t\\t\\t\\tmax = Math.max(max, arr[i] * arr[i + 1]);\\n\\t\\t\\t\\t}\\n\\t\\t\\t}\\n\\t\\t\\telse if(i == N) {\\n\\t\\t\\t\\tif(arr[i - 1] <= arr[i] && arr[i] >= arr[i + 1]) {\\n\\t\\t\\t\\t\\tmax = Math.max(max, arr[i - 1] * arr[i]);\\n\\t\\t\\t\\t}\\n\\t\\t\\t}\\n\\t\\t\\telse {\\n\\t\\t\\t\\tif(arr[i - 1] <= arr[i] && arr[i] >= arr[i + 1]) {\\n\\t\\t\\t\\t\\tmax = Math.max(max, arr[i - 1] * arr[i]);\\n\\t\\t\\t\\t\\tmax = Math.max(max, arr[i] * arr[i + 1]);\\n\\t\\t\\t\\t}\\n\\t\\t\\t}\\n\\t\\t}\\n\\t\\t\\n\\t\\treturn max;\\n\\t}\\n\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"The grasshopper is located on the numeric axis at the point with coordinate x_0.\\n\\nHaving nothing else to do he starts jumping between integer points on the axis. Making a jump from a point with coordinate x with a distance d to the left moves the grasshopper to a point with a coordinate x - d, while jumping to the right moves him to a point with a coordinate x + d.\\n\\nThe grasshopper is very fond of positive integers, so for each integer i starting with 1 the following holds: exactly i minutes after the start he makes a jump with a distance of exactly i. So, in the first minutes he jumps by 1, then by 2, and so on.\\n\\nThe direction of a jump is determined as follows: if the point where the grasshopper was before the jump has an even coordinate, the grasshopper jumps to the left, otherwise he jumps to the right.\\n\\nFor example, if after 18 consecutive jumps he arrives at the point with a coordinate 7, he will jump by a distance of 19 to the right, since 7 is an odd number, and will end up at a point 7 + 19 = 26. Since 26 is an even number, the next jump the grasshopper will make to the left by a distance of 20, and it will move him to the point 26 - 20 = 6.\\n\\nFind exactly which point the grasshopper will be at after exactly n jumps.\\n\\nInput\\n\\nThe first line of input contains an integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases.\\n\\nEach of the following t lines contains two integers x_0 (-10^{14} \u2264 x_0 \u2264 10^{14}) and n (0 \u2264 n \u2264 10^{14}) \u2014 the coordinate of the grasshopper's initial position and the number of jumps.\\n\\nOutput\\n\\nPrint exactly t lines. On the i-th line print one integer \u2014 the answer to the i-th test case \u2014 the coordinate of the point the grasshopper will be at after making n jumps from the point x_0.\\n\\nExample\\n\\nInput\\n\\n\\n9\\n0 1\\n0 2\\n10 10\\n10 99\\n177 13\\n10000000000 987654321\\n-433494437 87178291199\\n1 0\\n-1 1\\n\\n\\nOutput\\n\\n\\n-1\\n1\\n11\\n110\\n190\\n9012345679\\n-87611785637\\n1\\n0\\n\\nNote\\n\\nThe first two test cases in the example correspond to the first two jumps from the point x_0 = 0. \\n\\nSince 0 is an even number, the first jump of length...\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nconst long long MAX = 1e9;\\nlong long powermod(long long A, long long B) {\\n long long ret = 1;\\n A %= MAX;\\n B %= MAX - 1;\\n while (B > 0) {\\n if (B % 2 > 0) ret = ret * A % MAX;\\n A = A * A % MAX;\\n B \\/= 2;\\n }\\n return ret;\\n}\\nint main() {\\n ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);\\n long long t, x0, n;\\n cin >> t;\\n while (t--) {\\n cin >> x0 >> n;\\n vector a;\\n long long ans = x0;\\n for (long long i = 0; i < 4; i++) {\\n long long min = i + 1;\\n if (ans & 1)\\n ans += min;\\n else\\n ans -= min;\\n a.push_back(ans);\\n }\\n long long temp = n % 4;\\n if (temp == 2 or temp == 0) {\\n if (temp == 0) temp += 4;\\n cout << a[temp - 1] << endl;\\n } else {\\n if (temp == 1) {\\n n--;\\n long long dem = n \\/ 4.0;\\n if (x0 & 1)\\n cout << a[temp - 1] + dem * 4 << endl;\\n else\\n cout << a[temp - 1] - dem * 4 << endl;\\n } else {\\n n--;\\n long long dem = n \\/ 4.0;\\n if (x0 & 1)\\n cout << a[temp - 1] - dem * 4 << endl;\\n else\\n cout << a[temp - 1] + dem * 4 << endl;\\n }\\n }\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Counting was a difficult task in ancient Rome. The Arabic numerals 0,1,2,3,\u2026, 9 have not yet been disseminated. Instead, the following symbols were used:\\n\\nArabic numerals | Roman numerals | Arabic numerals | Roman numerals | Arabic numerals | Roman numerals\\n--- | --- | --- | --- | --- | ---\\n1 | I | 11 | XI | 30 | XXX | | 2 | II | 12 | XII | 40 | XL | | 3 | III | 13 | XIII | 50 | L | | 4 | IV | 14 | XIV | 60 | LX | | 5 | V | 15 | XV | 70 | LXX | | 6 | VI | 16 | XVI | 80 | LXXX | | 7 | VII | 17 | XVII | 90 | XC | | 8 | VIII | 18 | XVIII | 100 C | | 9 | IX | 19 | XIX | 500 | D | | 10 | X | 20 | XX | 1000 | M |\\n\\n\\nI is 1, V is 5, X is 10, L is 50, C is 100, D is 500, M is 1000, see the table above for other examples. Add when a small number follows a large number, that is, on the right side. When the small number is before the large number, that is, to the left, subtract the small number from the large number. There is only one small number in front of the large number that represents the subtraction per subtraction.\\n\\nCreate a program that converts Roman numerals into Arabic numerals (normal numbers) notation (decimal notation) and outputs them. However, the Roman numerals given only follow the above rules (there are more detailed rules for notation of actual Roman numerals, but they do not need to be considered here. For example, is I a V in actual Roman numerals? From X, X only subtracts from L or C, C only subtracts from D or M, and the same Roman numeral does not add more than 4 (or 5).)\\n\\n\\n\\nInput\\n\\nGiven multiple datasets. Roman numerals (consecutive strings represented by I, V, X, L, C, D, M in half-width uppercase letters) are given to each data set on one line. The length of each Roman numeral string given is 100 or less.\\n\\nThe number of datasets does not exceed 50.\\n\\nOutput\\n\\nOutput Arabic numerals (integers) on one line for each dataset.\\n\\nExample\\n\\nInput\\n\\nIV\\nCCCCLXXXXVIIII\\nCDXCIX\\n\\n\\nOutput\\n\\n4\\n499\\n499\",\"targets\":\"#include \\n#include \\nusing namespace std;\\n\\nint main(){\\n int n,sum,a,b;\\n string s;\\n while(cin>>s){\\n a=s.size();\\n sum=0;\\n b=0;\\n for(int i=a-1;i>=0;i--){\\n if(s[i]=='I')n=1;\\n else if(s[i]=='V')n=5;\\n else if(s[i]=='X')n=10;\\n else if(s[i]=='L')n=50;\\n else if(s[i]=='C')n=100;\\n else if(s[i]=='D')n=500;\\n else if(s[i]=='M')n=1000;\\n\\n if(n\\nusing namespace std;\\nint main(void) {\\n ios_base::sync_with_stdio(0);\\n cin.tie(0);\\n cout.tie(0);\\n long long n, m = 0, t, z = -1, sum = 0, mx = 0, x;\\n cin >> t;\\n while (t--) {\\n cin >> n;\\n string s, p;\\n cin >> s;\\n x = count(s.begin(), s.end(), '0');\\n p = s;\\n sort(p.begin(), p.end());\\n mx = 0, sum = 0, z = -1;\\n for (int i = 0; i < n; i++) {\\n sum += (s[i] - '0');\\n if (s[i] != '0' && i != n - 1) sum++;\\n }\\n cout << sum << endl;\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given an array a of length n.\\n\\nLet's define the eversion operation. Let x = a_n. Then array a is partitioned into two parts: left and right. The left part contains the elements of a that are not greater than x (\u2264 x). The right part contains the elements of a that are strictly greater than x (> x). The order of elements in each part is kept the same as before the operation, i. e. the partition is stable. Then the array is replaced with the concatenation of the left and the right parts.\\n\\nFor example, if the array a is [2, 4, 1, 5, 3], the eversion goes like this: [2, 4, 1, 5, 3] \u2192 [2, 1, 3], [4, 5] \u2192 [2, 1, 3, 4, 5].\\n\\nWe start with the array a and perform eversions on this array. We can prove that after several eversions the array a stops changing. Output the minimum number k such that the array stops changing after k eversions.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 100). Description of the test cases follows.\\n\\nThe first line contains a single integer n (1 \u2264 n \u2264 2 \u22c5 10^5).\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 10^9).\\n\\nIt is guaranteed that the sum of n over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case print a single integer k \u2014 the number of eversions after which the array stops changing.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n5\\n2 4 1 5 3\\n5\\n5 3 2 4 1\\n4\\n1 1 1 1\\n\\n\\nOutput\\n\\n\\n1\\n2\\n0\\n\\nNote\\n\\nConsider the fist example.\\n\\n * The first eversion: a = [1, 4, 2, 5, 3], x = 3. [2, 4, 1, 5, 3] \u2192 [2, 1, 3], [4, 5] \u2192 [2, 1, 3, 4, 5]. \\n * The second and following eversions: a = [2, 1, 3, 4, 5], x = 5. [2, 1, 3, 4, 5] \u2192 [2, 1, 3, 4, 5], [] \u2192 [2, 1, 3, 4, 5]. This eversion does not change the array, so the answer is 1. \\n\\n\\n\\nConsider the second example. \\n\\n * The first eversion: a = [5, 3, 2, 4, 1], x = 1. [5, 3, 2, 4, 1] \u2192 [1], [5, 3, 2, 4] \u2192 [1, 5, 3, 2, 4]. \\n * The second eversion: a = [1, 5, 3, 2, 4], x = 4. [1, 5, 3, 2, 4] \u2192 [1, 3, 2, 4], [5] \u2192 [1, 3, 2, 4, 5]. \\n * The third and following eversions: a = [1, 3, 2, 4,...\",\"targets\":\"#include \\nusing namespace std;\\nint32_t main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL), cout.tie(NULL);\\n long long int t;\\n cin >> t;\\n while (t--) {\\n long long int n, k = 1, count = 1, p;\\n cin >> n;\\n long long int a[n];\\n map m;\\n for (long long int i = 0; i < n; i++) {\\n cin >> a[i];\\n k = max(k, a[i]);\\n m[a[i]] = i;\\n }\\n sort(a, a + n);\\n p = m[a[n - 1]];\\n long long int x = p, ans = n - p - 1;\\n for (long long int i = n - 2; i >= 0; i--) {\\n if (m[a[i]] > x) {\\n ans -= m[a[i]] - x - 1;\\n x = m[a[i]];\\n }\\n }\\n cout << ans << endl;\\n }\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"For a permutation p of numbers 1 through n, we define a stair array a as follows: a_i is length of the longest segment of permutation which contains position i and is made of consecutive values in sorted order: [x, x+1, \u2026, y-1, y] or [y, y-1, \u2026, x+1, x] for some x \u2264 y. For example, for permutation p = [4, 1, 2, 3, 7, 6, 5] we have a = [1, 3, 3, 3, 3, 3, 3]. \\n\\nYou are given the stair array a. Your task is to calculate the number of permutations which have stair array equal to a. Since the number can be big, compute it modulo 998 244 353. Note that this number can be equal to zero.\\n\\nInput\\n\\nThe first line of input contains integer n (1 \u2264 n \u2264 10^5) \u2014 the length of a stair array a.\\n\\nThe second line of input contains n integers a_1, a_2, \u2026, a_n (1 \u2264 a_i \u2264 n).\\n\\nOutput\\n\\nPrint the number of permutations which have stair array equal to a. Since the number can be big, compute it modulo 998 244 353.\\n\\nExamples\\n\\nInput\\n\\n\\n6\\n3 3 3 1 1 1\\n\\n\\nOutput\\n\\n\\n6\\n\\n\\nInput\\n\\n\\n7\\n4 4 4 4 3 3 3\\n\\n\\nOutput\\n\\n\\n6\\n\\n\\nInput\\n\\n\\n1\\n1\\n\\n\\nOutput\\n\\n\\n1\\n\\n\\nInput\\n\\n\\n8\\n2 2 2 2 2 2 1 1\\n\\n\\nOutput\\n\\n\\n370\\n\\n\\nInput\\n\\n\\n4\\n3 2 3 1\\n\\n\\nOutput\\n\\n\\n0\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\ntemplate \\nstruct _m_int {\\n int val;\\n _m_int(int64_t v = 0) {\\n if (v < 0) v = v % MOD + MOD;\\n if (v >= MOD) v %= MOD;\\n val = int(v);\\n }\\n _m_int(uint64_t v) {\\n if (v >= MOD) v %= MOD;\\n val = int(v);\\n }\\n _m_int(int v) : _m_int(int64_t(v)) {}\\n _m_int(unsigned v) : _m_int(uint64_t(v)) {}\\n static int inv_mod(int a, int m = MOD) {\\n int g = m, r = a, x = 0, y = 1;\\n while (r != 0) {\\n int q = g \\/ r;\\n g %= r;\\n swap(g, r);\\n x -= q * y;\\n swap(x, y);\\n }\\n return x < 0 ? x + m : x;\\n }\\n explicit operator int() const { return val; }\\n explicit operator unsigned() const { return val; }\\n explicit operator int64_t() const { return val; }\\n explicit operator uint64_t() const { return val; }\\n explicit operator double() const { return val; }\\n explicit operator long double() const { return val; }\\n _m_int &operator+=(const _m_int &other) {\\n val -= MOD - other.val;\\n if (val < 0) val += MOD;\\n return *this;\\n }\\n _m_int &operator-=(const _m_int &other) {\\n val -= other.val;\\n if (val < 0) val += MOD;\\n return *this;\\n }\\n static unsigned fast_mod(uint64_t x, unsigned m = MOD) {\\n return unsigned(x % m);\\n unsigned x_high = unsigned(x >> 32), x_low = unsigned(x);\\n unsigned quot, rem;\\n asm(\\\"divl %4\\\\n\\\" : \\\"=a\\\"(quot), \\\"=d\\\"(rem) : \\\"d\\\"(x_high), \\\"a\\\"(x_low), \\\"r\\\"(m));\\n return rem;\\n }\\n _m_int &operator*=(const _m_int &other) {\\n val = fast_mod(uint64_t(val) * other.val);\\n return *this;\\n }\\n _m_int &operator\\/=(const _m_int &other) { return *this *= other.inv(); }\\n friend _m_int operator+(const _m_int &a, const _m_int &b) {\\n return _m_int(a) += b;\\n }\\n friend _m_int operator-(const _m_int &a, const _m_int &b) {\\n return _m_int(a) -= b;\\n }\\n friend _m_int operator*(const _m_int &a, const _m_int &b) {\\n return _m_int(a) *= b;\\n }\\n friend _m_int operator\\/(const _m_int &a, const _m_int &b) {\\n return _m_int(a) \\/= b;\\n }\\n _m_int &operator++() {\\n val = val == MOD - 1 ? 0 : val +...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Mr. Chanek has a new game called Dropping Balls. Initially, Mr. Chanek has a grid a of size n \u00d7 m\\n\\nEach cell (x,y) contains an integer a_{x,y} denoting the direction of how the ball will move.\\n\\n * a_{x,y}=1 \u2014 the ball will move to the right (the next cell is (x, y + 1)); \\n * a_{x,y}=2 \u2014 the ball will move to the bottom (the next cell is (x + 1, y)); \\n * a_{x,y}=3 \u2014 the ball will move to the left (the next cell is (x, y - 1)). \\n\\n\\n\\nEvery time a ball leaves a cell (x,y), the integer a_{x,y} will change to 2. Mr. Chanek will drop k balls sequentially, each starting from the first row, and on the c_1, c_2, ..., c_k-th (1 \u2264 c_i \u2264 m) columns.\\n\\nDetermine in which column each ball will end up in (position of the ball after leaving the grid).\\n\\nInput\\n\\nThe first line contains three integers n, m, and k (1 \u2264 n, m \u2264 1000, 1 \u2264 k \u2264 10^5) \u2014 the size of the grid and the number of balls dropped by Mr. Chanek.\\n\\nThe i-th of the next n lines contains m integers a_{i,1},a_{i,2},\u2026,a_{i,m} (1 \u2264 a_{i,j} \u2264 3). It will satisfy a_{i, 1} \u2260 3 and a_{i, m} \u2260 1.\\n\\nThe next line contains k integers c_1, c_2, \u2026, c_k (1 \u2264 c_i \u2264 m) \u2014 the balls' column positions dropped by Mr. Chanek sequentially.\\n\\nOutput\\n\\nOutput k integers \u2014 the i-th integer denoting the column where the i-th ball will end.\\n\\nExamples\\n\\nInput\\n\\n\\n5 5 3\\n1 2 3 3 3\\n2 2 2 2 2\\n2 2 2 2 2\\n2 2 2 2 2\\n2 2 2 2 2\\n1 2 1\\n\\n\\nOutput\\n\\n\\n2 2 1 \\n\\n\\nInput\\n\\n\\n1 2 2\\n1 3\\n1 2\\n\\n\\nOutput\\n\\n\\n1 2 \\n\\nNote\\n\\nIn the first example, the first ball will drop as follows. Note that the cell (1, 1) will change direction to the bottom direction.\\n\\n\\n\\nThe second and third balls will drop as follows. \\n\\n\\n\\nAll balls will be dropped from the first row and on the c_1, c_2, ..., c_k-th columns respectively. A ball will stop dropping once it leaves the grid.\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nint main() {\\n cin.tie(0)->sync_with_stdio(0);\\n int n, m, k;\\n cin >> n >> m >> k;\\n int array[n][m];\\n for (int i = 0; i < n; i++) {\\n for (int j = 0; j < m; j++) {\\n cin >> array[i][j];\\n }\\n }\\n int pos[k];\\n for (int i = 0; i < k; i++) cin >> pos[i];\\n for (int i = 0; i < k; i++) {\\n pair currentpos;\\n currentpos.first = 0;\\n currentpos.second = pos[i] - 1;\\n while (currentpos.first != n) {\\n int row = currentpos.first;\\n int column = currentpos.second;\\n if (array[currentpos.first][currentpos.second] == 1) {\\n currentpos.second++;\\n } else if (array[currentpos.first][currentpos.second] == 2) {\\n currentpos.first++;\\n } else {\\n currentpos.second--;\\n }\\n array[row][column] = 2;\\n }\\n cout << currentpos.second + 1;\\n cout << \\\" \\\";\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.\\n\\nConsider a set consisting of k (0 \u2264 k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices.\\n\\nNow Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7).\\n\\nInput\\n\\nThe first line contains an integer n (2 \u2264 n \u2264 105) \u2014 the number of tree vertices. \\n\\nThe second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 \u2264 pi \u2264 i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1.\\n\\nThe third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.\\n\\nOutput\\n\\nOutput a single integer \u2014 the number of ways to split the tree modulo 1000000007 (109 + 7).\\n\\nExamples\\n\\nInput\\n\\n3\\n0 0\\n0 1 1\\n\\n\\nOutput\\n\\n2\\n\\n\\nInput\\n\\n6\\n0 1 1 0 4\\n1 1 0 0 1 0\\n\\n\\nOutput\\n\\n1\\n\\n\\nInput\\n\\n10\\n0 1 2 1 4 4 4 0 8\\n0 0 0 1 0 1 1 0 0 1\\n\\n\\nOutput\\n\\n27\\\":\",\"targets\":\"#include \\nusing namespace std;\\nint N;\\nvector graph[100010];\\nlong long dp0[100010], dp1[100010];\\nint color[100010];\\nint main(void) {\\n int i, j;\\n cin >> N;\\n for ((i) = 0; (i) < (int)(N - 1); (i)++) {\\n int p;\\n scanf(\\\"%d\\\", &p);\\n graph[p].push_back(i + 1);\\n }\\n for ((i) = 0; (i) < (int)(N); (i)++) scanf(\\\"%d\\\", &color[i]);\\n for (i = N - 1; i >= 0; i--) {\\n long long zero = 0, one = 0;\\n if (color[i] == 0)\\n zero++;\\n else\\n one++;\\n for ((j) = 0; (j) < (int)(graph[i].size()); (j)++) {\\n int v = graph[i][j];\\n long long zero2 = (zero * dp1[v] + zero * dp0[v]) % 1000000007ll;\\n long long one2 =\\n (one * dp1[v] + zero * dp1[v] + one * dp0[v]) % 1000000007ll;\\n zero = zero2;\\n one = one2;\\n }\\n dp0[i] = zero;\\n dp1[i] = one;\\n }\\n cout << dp1[0] << endl;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Some number of people (this number is even) have stood in a circle. The people stand in the circle evenly. They are numbered clockwise starting from a person with the number 1. Each person is looking through the circle's center at the opposite person.\\n\\n A sample of a circle of 6 persons. The orange arrows indicate who is looking at whom.\\n\\nYou don't know the exact number of people standing in the circle (but this number is even, no doubt). It is known that the person with the number a is looking at the person with the number b (and vice versa, of course). What is the number associated with a person being looked at by the person with the number c? If, for the specified a, b, and c, no such circle exists, output -1.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of one line containing three distinct integers a, b, c (1 \u2264 a,b,c \u2264 10^8).\\n\\nOutput\\n\\nFor each test case output in a separate line a single integer d \u2014 the number of the person being looked at by the person with the number c in a circle such that the person with the number a is looking at the person with the number b. If there are multiple solutions, print any of them. Output -1 if there's no circle meeting the given conditions.\\n\\nExample\\n\\nInput\\n\\n\\n7\\n6 2 4\\n2 3 1\\n2 4 10\\n5 3 4\\n1 3 2\\n2 5 4\\n4 3 2\\n\\n\\nOutput\\n\\n\\n8\\n-1\\n-1\\n-1\\n4\\n1\\n-1\\n\\nNote\\n\\nIn the first test case, there's a desired circle of 8 people. The person with the number 6 will look at the person with the number 2 and the person with the number 8 will look at the person with the number 4.\\n\\nIn the second test case, there's no circle meeting the conditions. If the person with the number 2 is looking at the person with the number 3, the circle consists of 2 people because these persons are neighbors. But, in this case, they must have the numbers 1 and 2, but it doesn't meet the problem's conditions.\\n\\nIn the third test case, the only circle with the persons with the numbers 2 and 4 looking at each other consists of 4...\",\"targets\":\"import sys\\nimport os\\nimport math\\nfrom io import BytesIO, IOBase\\nfrom collections import defaultdict,Counter,deque\\n\\n# input=sys.stdin.readline\\n# def print(x):\\n# sys.stdout.write(str(x)+\\\"\\\\n\\\")\\n\\nBUFSIZE = 8192\\n\\n\\nclass FastIO(IOBase):\\n\\tnewlines = 0\\n\\n\\tdef __init__(self, file):\\n\\t\\tself._fd = file.fileno()\\n\\t\\tself.buffer = BytesIO()\\n\\t\\tself.writable = \\\"x\\\" in file.mode or \\\"r\\\" not in file.mode\\n\\t\\tself.write = self.buffer.write if self.writable else None\\n\\n\\tdef read(self):\\n\\t\\twhile True:\\n\\t\\t\\tb = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))\\n\\t\\t\\tif not b:\\n\\t\\t\\t\\tbreak\\n\\t\\t\\tptr = self.buffer.tell()\\n\\t\\t\\tself.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)\\n\\t\\tself.newlines = 0\\n\\t\\treturn self.buffer.read()\\n\\n\\tdef readline(self):\\n\\t\\twhile self.newlines == 0:\\n\\t\\t\\tb = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))\\n\\t\\t\\tself.newlines = b.count(b\\\"\\\\n\\\") + (not b)\\n\\t\\t\\tptr = self.buffer.tell()\\n\\t\\t\\tself.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)\\n\\t\\tself.newlines -= 1\\n\\t\\treturn self.buffer.readline()\\n\\n\\tdef flush(self):\\n\\t\\tif self.writable:\\n\\t\\t\\tos.write(self._fd, self.buffer.getvalue())\\n\\t\\t\\tself.buffer.truncate(0), self.buffer.seek(0)\\n\\n\\nclass IOWrapper(IOBase):\\n\\tdef __init__(self, file):\\n\\t\\tself.buffer = FastIO(file)\\n\\t\\tself.flush = self.buffer.flush\\n\\t\\tself.writable = self.buffer.writable\\n\\t\\tself.write = lambda s: self.buffer.write(s.encode(\\\"ascii\\\"))\\n\\t\\tself.read = lambda: self.buffer.read().decode(\\\"ascii\\\")\\n\\t\\tself.readline = lambda: self.buffer.readline().decode(\\\"ascii\\\")\\n\\n\\nsys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)\\ninput = lambda: sys.stdin.readline().rstrip(\\\"\\\\r\\\\n\\\")\\n\\n# sys.stdout=open(\\\"CP1\\/output.txt\\\",'w')\\n# sys.stdin=open(\\\"CP1\\/input.txt\\\",'r')\\n\\n# mod=pow(10,9)+7\\n\\n\\nt=int(input())\\nfor i in range(t):\\n\\ta,b,c=map(int,input().split())\\n\\tif a>b:\\n\\t\\ta,b=b,a\\n\\t# a=list(map(int,input().split()))\\n\\t# b=int(input())\\n\\tdist=b-a\\n\\tma=2*dist\\n\\tif max(a,b,c)>ma:\\n\\t\\tprint(-1)\\n\\t\\tcontinue\\n\\n\\tans=c+dist\\n\\tif ans>ma:\\n\\t\\tans=c-dist\\n\\tprint(ans)\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"This is the hard version of the problem. The difference between the versions is that the hard version does require you to output the numbers of the rods to be removed. You can make hacks only if all versions of the problem are solved.\\n\\nStitch likes experimenting with different machines with his friend Sparky. Today they built another machine.\\n\\nThe main element of this machine are n rods arranged along one straight line and numbered from 1 to n inclusive. Each of these rods must carry an electric charge quantitatively equal to either 1 or -1 (otherwise the machine will not work). Another condition for this machine to work is that the sign-variable sum of the charge on all rods must be zero.\\n\\nMore formally, the rods can be represented as an array of n numbers characterizing the charge: either 1 or -1. Then the condition must hold: a_1 - a_2 + a_3 - a_4 + \u2026 = 0, or \u2211_{i=1}^n (-1)^{i-1} \u22c5 a_i = 0.\\n\\nSparky charged all n rods with an electric current, but unfortunately it happened that the rods were not charged correctly (the sign-variable sum of the charge is not zero). The friends decided to leave only some of the rods in the machine. Sparky has q questions. In the ith question Sparky asks: if the machine consisted only of rods with numbers l_i to r_i inclusive, what minimal number of rods could be removed from the machine so that the sign-variable sum of charges on the remaining ones would be zero? Also Sparky wants to know the numbers of these rods. Perhaps the friends got something wrong, and the sign-variable sum is already zero. In that case, you don't have to remove the rods at all.\\n\\nIf the number of rods is zero, we will assume that the sign-variable sum of charges is zero, that is, we can always remove all rods.\\n\\nHelp your friends and answer all of Sparky's questions!\\n\\nInput\\n\\nEach test contains multiple test cases.\\n\\nThe first line contains one positive integer t (1 \u2264 t \u2264 10^3), denoting the number of test cases. Description of the test cases follows.\\n\\nThe first line of each test case contains two positive...\",\"targets\":\"#include \\nusing namespace std;\\nconst int mod = 998244353;\\nconst int maxn = 200005;\\nmap> mp;\\nvoid go() {\\n int n, k;\\n cin >> n >> k;\\n int pre[n + 5];\\n pre[0] = 0;\\n string s;\\n cin >> s;\\n s = \\\" \\\" + s;\\n mp.clear();\\n auto solve = [&](int l, int r) {\\n int sum = pre[r] + pre[l - 1];\\n return *lower_bound(mp[sum].begin(), mp[sum].end(), l);\\n };\\n for (int i = 1; i < n + 1; i++) {\\n pre[i] = pre[i - 1] + (i % 2 ? 1 : -1) * (s[i] == '+' ? 1 : -1);\\n mp[pre[i] + pre[i - 1]].push_back(i);\\n }\\n while (k--) {\\n int l, r;\\n cin >> l >> r;\\n if (pre[r] == pre[l - 1]) {\\n cout << 0 << '\\\\n';\\n } else if (r % 2 - l % 2) {\\n cout << 2 << '\\\\n';\\n cout << l << ' ' << solve(l + 1, r) << '\\\\n';\\n } else {\\n cout << 1 << '\\\\n' << solve(l, r) << '\\\\n';\\n }\\n }\\n}\\nint main() {\\n ios_base::sync_with_stdio(0);\\n cin.tie(0);\\n int c = 1;\\n int t;\\n if (!c) {\\n t = 1;\\n } else {\\n cin >> t;\\n }\\n while (t--) {\\n go();\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"On the board, Bob wrote n positive integers in [base](https:\\/\\/en.wikipedia.org\\/wiki\\/Positional_notation#Base_of_the_numeral_system) 10 with sum s (i. e. in decimal numeral system). Alice sees the board, but accidentally interprets the numbers on the board as base-11 integers and adds them up (in base 11).\\n\\nWhat numbers should Bob write on the board, so Alice's sum is as large as possible?\\n\\nInput\\n\\nThe input consists of multiple test cases. The first line contains an integer t (1 \u2264 t \u2264 100) \u2014 the number of test cases. The description of the test cases follows.\\n\\nThe only line of each test case contains two integers s and n (1 \u2264 s \u2264 10^9; 1 \u2264 n \u2264 min(100, s)) \u2014 the sum and amount of numbers on the board, respectively. Numbers s and n are given in decimal notation (base 10).\\n\\nOutput\\n\\nFor each test case, output n positive integers \u2014 the numbers Bob should write on the board, so Alice's sum is as large as possible. If there are multiple answers, print any of them.\\n\\nExample\\n\\nInput\\n\\n\\n6\\n97 2\\n17 1\\n111 4\\n100 2\\n10 9\\n999999 3\\n\\n\\nOutput\\n\\n\\n70 27 \\n17 \\n3 4 100 4\\n10 90\\n1 1 2 1 1 1 1 1 1 \\n999900 90 9\\n\\nNote\\n\\nIn the first test case, 70_{10} + 27_{10} = 97_{10}, and Alice's sum is $$$70_{11} + 27_{11} = 97_{11} = 9 \u22c5 11 + 7 = 106_{10}. (Here x_b represents the number x in base b.) It can be shown that it is impossible for Alice to get a larger sum than 106_{10}$$$.\\n\\nIn the second test case, Bob can only write a single number on the board, so he must write 17.\\n\\nIn the third test case, 3_{10} + 4_{10} + 100_{10} + 4_{10} = 111_{10}, and Alice's sum is $$$3_{11} + 4_{11} + 100_{11} + 4_{11} = 110_{11} = 1 \u22c5 11^2 + 1 \u22c5 11 = 132_{10}. It can be shown that it is impossible for Alice to get a larger sum than 132_{10}$$$.\",\"targets\":\"#include \\nusing namespace std;\\nint ans[10000];\\nint main() {\\n int t = 1;\\n scanf(\\\"%d\\\", &t);\\n while (t--) {\\n int s, n;\\n scanf(\\\"%d%d\\\", &s, &n);\\n int a = s, tot = 0;\\n while (a) {\\n tot += a % 10;\\n a \\/= 10;\\n }\\n if (tot >= n) {\\n int e = 1;\\n ans[0] = 0;\\n while (ans[0] + 1 < n) {\\n if (s \\/ e % 10 > 0) {\\n s -= e;\\n ans[++ans[0]] = e;\\n } else\\n e *= 10;\\n }\\n ans[n] = s;\\n } else {\\n int e = 1;\\n ans[0] = 0;\\n while (s) {\\n if (s \\/ e % 10 > 0) {\\n s -= e;\\n ans[++ans[0]] = e;\\n } else\\n e *= 10;\\n }\\n while (ans[0] != n) {\\n int ma = n + 1;\\n ans[n + 1] = 1000000001;\\n for (int i = 1; i <= ans[0]; i++)\\n if (ans[ma] > ans[i] && ans[i] != 1) ma = i;\\n int a = ans[ma];\\n int e = 1;\\n while (e * 10 <= ans[ma]) e *= 10;\\n e \\/= 10;\\n int tt = 9;\\n while (tt-- && ans[0] < n) {\\n ans[++ans[0]] = e;\\n ans[ma] -= e;\\n }\\n }\\n }\\n for (int i = 1; i <= n; i++) printf(\\\"%d \\\", ans[i]);\\n puts(\\\"\\\");\\n }\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"In Berland, n different types of banknotes are used. Banknotes of the i-th type have denomination 10^{a_i} burles (burles are the currency used in Berland); the denomination of banknotes of the first type is exactly 1.\\n\\nLet's denote f(s) as the minimum number of banknotes required to represent exactly s burles. For example, if the denominations of banknotes used in Berland are 1, 10 and 100, then f(59) = 14: 9 banknotes with denomination of 1 burle and 5 banknotes with denomination of 10 burles can be used to represent exactly 9 \u22c5 1 + 5 \u22c5 10 = 59 burles, and there's no way to do it with fewer banknotes.\\n\\nFor a given integer k, find the minimum positive number of burles s that cannot be represented with k or fewer banknotes (that is, f(s) > k).\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 number of test cases.\\n\\nThe first line of each test case contains two integers n and k (1 \u2264 n \u2264 10; 1 \u2264 k \u2264 10^9).\\n\\nThe next line contains n integers a_1, a_2, ..., a_n (0 = a_1 < a_2 < ... < a_n \u2264 9).\\n\\nOutput\\n\\nFor each test case, print one integer \u2014 the minimum positive number of burles s that cannot be represented with k or fewer banknotes.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n3 13\\n0 1 2\\n2 777\\n0 4\\n3 255\\n0 1 3\\n10 1000000000\\n0 1 2 3 4 5 6 7 8 9\\n\\n\\nOutput\\n\\n\\n59\\n778\\n148999\\n999999920999999999\\\":\",\"targets\":\"#include \\nusing namespace std;\\nint a[10];\\nlong long v[10];\\nlong long pw[12];\\nint len(long long x) {\\n int ans = 0;\\n while (x) {\\n ans++;\\n x \\/= 10;\\n }\\n return ans;\\n}\\nint main() {\\n ios::sync_with_stdio(false);\\n cin.tie(NULL);\\n int t;\\n cin >> t;\\n pw[0] = 1;\\n for (int i = 1; i <= 10; i++) pw[i] = pw[i - 1] * 10;\\n while (t--) {\\n long long n, k;\\n cin >> n >> k;\\n k++;\\n for (int i = 0; i < n; i++) cin >> a[i];\\n for (int i = 1; i < n; i++) {\\n v[i] = min(k, pw[a[i] - a[i - 1]] - 1);\\n k -= v[i];\\n }\\n bool flag = false;\\n if (k != 0) {\\n cout << k;\\n flag = true;\\n }\\n for (int i = n - 2; i >= 0; i--) {\\n if (flag)\\n for (int j = 1; j <= a[i + 1] - a[i] - len(v[i + 1]); j++) cout << \\\"0\\\";\\n if (v[i + 1] != 0) {\\n cout << v[i + 1];\\n flag = true;\\n }\\n }\\n cout << \\\"\\\\n\\\";\\n }\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given an array a of n integers, and another integer k such that 2k \u2264 n.\\n\\nYou have to perform exactly k operations with this array. In one operation, you have to choose two elements of the array (let them be a_i and a_j; they can be equal or different, but their positions in the array must not be the same), remove them from the array, and add \u230a (a_i)\\/(a_j) \u230b to your score, where \u230a x\\/y \u230b is the maximum integer not exceeding x\\/y.\\n\\nInitially, your score is 0. After you perform exactly k operations, you add all the remaining elements of the array to the score.\\n\\nCalculate the minimum possible score you can get.\\n\\nInput\\n\\nThe first line of the input contains one integer t (1 \u2264 t \u2264 500) \u2014 the number of test cases.\\n\\nEach test case consists of two lines. The first line contains two integers n and k (1 \u2264 n \u2264 100; 0 \u2264 k \u2264 \u230a n\\/2 \u230b).\\n\\nThe second line contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 2 \u22c5 10^5).\\n\\nOutput\\n\\nPrint one integer \u2014 the minimum possible score you can get.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n7 3\\n1 1 1 2 1 3 1\\n5 1\\n5 5 5 5 5\\n4 2\\n1 3 3 7\\n2 0\\n4 2\\n9 2\\n1 10 10 1 10 2 7 10 3\\n\\n\\nOutput\\n\\n\\n2\\n16\\n0\\n6\\n16\\n\\nNote\\n\\nLet's consider the example test.\\n\\nIn the first test case, one way to obtain a score of 2 is the following one:\\n\\n 1. choose a_7 = 1 and a_4 = 2 for the operation; the score becomes 0 + \u230a 1\\/2 \u230b = 0, the array becomes [1, 1, 1, 1, 3]; \\n 2. choose a_1 = 1 and a_5 = 3 for the operation; the score becomes 0 + \u230a 1\\/3 \u230b = 0, the array becomes [1, 1, 1]; \\n 3. choose a_1 = 1 and a_2 = 1 for the operation; the score becomes 0 + \u230a 1\\/1 \u230b = 1, the array becomes [1]; \\n 4. add the remaining element 1 to the score, so the resulting score is 2. \\n\\n\\n\\nIn the second test case, no matter which operations you choose, the resulting score is 16.\\n\\nIn the third test case, one way to obtain a score of 0 is the following one:\\n\\n 1. choose a_1 = 1 and a_2 = 3 for the operation; the score becomes 0 + \u230a 1\\/3 \u230b = 0, the array becomes [3, 7]; \\n 2. choose a_1 = 3 and a_2 = 7 for the operation; the score becomes 0 + \u230a 3\\/7 \u230b = 0, the array becomes...\\nfor _\",\"targets\":\"in range(int(input())):\\n s, k = [int(_) for _ in input().split()]\\n a = [int(_) for _ in input().split()]\\n if k == 0:\\n print(sum(a))\\n else:\\n r = 0\\n a.sort()\\n header = a[s-2*k:s-k]\\n tail = a[s-k:]\\n for _ in zip(header, tail):\\n r += _[0]\\/\\/_[1]\\n r += sum(a[:s-2*k])\\n print(r)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nKaren has just arrived at school, and she has a math test today!\\n\\n\\n\\nThe test is about basic addition and subtraction. Unfortunately, the teachers were too busy writing tasks for Codeforces rounds, and had no time to make an actual test. So, they just put one question in the test that is worth all the points.\\n\\nThere are n integers written on a row. Karen must alternately add and subtract each pair of adjacent integers, and write down the sums or differences on the next row. She must repeat this process on the values on the next row, and so on, until only one integer remains. The first operation should be addition.\\n\\nNote that, if she ended the previous row by adding the integers, she should start the next row by subtracting, and vice versa.\\n\\nThe teachers will simply look at the last integer, and then if it is correct, Karen gets a perfect score, otherwise, she gets a zero for the test.\\n\\nKaren has studied well for this test, but she is scared that she might make a mistake somewhere and it will cause her final answer to be wrong. If the process is followed, what number can she expect to be written on the last row?\\n\\nSince this number can be quite large, output only the non-negative remainder after dividing it by 109 + 7.\\n\\nInput\\n\\nThe first line of input contains a single integer n (1 \u2264 n \u2264 200000), the number of numbers written on the first row.\\n\\nThe next line contains n integers. Specifically, the i-th one among these is ai (1 \u2264 ai \u2264 109), the i-th number on the first row.\\n\\nOutput\\n\\nOutput a single integer on a line by itself, the number on the final row after performing the process above.\\n\\nSince this number can be quite large, print only the non-negative remainder after dividing it by 109 + 7.\\n\\nExamples\\n\\nInput\\n\\n5\\n3 6 9 12 15\\n\\n\\nOutput\\n\\n36\\n\\n\\nInput\\n\\n4\\n3 7 5 2\\n\\n\\nOutput\\n\\n1000000006\\n\\nNote\\n\\nIn the first test case, the numbers written on the first row are 3, 6, 9, 12 and 15.\\n\\nKaren performs the operations as follows:\\n\\n\\n\\nThe non-negative remainder after dividing the final number by 109 + 7 is still 36, so...\",\"targets\":\"#include \\n#pragma comment(linker, \\\"\\/STACK:64000000\\\")\\nusing namespace std;\\nconst int inf = (int)1e9;\\nconst int mod = inf + 7;\\nconst double eps = 1e-9;\\nconst double pi = acos(-1.0);\\nint n, a[200200];\\nint fact[200200], inv[200200];\\nint binpow(int a, int k) {\\n if (k == 0) return 1;\\n int ans = binpow(a, k \\/ 2);\\n ans = 1ll * ans * ans % mod;\\n if (k % 2) ans = 1ll * ans * a % mod;\\n return ans;\\n}\\nint C(int n, int k) {\\n if (k > n) return 0;\\n int ans = fact[n];\\n ans = 1ll * ans * inv[k] % mod;\\n ans = 1ll * ans * inv[n - k] % mod;\\n return ans;\\n}\\nint main() {\\n scanf(\\\"%d\\\", &n);\\n for (int i = 0; i < n; i++) scanf(\\\"%d\\\", a + i);\\n fact[0] = inv[0] = 1;\\n for (int i = 1; i < 200200; i++) {\\n fact[i] = 1ll * i * fact[i - 1] % mod;\\n inv[i] = binpow(fact[i], mod - 2);\\n }\\n int cur = 1;\\n while (n > 1) {\\n if (n % 4 == 1) break;\\n vector b;\\n for (int i = 1; i < n; i++) {\\n if (cur == 1)\\n b.push_back((a[i - 1] + a[i]) % mod);\\n else\\n b.push_back((a[i - 1] - a[i]) % mod);\\n cur *= -1;\\n }\\n n = b.size();\\n for (int i = 0; i < n; i++) {\\n a[i] = b[i];\\n }\\n }\\n if (n % 4 == 1) {\\n int k = n \\/ 4;\\n k *= 2;\\n int ans = 0;\\n for (int i = 0, st = 0; i <= k; i++) {\\n ans += a[st] * 1ll * C(k, i) % mod;\\n ans %= mod;\\n ans += mod;\\n ans %= mod;\\n st += 2;\\n }\\n printf(\\\"%d\\\\n\\\", ans);\\n return 0;\\n }\\n assert(false);\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Do the following for a four-digit number N consisting of numbers 0-9.\\n\\n1. Let L be the number obtained as a result of arranging the numerical values \u200b\u200bof each of the N digits in descending order.\\n2. Let S be the number obtained as a result of arranging the numerical values \u200b\u200bof each of the N digits in ascending order.\\n3. Let the difference L-S be the new N (end of one operation)\\n4. Repeat from 1. for the new N\\n\\n\\n\\nAt this time, it is known that any four-digit number will eventually become 6174, unless all digits are the same number (0000, 1111, etc.). For example, when N = 2012\\nFirst time (N = 2012): L = 2210, S = 0122, L-S = 2088\\nSecond time (N = 2088): L = 8820, S = 0288, L-S = 8532\\nThird time (N = 8532): L = 8532, S = 2358, L-S = 6174\\nAnd reach 6174 in 3 operations.\\n\\nWrite a program that calculates how many operations will reach 6174 given a four-digit number consisting of the numbers 0-9.\\n\\n\\n\\ninput\\n\\nThe input consists of multiple datasets. The end of the input is indicated by 0000 on one line. Each dataset is given in the following format:\\n\\n\\nN\\n\\n\\nThe dataset is one line and N (1 \u2264 N \u2264 9999) indicates a four-digit number. If N <1000, the upper digit is padded with zeros.\\n\\nThe number of datasets does not exceed 10000.\\n\\noutput\\n\\nThe number of operations to reach 6174 for each data set is output on one line. However, if a number with all the same digits is given as input, NA is output.\\n\\nExample\\n\\nInput\\n\\n6174\\n2012\\n3333\\n0000\\n\\n\\nOutput\\n\\n0\\n3\\nNA\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n\\nusing namespace std;\\n\\nint toInt(string s){int v;istringstream sin(s);sin>>v;return v;}\\ntemplate inline string toString(T x) {ostringstream sout;sout<> n && n != \\\"0000\\\"){\\n\\t\\tif (count(n.begin(), n.end(), n[0]) == 4){\\n\\t\\t\\tcout << \\\"NA\\\" << endl;\\n\\t\\t\\tcontinue;\\n\\t\\t}\\n\\t\\t\\/\\/ assert(n != \\\"0000\\\");\\n\\n\\t\\tint tmp = toInt(n);\\n\\t\\tchar str[128];\\n\\t\\tsprintf(str, \\\"%04d\\\", tmp);\\n\\t\\tn = string(str);\\n\\t\\tint cnt = 0;\\n\\t\\twhile (n != \\\"6174\\\"){\\n\\t\\t\\tif (count(n.begin(), n.end(), n[0]) == 4){\\n\\t\\t\\t\\tcout << \\\"NA\\\" << endl;\\n\\t\\t\\t\\tgoto END;\\n\\t\\t\\t}\\n\\t\\t\\tstring L = n; sort(L.rbegin(), L.rend());\\n\\t\\t\\tstring S = n; sort(S.begin(), S.end());\\n\\t\\t\\t\\/\\/ cout << n << \\\" \\\" << L << \\\" \\\" << S << endl;\\n\\t\\t\\tint tmp = toInt(L) - toInt(S);\\n\\t\\t\\tchar str[128];\\n\\t\\t\\tsprintf(str, \\\"%04d\\\", tmp);\\n\\t\\t\\tn = string(str);\\n\\t\\t\\tcnt++;\\n\\t\\t}\\n\\t\\tcout << cnt << endl;\\n\\t\\tEND:;\\n\\t}\\n\\n\\treturn 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nThis is an easier version of the problem with smaller constraints.\\n\\nKorney Korneevich dag up an array a of length n. Korney Korneevich has recently read about the operation [bitwise XOR](https:\\/\\/en.wikipedia.org\\/wiki\\/Bitwise_operation#XOR), so he wished to experiment with it. For this purpose, he decided to find all integers x \u2265 0 such that there exists an increasing subsequence of the array a, in which the bitwise XOR of numbers is equal to x.\\n\\nIt didn't take a long time for Korney Korneevich to find all such x, and he wants to check his result. That's why he asked you to solve this problem!\\n\\nA sequence s is a subsequence of a sequence b if s can be obtained from b by deletion of several (possibly, zero or all) elements.\\n\\nA sequence s_1, s_2, \u2026 , s_m is called increasing if s_1 < s_2 < \u2026 < s_m.\\n\\nInput\\n\\nThe first line contains a single integer n (1 \u2264 n \u2264 10^5).\\n\\nThe second line contains n integers a_1, a_2, \u2026, a_n (0 \u2264 a_i \u2264 500) \u2014 the elements of the array a.\\n\\nOutput\\n\\nIn the first line print a single integer k \u2014 the number of found x values.\\n\\nIn the second line print k integers in increasing order x_1, x_2, \u2026 x_k (0 \u2264 x_1 < \u2026 < x_k) \u2014 found x values.\\n\\nExamples\\n\\nInput\\n\\n\\n4\\n4 2 2 4\\n\\n\\nOutput\\n\\n\\n4\\n0 2 4 6 \\n\\n\\nInput\\n\\n\\n8\\n1 0 1 7 12 5 3 2\\n\\n\\nOutput\\n\\n\\n12\\n0 1 2 3 4 5 6 7 10 11 12 13 \\n\\nNote\\n\\nIn the first test case:\\n\\n * To get value x = 0 it is possible to choose and empty subsequence \\n * To get value x = 2 it is possible to choose a subsequence [2] \\n * To get value x = 4 it is possible to choose a subsequence [4] \\n * To get value x = 6 it is possible to choose a subsequence [2, 4]\",\"targets\":\"#include \\nusing namespace std;\\nlong long GCD(long long a, long long b) {\\n if (b > a) {\\n swap(a, b);\\n }\\n if (b == 0) {\\n return a;\\n }\\n return GCD(b, a % b);\\n}\\nlong long mul_mod(long long a, long long b, long long m) {\\n a %= m;\\n b %= m;\\n return ((((a * b) % m) + m) % m);\\n}\\nlong long power(long long base, long long n, long long m) {\\n long long res = 1;\\n while (n) {\\n if (n & 1) res = mul_mod(res, base, m);\\n base = mul_mod(base, base, m);\\n n = n >> 1;\\n }\\n return res;\\n}\\nlong long ncr(long long x, long long y) {\\n long long ans = 1;\\n y = (y > x - y ? x - y : y);\\n for (long long i = 0; i < y; i++) {\\n ans = (ans * (x - i)) % 1000000007;\\n ans = (ans * power(i + 1, 1000000007 - 2, 1000000007)) % 1000000007;\\n ans = ans % 1000000007;\\n }\\n return ans;\\n}\\nbool isPrime(long long n) {\\n if (n == 1 or n == 0) return false;\\n if (n == 2 or n == 3) return true;\\n if (n % 2 == 0 or n % 3 == 0) return false;\\n for (long long i = 5; i * i <= n; i += 6) {\\n if (n % i == 0 or n % (i + 2) == 0) return false;\\n }\\n return true;\\n}\\nlong long add_mod(long long a, long long b, long long m) {\\n a % m;\\n b % m;\\n return ((((a + b) % m) + m) % m);\\n}\\nlong long sub_mod(long long a, long long b, long long m) {\\n a % m;\\n b % m;\\n return ((((a - b) % m) + m) % m);\\n}\\nvector prmFactors(long long n) {\\n vector res;\\n for (long long i = 2; i * i <= n; i++) {\\n if (n % i == 0) {\\n while (n % i == 0) n \\/= i;\\n res.push_back(i);\\n }\\n }\\n if (n > 1) res.push_back(n);\\n return res;\\n}\\nvoid run() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n ;\\n}\\nvoid solve() {\\n long long n;\\n cin >> n;\\n long long a[n];\\n for (int i = 0; i < n; i++) cin >> a[i];\\n vector mn(513, 1e9);\\n vector ans;\\n ans.push_back(0);\\n mn[0] = 0;\\n for (int i = 0; i < n; i++) {\\n for (int j = 0; j < 513; j++) {\\n if (mn[j] < a[i]) {\\n mn[j ^ a[i]] = min(mn[j ^ a[i]], a[i]);\\n }\\n }\\n }\\n for (int i = 1; i < 513; i++)\\n if (mn[i] != 1e9)...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where k is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers.\\n\\nA well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number n, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!\\n\\nInput\\n\\nThe first input line contains an integer n (1 \u2264 n \u2264 109).\\n\\nOutput\\n\\nPrint \\\"YES\\\" (without the quotes), if n can be represented as a sum of two triangular numbers, otherwise print \\\"NO\\\" (without the quotes).\\n\\nExamples\\n\\nInput\\n\\n256\\n\\n\\nOutput\\n\\nYES\\n\\n\\nInput\\n\\n512\\n\\n\\nOutput\\n\\nNO\\n\\nNote\\n\\nIn the first sample number .\\n\\nIn the second sample number 512 can not be represented as a sum of two triangular numbers.\\nUsing python can you solve the prior task?\",\"targets\":\"h=set([x*(x+1)\\/2 for x in xrange(1,int(5e4))])\\nn=input()\\nprint \\\"YES\\\"if ([n-i in h for i in h].count(1)>0)else\\\"NO\\\"\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Polycarp likes squares and cubes of positive integers. Here is the beginning of the sequence of numbers he likes: 1, 4, 8, 9, ....\\n\\nFor a given number n, count the number of integers from 1 to n that Polycarp likes. In other words, find the number of such x that x is a square of a positive integer number or a cube of a positive integer number (or both a square and a cube simultaneously).\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 20) \u2014 the number of test cases.\\n\\nThen t lines contain the test cases, one per line. Each of the lines contains one integer n (1 \u2264 n \u2264 10^9).\\n\\nOutput\\n\\nFor each test case, print the answer you are looking for \u2014 the number of integers from 1 to n that Polycarp likes.\\n\\nExample\\n\\nInput\\n\\n\\n6\\n10\\n1\\n25\\n1000000000\\n999999999\\n500000000\\n\\n\\nOutput\\n\\n\\n4\\n1\\n6\\n32591\\n32590\\n23125\",\"targets\":\"cases = int(input())\\n\\n\\n\\nfor i in range(cases):\\n numbers = {1}\\n variable = 2\\n number = int(input())\\n while True and number != 1: \\n if variable**2 <= number:\\n numbers.add(variable**2)\\n else:\\n break\\n if variable**3 <= number:\\n numbers.add((variable**3)) \\n variable += 1\\n print(len(numbers))\",\"language\":\"python\",\"split\":\"test\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You have an array a consisting of n distinct positive integers, numbered from 1 to n. Define p_k as $$$p_k = \u2211_{1 \u2264 i, j \u2264 k} a_i mod a_j, where x \\\\bmod y denotes the remainder when x is divided by y. You have to find and print p_1, p_2, \\\\ldots, p_n$$$. \\n\\nInput\\n\\nThe first line contains n \u2014 the length of the array (2 \u2264 n \u2264 2 \u22c5 10^5).\\n\\nThe second line contains n space-separated distinct integers a_1, \u2026, a_n (1 \u2264 a_i \u2264 3 \u22c5 10^5, a_i \u2260 a_j if i \u2260 j). \\n\\nOutput\\n\\nPrint n integers p_1, p_2, \u2026, p_n. \\n\\nExamples\\n\\nInput\\n\\n\\n4\\n6 2 7 3\\n\\n\\nOutput\\n\\n\\n0 2 12 22\\n\\n\\nInput\\n\\n\\n3\\n3 2 1\\n\\n\\nOutput\\n\\n\\n0 3 5\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nconst int B = 600;\\nint tcnt[300001];\\nlong long tree[300001], V[B + 1];\\nvoid update(int n) {\\n for (int v = n; n <= 300000; n++) {\\n tree[n] += v;\\n tcnt[n]++;\\n if (n % B == B - 1) break;\\n }\\n}\\nlong long get_sum(int s, int e) {\\n if (s \\/ B == e \\/ B) return tree[e] - (s % B ? tree[s - 1] : 0);\\n long long ret = tree[s \\/ B * B + B - 1] - (s % B ? tree[s - 1] : 0) + tree[e];\\n s = s \\/ B * B + B;\\n e = e \\/ B * B;\\n while (s < e) {\\n ret += tree[s + B - 1];\\n s += B;\\n }\\n return ret;\\n}\\nint get_cnt(int s, int e) {\\n if (s \\/ B == e \\/ B) return tcnt[e] - (s % B ? tcnt[s - 1] : 0);\\n int ret = tcnt[s \\/ B * B + B - 1] - (s % B ? tcnt[s - 1] : 0) + tcnt[e];\\n s = s \\/ B * B + B;\\n e = e \\/ B * B;\\n while (s < e) {\\n ret += tcnt[s + B - 1];\\n s += B;\\n }\\n return ret;\\n}\\nint main() {\\n ios::sync_with_stdio(false);\\n cin.tie(NULL);\\n cout.tie(NULL);\\n ((void)0);\\n ((void)0);\\n ((void)0);\\n int N, n;\\n unsigned long long ans = 0;\\n long long cv, cc;\\n for (cin >> N; N--;) {\\n int a;\\n cin >> a;\\n if (a <= B)\\n ans += V[a];\\n else {\\n for (int i = 1; i <= a; i = n) {\\n n = a \\/ (a \\/ i) + 1;\\n cv = get_sum(i, n - 1);\\n cc = get_cnt(i, n - 1);\\n ans += cv;\\n ans += 1LL * cc * a - (a \\/ i) * cv;\\n }\\n for (int i = 2 * a;; i += a) {\\n cv = get_sum(i - a, min(i - 1, 300000));\\n cc = get_cnt(i - a, min(i - 1, 300000));\\n ans += cv - 1LL * cc * (i - a);\\n ans += 1LL * a * cc;\\n if (i > 300000) break;\\n }\\n }\\n for (int i = 1; i <= B; i++) V[i] += a % i + i % a;\\n update(a);\\n cout << ans << ' ';\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Stephen Queen wants to write a story. He is a very unusual writer, he uses only letters 'a', 'b', 'c', 'd' and 'e'!\\n\\nTo compose a story, Stephen wrote out n words consisting of the first 5 lowercase letters of the Latin alphabet. He wants to select the maximum number of words to make an interesting story.\\n\\nLet a story be a sequence of words that are not necessarily different. A story is called interesting if there exists a letter which occurs among all words of the story more times than all other letters together.\\n\\nFor example, the story consisting of three words \\\"bac\\\", \\\"aaada\\\", \\\"e\\\" is interesting (the letter 'a' occurs 5 times, all other letters occur 4 times in total). But the story consisting of two words \\\"aba\\\", \\\"abcde\\\" is not (no such letter that it occurs more than all other letters in total).\\n\\nYou are given a sequence of n words consisting of letters 'a', 'b', 'c', 'd' and 'e'. Your task is to choose the maximum number of them to make an interesting story. If there's no way to make a non-empty story, output 0.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 5000) \u2014 the number of test cases. Then t test cases follow.\\n\\nThe first line of each test case contains one integer n (1 \u2264 n \u2264 2 \u22c5 10^5) \u2014 the number of the words in the sequence. Then n lines follow, each of them contains a word \u2014 a non-empty string consisting of lowercase letters of the Latin alphabet. The words in the sequence may be non-distinct (i. e. duplicates are allowed). Only the letters 'a', 'b', 'c', 'd' and 'e' may occur in the words.\\n\\nIt is guaranteed that the sum of n over all test cases doesn't exceed 2 \u22c5 10^5; the sum of the lengths of all words over all test cases doesn't exceed 4 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, output the maximum number of words that compose an interesting story. Print 0 if there's no way to make a non-empty interesting story.\\n\\nExample\\n\\nInput\\n\\n\\n6\\n3\\nbac\\naaada\\ne\\n3\\naba\\nabcde\\naba\\n2\\nbaba\\nbaba\\n4\\nab\\nab\\nc\\nbc\\n5\\ncbdca\\nd\\na\\nd\\ne\\n3\\nb\\nc\\nca\\n\\n\\nOutput\\n\\n\\n3\\n2\\n0\\n2\\n3\\n2\\n\\nNote\\n\\nIn the first test case of the example, all 3 words...\",\"targets\":\"import java.io.*;\\nimport java.util.*;\\n\\npublic class MainC {\\n static class InputReader {\\n public BufferedReader reader;\\n public StringTokenizer tokenizer;\\n public InputReader(InputStream stream) {\\n reader = new BufferedReader(new InputStreamReader(stream), 32768);\\n tokenizer = null;\\n }\\n public String next() {\\n while (tokenizer == null || !tokenizer.hasMoreTokens()) {\\n try {\\n tokenizer = new StringTokenizer(reader.readLine());\\n } catch (IOException e) {\\n throw new RuntimeException(e);\\n }\\n }\\n return tokenizer.nextToken();\\n }\\n public int nextInt() {\\n return Integer.parseInt(next());\\n }\\n public long nextLong() {\\n return Long.parseLong(next());\\n }\\n public boolean hasNext() {\\n try {\\n String string = reader.readLine();\\n if (string == null) {\\n return false;\\n }\\n tokenizer = new StringTokenizer(string);\\n return tokenizer.hasMoreTokens();\\n } catch (IOException e) {\\n return false;\\n }\\n }\\n }\\n static InputReader in = new InputReader(System.in);\\n static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));\\n\\n public static void main(String[] args) {\\n int t = in.nextInt();\\n while (t -- > 0) {\\n solve();\\n }\\n out.close();\\n }\\n static void solve() {\\n int n = in.nextInt();\\n Magic[] magics = new Magic[n];\\n for (int i = 0; i < n; i++) {\\n magics[i] = getMagic(in.next());\\n }\\n \\/\\/ count a\\n int tot, index = -1;\\n Arrays.sort(magics, Comparator.comparingInt(o -> -o.aDiff));\\n tot = 0;\\n\\n for (int i = 0; i < n; i++) {\\n tot += magics[i].aDiff;\\n index = i;\\n if (tot <= 0) {\\n ...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Emily's birthday is next week and Jack has decided to buy a present for her. He knows she loves books so he goes to the local bookshop, where there are n books on sale from one of m genres.\\n\\nIn the bookshop, Jack decides to buy two books of different genres.\\n\\nBased on the genre of books on sale in the shop, find the number of options available to Jack for choosing two books of different genres for Emily. Options are considered different if they differ in at least one book.\\n\\nThe books are given by indices of their genres. The genres are numbered from 1 to m.\\n\\nInput\\n\\nThe first line contains two positive integers n and m (2 \u2264 n \u2264 2\u00b7105, 2 \u2264 m \u2264 10) \u2014 the number of books in the bookstore and the number of genres.\\n\\nThe second line contains a sequence a1, a2, ..., an, where ai (1 \u2264 ai \u2264 m) equals the genre of the i-th book.\\n\\nIt is guaranteed that for each genre there is at least one book of that genre.\\n\\nOutput\\n\\nPrint the only integer \u2014 the number of ways in which Jack can choose books.\\n\\nIt is guaranteed that the answer doesn't exceed the value 2\u00b7109.\\n\\nExamples\\n\\nInput\\n\\n4 3\\n2 1 3 1\\n\\n\\nOutput\\n\\n5\\n\\n\\nInput\\n\\n7 4\\n4 2 3 1 2 4 3\\n\\n\\nOutput\\n\\n18\\n\\nNote\\n\\nThe answer to the first test sample equals 5 as Sasha can choose:\\n\\n 1. the first and second books, \\n 2. the first and third books, \\n 3. the first and fourth books, \\n 4. the second and third books, \\n 5. the third and fourth books. \\nThe above is tricky. Write me a correct solution in PYTHON3.\",\"targets\":\"x=[]\\nx = input().split()\\nn = int(x[0])\\nm = int (x[1])\\na=[]\\na=input().split()\\ns={}\\nfor i in range (n):\\n try:\\n s[a[i]] += 1\\n except KeyError:\\n s[a[i]] = 1\\n\\nans = n*(n-1)\\/2\\nfor i in s.values():\\n if (i != 1):\\n ans -= i*(i-1)\\/2\\nprint(int(ans))\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nFlatland has recently introduced a new type of an eye check for the driver's licence. The check goes like that: there is a plane with mannequins standing on it. You should tell the value of the minimum angle with the vertex at the origin of coordinates and with all mannequins standing inside or on the boarder of this angle. \\n\\nAs you spend lots of time \\\"glued to the screen\\\", your vision is impaired. So you have to write a program that will pass the check for you.\\n\\nInput\\n\\nThe first line contains a single integer n (1 \u2264 n \u2264 105) \u2014 the number of mannequins.\\n\\nNext n lines contain two space-separated integers each: xi, yi (|xi|, |yi| \u2264 1000) \u2014 the coordinates of the i-th mannequin. It is guaranteed that the origin of the coordinates has no mannequin. It is guaranteed that no two mannequins are located in the same point on the plane.\\n\\nOutput\\n\\nPrint a single real number \u2014 the value of the sought angle in degrees. The answer will be considered valid if the relative or absolute error doesn't exceed 10 - 6. \\n\\nExamples\\n\\nInput\\n\\n2\\n2 0\\n0 2\\n\\n\\nOutput\\n\\n90.0000000000\\n\\n\\nInput\\n\\n3\\n2 0\\n0 2\\n-2 2\\n\\n\\nOutput\\n\\n135.0000000000\\n\\n\\nInput\\n\\n4\\n2 0\\n0 2\\n-2 0\\n0 -2\\n\\n\\nOutput\\n\\n270.0000000000\\n\\n\\nInput\\n\\n2\\n2 1\\n1 2\\n\\n\\nOutput\\n\\n36.8698976458\\n\\nNote\\n\\nSolution for the first sample test is shown below: \\n\\n\\n\\nSolution for the second sample test is shown below: \\n\\n\\n\\nSolution for the third sample test is shown below: \\n\\n\\n\\nSolution for the fourth sample test is shown below: \\n\\n\",\"targets\":\"#include \\nusing namespace std;\\nvoid debug() {\\n fflush(stdin);\\n printf(\\\"Press any key to continue\\\");\\n getc(stdin);\\n fflush(stdin);\\n}\\nint n;\\ndouble angle[100005];\\nint main() {\\n scanf(\\\"%d\\\", &n);\\n for (int i = 1; i <= n; i++) {\\n double x, y;\\n scanf(\\\"%lf%lf\\\", &x, &y);\\n double tmp = atan(y \\/ x) * 180 \\/ acos(-1.0);\\n if (tmp > 0) {\\n if (x <= 0 && y <= 0) tmp += 180;\\n } else if (tmp < 0) {\\n if (x <= 0 && y >= 0)\\n tmp += 180;\\n else if (x >= 0 && y <= 0)\\n tmp += 360;\\n } else {\\n if (x < 0) tmp += 180;\\n }\\n angle[i] = tmp;\\n }\\n sort(angle + 1, angle + n + 1);\\n double ans = angle[n] - angle[1];\\n for (int i = 2; i <= n; i++) ans = min(ans, 360 - (angle[i] - angle[i - 1]));\\n printf(\\\"%0.7lf\\\\n\\\", ans);\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"AquaMoon had n strings of length m each. n is an odd number.\\n\\nWhen AquaMoon was gone, Cirno tried to pair these n strings together. After making (n-1)\\/(2) pairs, she found out that there was exactly one string without the pair!\\n\\nIn her rage, she disrupted each pair of strings. For each pair, she selected some positions (at least 1 and at most m) and swapped the letters in the two strings of this pair at the selected positions.\\n\\nFor example, if m = 6 and two strings \\\"abcdef\\\" and \\\"xyzklm\\\" are in one pair and Cirno selected positions 2, 3 and 6 she will swap 'b' with 'y', 'c' with 'z' and 'f' with 'm'. The resulting strings will be \\\"ayzdem\\\" and \\\"xbcklf\\\".\\n\\nCirno then stole away the string without pair and shuffled all remaining strings in arbitrary order.\\n\\nAquaMoon found the remaining n-1 strings in complete disarray. Also, she remembers the initial n strings. She wants to know which string was stolen, but she is not good at programming. Can you help her?\\n\\nInput\\n\\nThis problem is made as interactive. It means, that your solution will read the input, given by the interactor. But the interactor will give you the full input at the beginning and after that, you should print the answer. So you should solve the problem, like as you solve the usual, non-interactive problem because you won't have any interaction process. The only thing you should not forget is to flush the output buffer, after printing the answer. Otherwise, you can get an \\\"Idleness limit exceeded\\\" verdict. Refer to the [interactive problems guide](https:\\/\\/codeforces.com\\/blog\\/entry\\/45307) for the detailed information about flushing the output buffer.\\n\\nThe input consists of multiple test cases. The first line contains a single integer t (1 \u2264 t \u2264 100) \u2014 the number of test cases.\\n\\nThe first line of each test case contains two integers n, m (1 \u2264 n \u2264 10^5, 1 \u2264 m \u2264 10^5) \u2014 the number of strings and the length of each string, respectively.\\n\\nThe next n lines each contain a string with length m, describing the original n strings. All string consists of lowercase...\\nThe above is tricky. Write me a correct solution in JAVA.\",\"targets\":\"\\/\\/package Practise;\\n\\nimport java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.util.Arrays;\\nimport java.util.Random;\\nimport java.util.StringTokenizer;\\n\\npublic class StolenString {\\n\\tpublic static void main(String args[]) {\\n\\t\\tFastScanner fs=new FastScanner();\\n\\t\\tint t=fs.nextInt();\\n\\t\\tfor(int t1=0;t1\\nusing namespace std;\\ninline int read() {\\n int res = 0, f = 1;\\n char ch;\\n while (ch = getchar(), ch < '0' || ch > '9')\\n if (ch == '-') f = -1;\\n while (ch >= '0' && ch <= '9') res = res * 10 + ch - '0', ch = getchar();\\n return res * f;\\n}\\nconst int N = 2e5 + 5, INF = 0x3f3f3f3f;\\nconst long long inf = 0x3f3f3f3f3f3f3f3f;\\nlong long fpool[N * 20], ppool[N * 20], spool[N * 20], dpool[N * 20],\\n gpool[N * 20];\\nint o;\\nlong long *f[N], *pre[N], *suf[N], *d[N], *g[N];\\nint sz[N];\\nstruct seg {\\n int l, r;\\n inline bool operator<(const seg &a) const {\\n return l != a.l ? l < a.l : r > a.r;\\n }\\n} w[N], s[N];\\nbool ck[N];\\nint t, n, m;\\nlong long a[N];\\ninline void readdata() {\\n n = read(), m = read();\\n for (int i = 1; i <= n; ++i) a[i] = read();\\n for (int i = 1; i <= m; ++i) w[i].l = read(), w[i].r = read();\\n}\\ninline void build() {\\n sort(a + 1, a + n + 1), a[n + 1] = INF, sort(w + 1, w + m + 1);\\n for (int i = 1, j = 1; i <= m; ++i) {\\n while (j <= n && a[j] < w[i].l) ++j;\\n if (a[j] >= w[i].l && a[j] <= w[i].r) ck[i] = 1;\\n }\\n t = 0;\\n for (int i = 1; i <= m; ++i)\\n if (!ck[i]) {\\n while (t && s[t].r >= w[i].r) --t;\\n s[++t] = w[i];\\n }\\n int j = 1;\\n while (j <= t && s[j].r < a[1]) ++j;\\n int mr = a[1];\\n for (int i = 1; i < j; ++i) mr = min(mr, s[i].r);\\n --j;\\n for (int i = 1, l = j; i <= n; ++i) {\\n while (j < t && s[j + 1].r < a[i + 1]) ++j;\\n sz[i] = j - l, f[i] = fpool + o, d[i] = dpool + o, g[i] = gpool + o;\\n pre[i] = ppool + o, suf[i] = spool + o, o += sz[i] + 1;\\n for (int k = 1; k <= sz[i]; ++k) d[i][k] = s[l + k].l - a[i];\\n int nr = a[i + 1];\\n for (int k = sz[i]; ~k; --k)\\n g[i][k] = a[i + 1] - nr, nr = min(nr, s[l + k].r);\\n l = j;\\n }\\n for (int i = 0; i <= sz[1]; ++i)\\n f[1][i] = 0ll + 2 * min(a[1] - mr, d[1][i]) + max(a[1] - mr, d[1][i]);\\n pre[1][0] = f[1][0] + g[1][0];\\n for (int i = 1; i <= sz[1]; ++i)\\n pre[1][i] = min(pre[1][i - 1], f[1][i] + g[1][i]);\\n suf[1][sz[1]] = f[1][sz[1]] + 2 * g[1][sz[1]];\\n for (int i = sz[1] -...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CQXYM wants to create a connected undirected graph with n nodes and m edges, and the diameter of the graph must be strictly less than k-1. Also, CQXYM doesn't want a graph that contains self-loops or multiple edges (i.e. each edge connects two different vertices and between each pair of vertices there is at most one edge).\\n\\nThe diameter of a graph is the maximum distance between any two nodes.\\n\\nThe distance between two nodes is the minimum number of the edges on the path which endpoints are the two nodes.\\n\\nCQXYM wonders whether it is possible to create such a graph.\\n\\nInput\\n\\nThe input consists of multiple test cases. \\n\\nThe first line contains an integer t (1 \u2264 t \u2264 10^5) \u2014 the number of test cases. The description of the test cases follows.\\n\\nOnly one line of each test case contains three integers n(1 \u2264 n \u2264 10^9), m, k (0 \u2264 m,k \u2264 10^9).\\n\\nOutput\\n\\nFor each test case, print YES if it is possible to create the graph, or print NO if it is impossible. You can print each letter in any case (upper or lower).\\n\\nExample\\n\\nInput\\n\\n\\n5\\n1 0 3\\n4 5 3\\n4 6 3\\n5 4 1\\n2 1 1\\n\\n\\nOutput\\n\\n\\nYES\\nNO\\nYES\\nNO\\nNO\\n\\nNote\\n\\nIn the first test case, the graph's diameter equal to 0.\\n\\nIn the second test case, the graph's diameter can only be 2.\\n\\nIn the third test case, the graph's diameter can only be 1.\\nSolve the task in JAVA.\",\"targets\":\"import java.util.*;\\nimport java.lang.*;\\nimport java.io.*;\\nimport java.awt.*;\\n\\n\\/*AUTHOR - SHIVAM GUPTA *\\/\\n\\n\\/\\/ U KNOW THAT IF THIS DAY WILL BE URS THEN NO ONE CAN DEFEAT U HERE ,JUst keep faith in ur strengths .................................................. \\n\\/\\/ ASCII = 48 + i ;\\/\\/ 2^28 = 268,435,456 > 2* 10^8 \\/\\/ log 10 base 2 = 3.3219 \\n\\/\\/ odd:: (x^2+1)\\/2 , (x^2-1)\\/2 ; x>=3\\/\\/ even:: (x^2\\/4)+1 ,(x^2\\/4)-1 x >=4 \\n\\/\\/ FOR ANY ODD NO N : N,N-1,N-2,ALL ARE PAIRWISE COPRIME,THEIR COMBINED LCM IS PRODUCT OF ALL THESE NOS\\n\\/\\/ two consecutive odds are always coprime to each other, two consecutive even have always gcd = 2 ;\\n\\n\\/\\/ Rectangle r = new Rectangle(int x , int y,int widht,int height) \\n\\/\\/Creates a rect. with bottom left cordinates as (x, y) and top right as ((x+width),(y+height))\\n\\n\\/\\/BY DEFAULT Priority Queue is MIN in nature in java\\n\\/\\/to use as max , just push with negative sign and change sign after removal \\n\\n\\/\\/ We can make a sieve of max size 1e7 .(no time or space issue) \\n\\/\\/ In 1e7 starting nos we have about 66*1e4 prime nos\\n\\/\\/ In 1e6 starting nos we have about 78,498 prime nos\\n\\n public class Main\\n \\/\\/public class Solution\\n{\\n static PrintWriter out;\\n \\n\\tstatic class FastReader{\\n\\t\\tBufferedReader br;\\n\\t\\tStringTokenizer st;\\n\\t\\tpublic FastReader(){\\n\\t\\t\\tbr=new BufferedReader(new InputStreamReader(System.in));\\n\\t\\t\\tout=new PrintWriter(System.out);\\n\\t\\t}\\n\\t\\tString next(){\\n\\t\\t\\twhile(st==null || !st.hasMoreElements()){\\n\\t\\t\\t\\ttry{\\n\\t\\t\\t\\t\\tst= new StringTokenizer(br.readLine());\\n\\t\\t\\t\\t}\\n\\t\\t\\t\\tcatch (IOException e){\\n\\t\\t\\t\\t\\te.printStackTrace();\\n\\t\\t\\t\\t}\\n\\t\\t\\t}\\n\\t\\t\\treturn st.nextToken();\\n\\t\\t}\\n\\t\\tint nextInt(){\\n\\t\\t\\treturn Integer.parseInt(next());\\n\\t\\t}\\n\\t\\tlong nextLong(){\\n\\t\\t\\treturn Long.parseLong(next());\\n\\t\\t}\\n\\t\\tdouble nextDouble(){\\n\\t\\t\\treturn Double.parseDouble(next());\\n\\t\\t}\\n\\t\\tString nextLine(){\\n\\t\\t\\tString str = \\\"\\\";\\n\\t\\t\\ttry{\\n\\t\\t\\t\\tstr=br.readLine();\\n\\t\\t\\t}\\n\\t\\t\\tcatch(IOException e){\\n\\t\\t\\t\\te.printStackTrace();\\n\\t\\t\\t}\\n\\t\\t\\treturn str;\\n\\t\\t}\\n\\t}\\n\\t\\n\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\/\\n public static int...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Count the number of distinct sequences a1, a2, ..., an (1 \u2264 ai) consisting of positive integers such that gcd(a1, a2, ..., an) = x and . As this number could be large, print the answer modulo 109 + 7.\\n\\ngcd here means the [greatest common divisor](https:\\/\\/en.wikipedia.org\\/wiki\\/Greatest_common_divisor).\\n\\nInput\\n\\nThe only line contains two positive integers x and y (1 \u2264 x, y \u2264 109).\\n\\nOutput\\n\\nPrint the number of such sequences modulo 109 + 7.\\n\\nExamples\\n\\nInput\\n\\n3 9\\n\\n\\nOutput\\n\\n3\\n\\n\\nInput\\n\\n5 8\\n\\n\\nOutput\\n\\n0\\n\\nNote\\n\\nThere are three suitable sequences in the first test: (3, 3, 3), (3, 6), (6, 3).\\n\\nThere are no suitable sequences in the second test.\\nSolve the task in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nvector v;\\nmap dp;\\nlong long power(int a, long long b) {\\n long long res = 1, base = a;\\n while (b > 0) {\\n if (b % 2) {\\n res *= base;\\n res %= (1000 * 1000 * 1000 + 7);\\n }\\n base *= base;\\n base %= (1000 * 1000 * 1000 + 7);\\n b \\/= 2;\\n }\\n return res;\\n}\\nlong long compute(int g) {\\n if (g == 1) {\\n return 1;\\n }\\n if (dp.find(g) != dp.end()) {\\n return dp[g];\\n }\\n long long val = power(2, g - 1);\\n int i;\\n for (i = 0; i < v.size(); i++) {\\n if (v[i] >= g) {\\n break;\\n }\\n if (g % v[i] == 0) val -= compute(v[i]);\\n }\\n dp[g] = val;\\n dp[g] %= (1000 * 1000 * 1000 + 7);\\n dp[g] += (1000 * 1000 * 1000 + 7);\\n dp[g] %= (1000 * 1000 * 1000 + 7);\\n return dp[g];\\n}\\nint main() {\\n std::ios::sync_with_stdio(false);\\n int x, y, val1, i;\\n cin >> x >> y;\\n if (y % x) {\\n cout << 0 << endl;\\n } else {\\n y \\/= x;\\n for (i = 1; i * i <= y; i++) {\\n if (y % i == 0) {\\n v.push_back(i);\\n if (y \\/ i != i) v.push_back(y \\/ i);\\n }\\n }\\n sort(v.begin(), v.end());\\n cout << compute(y);\\n }\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Berland has n cities connected by m bidirectional roads. No road connects a city to itself, and each pair of cities is connected by no more than one road. It is not guaranteed that you can get from any city to any other one, using only the existing roads.\\n\\nThe President of Berland decided to make changes to the road system and instructed the Ministry of Transport to make this reform. Now, each road should be unidirectional (only lead from one city to another).\\n\\nIn order not to cause great resentment among residents, the reform needs to be conducted so that there can be as few separate cities as possible. A city is considered separate, if no road leads into it, while it is allowed to have roads leading from this city.\\n\\nHelp the Ministry of Transport to find the minimum possible number of separate cities after the reform.\\n\\nInput\\n\\nThe first line of the input contains two positive integers, n and m \u2014 the number of the cities and the number of roads in Berland (2 \u2264 n \u2264 100 000, 1 \u2264 m \u2264 100 000). \\n\\nNext m lines contain the descriptions of the roads: the i-th road is determined by two distinct integers xi, yi (1 \u2264 xi, yi \u2264 n, xi \u2260 yi), where xi and yi are the numbers of the cities connected by the i-th road.\\n\\nIt is guaranteed that there is no more than one road between each pair of cities, but it is not guaranteed that from any city you can get to any other one, using only roads.\\n\\nOutput\\n\\nPrint a single integer \u2014 the minimum number of separated cities after the reform.\\n\\nExamples\\n\\nInput\\n\\n4 3\\n2 1\\n1 3\\n4 3\\n\\n\\nOutput\\n\\n1\\n\\n\\nInput\\n\\n5 5\\n2 1\\n1 3\\n2 3\\n2 5\\n4 3\\n\\n\\nOutput\\n\\n0\\n\\n\\nInput\\n\\n6 5\\n1 2\\n2 3\\n4 5\\n4 6\\n5 6\\n\\n\\nOutput\\n\\n1\\n\\nNote\\n\\nIn the first sample the following road orientation is allowed: , , .\\n\\nThe second sample: , , , , .\\n\\nThe third sample: , , , , .\",\"targets\":\"#include \\nusing namespace std;\\nconst int N = 100111;\\nint n, m;\\nint p[N][2];\\nint cnt[N];\\nint main() {\\n int i;\\n while (scanf(\\\"%d%d\\\", &n, &m) != EOF) {\\n memset(cnt, 0, sizeof(cnt));\\n for (i = 1; i <= m; i++) {\\n scanf(\\\"%d%d\\\", &p[i][0], &p[i][1]);\\n cnt[p[i][0]]++;\\n cnt[p[i][1]]++;\\n }\\n int ans = 0;\\n bool flag = false;\\n for (i = 1; i <= n; i++) {\\n if (!cnt[i]) ans++;\\n if (cnt[i] == 1) flag = true;\\n }\\n while (flag) {\\n flag = false;\\n for (i = 1; i <= m; i++) {\\n if (p[i][0]) {\\n if (cnt[p[i][0]] == 1) {\\n cnt[p[i][1]]--;\\n if (cnt[p[i][1]] == 1) flag = true;\\n if (cnt[p[i][1]] == 0) ans++;\\n p[i][0] = 0;\\n continue;\\n }\\n if (cnt[p[i][1]] == 1) {\\n cnt[p[i][0]]--;\\n if (cnt[p[i][0]] == 1) flag = true;\\n if (cnt[p[i][0]] == 0) ans++;\\n p[i][0] = 0;\\n continue;\\n }\\n }\\n }\\n }\\n printf(\\\"%d\\\\n\\\", ans);\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in PYTHON3?\\nLord Omkar would like to have a tree with n nodes (3 \u2264 n \u2264 10^5) and has asked his disciples to construct the tree. However, Lord Omkar has created m (1 \u2264 m < n) restrictions to ensure that the tree will be as heavenly as possible. \\n\\nA tree with n nodes is an connected undirected graph with n nodes and n-1 edges. Note that for any two nodes, there is exactly one simple path between them, where a simple path is a path between two nodes that does not contain any node more than once.\\n\\nHere is an example of a tree: \\n\\n\\n\\nA restriction consists of 3 pairwise distinct integers, a, b, and c (1 \u2264 a,b,c \u2264 n). It signifies that node b cannot lie on the simple path between node a and node c. \\n\\nCan you help Lord Omkar and become his most trusted disciple? You will need to find heavenly trees for multiple sets of restrictions. It can be shown that a heavenly tree will always exist for any set of restrictions under the given constraints.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10^4). Description of the test cases follows.\\n\\nThe first line of each test case contains two integers, n and m (3 \u2264 n \u2264 10^5, 1 \u2264 m < n), representing the size of the tree and the number of restrictions.\\n\\nThe i-th of the next m lines contains three integers a_i, b_i, c_i (1 \u2264 a_i, b_i, c_i \u2264 n, a, b, c are distinct), signifying that node b_i cannot lie on the simple path between nodes a_i and c_i. \\n\\nIt is guaranteed that the sum of n across all test cases will not exceed 10^5.\\n\\nOutput\\n\\nFor each test case, output n-1 lines representing the n-1 edges in the tree. On each line, output two integers u and v (1 \u2264 u, v \u2264 n, u \u2260 v) signifying that there is an edge between nodes u and v. Given edges have to form a tree that satisfies Omkar's restrictions.\\n\\nExample\\n\\nInput\\n\\n\\n2\\n7 4\\n1 2 3\\n3 4 5\\n5 6 7\\n6 5 4\\n5 3\\n1 2 3\\n2 3 4\\n3 4 5\\n\\n\\nOutput\\n\\n\\n1 2\\n1 3\\n3 5\\n3 4\\n2 7\\n7 6\\n5 1\\n1 3\\n3 2\\n2 4\\n\\nNote\\n\\nThe output of the first sample case corresponds to the following tree: \\n\\n For the first restriction,...\",\"targets\":\"import sys\\n\\n\\ninp = sys.stdin.readline\\n\\n\\ndef solve():\\n n, m = map(int, inp().split())\\n d = [0] * (n + 1)\\n for i in range(m):\\n a, b, c = map(int, inp().split())\\n d[b] += 1\\n for i in range(1, n + 1):\\n if d[i] == 0:\\n print('\\\\n'.join(f'{j} {i}' for j in range(1, n + 1) if j != i))\\n return\\n raise Exception('wut')\\n\\n\\ndef main():\\n for i in range(int(inp())):\\n solve()\\n\\n\\nif __name__ == '__main__':\\n main()\",\"language\":\"python\",\"split\":\"test\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given three integers n, a, b. Determine if there exists a permutation p_1, p_2, \u2026, p_n of integers from 1 to n, such that:\\n\\n * There are exactly a integers i with 2 \u2264 i \u2264 n-1 such that p_{i-1} < p_i > p_{i+1} (in other words, there are exactly a local maximums).\\n\\n * There are exactly b integers i with 2 \u2264 i \u2264 n-1 such that p_{i-1} > p_i < p_{i+1} (in other words, there are exactly b local minimums).\\n\\n\\n\\n\\nIf such permutations exist, find any such permutation.\\n\\nInput\\n\\nThe first line of the input contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of test cases. The description of test cases follows.\\n\\nThe only line of each test case contains three integers n, a and b (2 \u2264 n \u2264 10^5, 0 \u2264 a,b \u2264 n).\\n\\nThe sum of n over all test cases doesn't exceed 10^5.\\n\\nOutput\\n\\nFor each test case, if there is no permutation with the requested properties, output -1.\\n\\nOtherwise, print the permutation that you are found. If there are several such permutations, you may print any of them.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n4 1 1\\n6 1 2\\n6 4 0\\n\\n\\nOutput\\n\\n\\n1 3 2 4\\n4 2 3 1 5 6\\n-1\\n\\nNote\\n\\nIn the first test case, one example of such permutations is [1, 3, 2, 4]. In it p_1 < p_2 > p_3, and 2 is the only such index, and p_2> p_3 < p_4, and 3 the only such index.\\n\\nOne can show that there is no such permutation for the third test case.\\nThe above is tricky. Write me a correct solution in JAVA.\",\"targets\":\"import java.io.*;\\nimport java.math.BigInteger;\\nimport java.util.*;\\nimport static java.lang.Math.PI;\\nimport static java.lang.System.in;\\nimport static java.lang.System.out;\\nimport static java.lang.System.err;\\n\\npublic class B { \\n\\n static int what(ArrayList arr, int min, int max) {\\n int mina = 0, maxa = 0;\\n for(int i = 1; i < arr.size()-1; i++) {\\n int prev = arr.get(i-1);\\n int cur = arr.get(i);\\n int next = arr.get(i+1);\\n if(prev > cur && cur < next) mina++;\\n if(prev < cur && cur > next) maxa++;\\n }\\n \\/\\/ out.println(arr);\\n \\/\\/ out.println(maxa + \\\" \\\" + mina);\\n if(mina==min && maxa==max) return 1;\\n return 0;\\n }\\n public static void main(String[] args) throws Exception { \\n Foster sc = new Foster();\\n PrintWriter p = new PrintWriter(out);\\n\\n \\/*\\n * Is that extra condition needed\\n * Check overflow in pow function or in general\\n * Check indices of read array functions\\n * Think of an easier solution because the problems you solve are always easy\\n * Check the iterator of loop\\n *\\/ \\n\\n int t = sc.nextInt();\\n while(t--!=0) {\\n int n = sc.nextInt(), b = sc.nextInt(), a = sc.nextInt();\\n int min = a, max = b;\\n \\/\\/ if(a+b+2 > n) {\\n \\/\\/ p.println(\\\"-1\\\");\\n \\/\\/ continue;\\n \\/\\/ }\\n \\/\\/ if(Math.abs(a-b) > 1) {\\n \\/\\/ p.println(\\\"-1\\\");\\n \\/\\/ continue;\\n \\/\\/ }\\n \\/\\/ if(a==b && n%2!=0) {\\n \\/\\/ p.println(\\\"-1\\\");\\n \\/\\/ continue;\\n \\/\\/ }\\n if(a==0 && b==0) {\\n for(int i = 1; i <= n; i++) {\\n p.print(i + \\\" \\\");\\n }\\n p.println();\\n continue;\\n }\\n ArrayList arr = new ArrayList<>();\\n int L = 1, H = n;\\n if(a==b) {\\n arr.add(L);\\n ...\",\"language\":\"python\",\"split\":\"test\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"You are given two strings s and t, both consisting of lowercase English letters. You are going to type the string s character by character, from the first character to the last one.\\n\\nWhen typing a character, instead of pressing the button corresponding to it, you can press the \\\"Backspace\\\" button. It deletes the last character you have typed among those that aren't deleted yet (or does nothing if there are no characters in the current string). For example, if s is \\\"abcbd\\\" and you press Backspace instead of typing the first and the fourth characters, you will get the string \\\"bd\\\" (the first press of Backspace deletes no character, and the second press deletes the character 'c'). Another example, if s is \\\"abcaa\\\" and you press Backspace instead of the last two letters, then the resulting text is \\\"a\\\".\\n\\nYour task is to determine whether you can obtain the string t, if you type the string s and press \\\"Backspace\\\" instead of typing several (maybe zero) characters of s.\\n\\nInput\\n\\nThe first line contains a single integer q (1 \u2264 q \u2264 10^5) \u2014 the number of test cases.\\n\\nThe first line of each test case contains the string s (1 \u2264 |s| \u2264 10^5). Each character of s is a lowercase English letter.\\n\\nThe second line of each test case contains the string t (1 \u2264 |t| \u2264 10^5). Each character of t is a lowercase English letter.\\n\\nIt is guaranteed that the total number of characters in the strings over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case, print \\\"YES\\\" if you can obtain the string t by typing the string s and replacing some characters with presses of \\\"Backspace\\\" button, or \\\"NO\\\" if you cannot.\\n\\nYou may print each letter in any case (YES, yes, Yes will all be recognized as positive answer, NO, no and nO will all be recognized as negative answer).\\n\\nExample\\n\\nInput\\n\\n\\n4\\nababa\\nba\\nababa\\nbb\\naaa\\naaaa\\naababa\\nababa\\n\\n\\nOutput\\n\\n\\nYES\\nNO\\nNO\\nYES\\n\\nNote\\n\\nConsider the example test from the statement.\\n\\nIn order to obtain \\\"ba\\\" from \\\"ababa\\\", you may press Backspace instead of typing the first and the fourth characters.\\n\\nThere's no way...\\nThe above is tricky. Write me a correct solution in CPP.\",\"targets\":\"#include \\nusing namespace std;\\nvoid _print(int t) { cerr << t; }\\nvoid _print(string t) { cerr << t; }\\nvoid _print(char t) { cerr << t; }\\nvoid _print(long double t) { cerr << t; }\\nvoid _print(double t) { cerr << t; }\\nvoid _print(unsigned long long t) { cerr << t; }\\ntemplate \\nvoid _print(pair p);\\ntemplate \\nvoid _print(vector v);\\ntemplate \\nvoid _print(set v);\\ntemplate \\nvoid _print(map v);\\ntemplate \\nvoid _print(multiset v);\\ntemplate \\nvoid _print(pair p) {\\n cerr << \\\"{\\\";\\n _print(p.first);\\n cerr << \\\",\\\";\\n _print(p.second);\\n cerr << \\\"}\\\";\\n}\\ntemplate \\nvoid _print(vector v) {\\n cerr << \\\"[ \\\";\\n for (T i : v) {\\n _print(i);\\n cerr << \\\" \\\";\\n }\\n cerr << \\\"]\\\";\\n}\\ntemplate \\nvoid _print(set v) {\\n cerr << \\\"[ \\\";\\n for (T i : v) {\\n _print(i);\\n cerr << \\\" \\\";\\n }\\n cerr << \\\"]\\\";\\n}\\ntemplate \\nvoid _print(multiset v) {\\n cerr << \\\"[ \\\";\\n for (T i : v) {\\n _print(i);\\n cerr << \\\" \\\";\\n }\\n cerr << \\\"]\\\";\\n}\\ntemplate \\nvoid _print(map v) {\\n cerr << \\\"[ \\\";\\n for (auto i : v) {\\n _print(i);\\n cerr << \\\" \\\";\\n }\\n cerr << \\\"]\\\";\\n}\\nvoid init_code() {\\n ios::sync_with_stdio(0);\\n cin.tie(0);\\n cout.tie(0);\\n}\\nvoid solve() {\\n string a;\\n string b;\\n cin >> a >> b;\\n string ans;\\n int n = ((int)(a).size());\\n int n1 = ((int)(b).size());\\n int j = n1 - 1;\\n int flag = 0;\\n int i = n - 1;\\n while (i >= 0) {\\n if (a[i] == b[j]) {\\n i--;\\n j--;\\n } else {\\n i -= 2;\\n }\\n if (j == -1) {\\n flag = 1;\\n break;\\n }\\n }\\n if (flag)\\n cout << \\\"YES\\\";\\n else\\n cout << \\\"NO\\\";\\n cout << \\\"\\\\n\\\";\\n}\\nsigned main() {\\n init_code();\\n long long t = 1;\\n cin >> t;\\n while (t--) {\\n solve();\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Consider sets of natural numbers. Some sets can be sorted in the same order numerically and lexicographically. {2, 27, 3125, 9000} is one example of such sets; {2, 27, 243} is not since lexicographic sorting would yield {2, 243, 27}.\\n\\nYour task is to write a program that, for the set of integers in a given range [A,B] (i.e. between A and B inclusive), counts the number of non-empty subsets satisfying the above property. Since the resulting number is expected to be very huge, your program should output the number in modulo P given as the input.\\n\\n\\n\\nInput\\n\\nThe input consists of multiple datasets. Each dataset consists of a line with three integers A, B, and P separated by a space. These numbers satisfy the following conditions: 1 \u2264 A \u2264 1,000,000,000, 0 \u2264 B - A < 100,000, 1 \u2264 P \u2264 1,000,000,000.\\n\\nThe end of input is indicated by a line with three zeros.\\n\\nOutput\\n\\nFor each dataset, output the number of the subsets in modulo P.\\n\\nExample\\n\\nInput\\n\\n1 10 1000\\n1 100000 1000000000\\n999999999 1000099998 1000000000\\n0 0 0\\n\\n\\nOutput\\n\\n513\\n899507743\\n941554688\\\":\",\"targets\":\"#include \\nusing namespace std;\\n\\ntypedef long long ll;\\ntypedef unsigned long long ull;\\ntypedef pair P;\\n\\n#define fi first\\n#define se second\\n#define repl(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\\n#define rep(i,n) repl(i,0,n)\\n#define each(itr,v) for(auto itr:v)\\n#define pb push_back\\n#define all(x) (x).begin(),(x).end()\\n#define dbg(x) cout<<#x\\\"=\\\"<y?x:y)\\n#define mmin(x,y) (x0){\\n s=(s+bit[i])%p;\\n i-=i&-i;\\n }\\n return s;\\n }\\n\\n void add(int i,ll v){\\n while(i<=MAX_N){\\n bit[i]=(bit[i]+v)%p;\\n i+=i&-i;\\n }\\n }\\n};\\n\\nll a,b,n;\\nll idx[100010];\\n\\nint main(){\\n\\tcin.sync_with_stdio(false);\\n while(1){\\n cin>>a>>b>>p;\\n if(a==0&&b==0&&p==0)break;\\n vector

ss;\\n n=b-a+1;\\n ss.resize(n);\\n rep(i,n){\\n ss[i]=P(to_string(i+a),i);\\n }\\n sort(all(ss));\\n rep(i,n){\\n idx[ss[i].se]=i;\\n }\\n BIT dp;\\n dp.init();\\n rep(i,n){\\n ll tmp=dp.sum(idx[i]+1)%p;\\n dp.add(idx[i]+1,(tmp+1)%p);\\n }\\n cout< 1) {\\n out.println(UND);\\n } else {\\n out.println(neg[i] ? LIE : TRUTH);\\n }\\n }\\n out.flush();\\n } catch (Exception ex) {\\n ex.printStackTrace();\\n System.exit(-1);\\n }\\n }\\n\\n void...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"soltask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nAlice and Bob are playing a game on a matrix, consisting of 2 rows and m columns. The cell in the i-th row in the j-th column contains a_{i, j} coins in it.\\n\\nInitially, both Alice and Bob are standing in a cell (1, 1). They are going to perform a sequence of moves to reach a cell (2, m).\\n\\nThe possible moves are: \\n\\n * Move right \u2014 from some cell (x, y) to (x, y + 1); \\n * Move down \u2014 from some cell (x, y) to (x + 1, y). \\n\\n\\n\\nFirst, Alice makes all her moves until she reaches (2, m). She collects the coins in all cells she visit (including the starting cell).\\n\\nWhen Alice finishes, Bob starts his journey. He also performs the moves to reach (2, m) and collects the coins in all cells that he visited, but Alice didn't.\\n\\nThe score of the game is the total number of coins Bob collects.\\n\\nAlice wants to minimize the score. Bob wants to maximize the score. What will the score of the game be if both players play optimally?\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^4) \u2014 the number of testcases.\\n\\nThen the descriptions of t testcases follow.\\n\\nThe first line of the testcase contains a single integer m (1 \u2264 m \u2264 10^5) \u2014 the number of columns of the matrix.\\n\\nThe i-th of the next 2 lines contain m integers a_{i,1}, a_{i,2}, ..., a_{i,m} (1 \u2264 a_{i,j} \u2264 10^4) \u2014 the number of coins in the cell in the i-th row in the j-th column of the matrix.\\n\\nThe sum of m over all testcases doesn't exceed 10^5.\\n\\nOutput\\n\\nFor each testcase print a single integer \u2014 the score of the game if both players play optimally.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3\\n1 3 7\\n3 5 1\\n3\\n1 3 9\\n3 5 1\\n1\\n4\\n7\\n\\n\\nOutput\\n\\n\\n7\\n8\\n0\\n\\nNote\\n\\nThe paths for the testcases are shown on the following pictures. Alice's path is depicted in red and Bob's path is depicted in blue.\\n\\n\",\"targets\":\"#include \\nusing namespace std;\\ntemplate \\nstruct rge {\\n c b, e;\\n};\\ntemplate \\nrge range(c i, c j) {\\n return rge{i, j};\\n}\\ntemplate \\nauto dud(c* x) -> decltype(cerr << *x, 0);\\ntemplate \\nchar dud(...);\\nstruct debug {\\n template \\n debug& operator<<(const c&) {\\n return *this;\\n }\\n};\\ntemplate \\nvoid read(T& x) {\\n cin >> x;\\n}\\ntemplate \\nvoid read(T& x, U& y) {\\n cin >> x >> y;\\n}\\ntemplate \\nvoid read(vector& a) {\\n for (T& x : a) read(x);\\n}\\ntemplate \\nT cd(T u, T v) {\\n return (u + v - 1) \\/ v;\\n}\\nvoid solve() {\\n long long n;\\n read(n);\\n if (n == 1) {\\n long long a, b;\\n read(a, b);\\n cout << \\\"0\\\\n\\\";\\n return;\\n }\\n vector> a(2, vector(n));\\n read(a[0]);\\n read(a[1]);\\n partial_sum(a[0].rbegin(), a[0].rend(), a[0].rbegin());\\n partial_sum(a[1].begin(), a[1].end(), a[1].begin());\\n long long ans = 1e18;\\n for (long long i = 0; i < n; i++) {\\n if (i == 0) {\\n ans = min(ans, a[0][i + 1]);\\n } else if (i == n - 1) {\\n ans = min(ans, a[1][i - 1]);\\n } else {\\n ans = min(ans, max(a[0][i + 1], a[1][i - 1]));\\n }\\n }\\n cout << ans << \\\"\\\\n\\\";\\n}\\nint32_t main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n long long t = 1;\\n read(t);\\n for (long long testcase = 1; testcase <= t; testcase++) {\\n solve();\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Casimir has a string s which consists of capital Latin letters 'A', 'B', and 'C' only. Each turn he can choose to do one of the two following actions:\\n\\n * he can either erase exactly one letter 'A' and exactly one letter 'B' from arbitrary places of the string (these letters don't have to be adjacent); \\n * or he can erase exactly one letter 'B' and exactly one letter 'C' from arbitrary places in the string (these letters don't have to be adjacent). \\n\\n\\n\\nTherefore, each turn the length of the string is decreased exactly by 2. All turns are independent so for each turn, Casimir can choose any of two possible actions.\\n\\nFor example, with s = \\\"ABCABC\\\" he can obtain a string s = \\\"ACBC\\\" in one turn (by erasing the first occurrence of 'B' and the second occurrence of 'A'). There are also many other options for a turn aside from this particular example.\\n\\nFor a given string s determine whether there is a sequence of actions leading to an empty string. In other words, Casimir's goal is to erase all letters from the string. Is there a way to do this?\\n\\nInput\\n\\nThe first line contains an integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases.\\n\\nEach test case is described by one string s, for which you need to determine if it can be fully erased by some sequence of turns. The string s consists of capital letters 'A', 'B', 'C' and has a length from 1 to 50 letters, inclusive.\\n\\nOutput\\n\\nPrint t lines, each line containing the answer to the corresponding test case. The answer to a test case should be YES if there is a way to fully erase the corresponding string and NO otherwise.\\n\\nYou may print every letter in any case you want (so, for example, the strings yEs, yes, Yes, and YES will all be recognized as positive answers).\\n\\nExample\\n\\nInput\\n\\n\\n6\\nABACAB\\nABBA\\nAC\\nABC\\nCABCBB\\nBCBCBCBCBCBCBCBC\\n\\n\\nOutput\\n\\n\\nNO\\nYES\\nNO\\nNO\\nYES\\nYES\\nt = i\",\"targets\":\"nt(input())\\nfor l in range(t):\\n s = input()\\n ch = s\\n i = 0\\n a = 0\\n b = 0\\n c = 0\\n j = (len(ch))\\n\\n for i in range (j):\\n if (ch[i]==\\\"A\\\"):\\n a+=1\\n elif (ch[i]==\\\"B\\\"):\\n b+=1\\n elif (ch[i]==\\\"C\\\"):\\n c+=1\\n\\n if (b Example of how you may move the first table.\\n\\nWhat is the minimum distance you should move the first table to free enough space for the second one?\\n\\nInput\\n\\nThe first line contains the single integer t (1 \u2264 t \u2264 5000) \u2014 the number of the test cases.\\n\\nThe first line of each test case contains two integers W and H (1 \u2264 W, H \u2264 10^8) \u2014 the width and the height of the room.\\n\\nThe second line contains four integers x_1, y_1, x_2 and y_2 (0 \u2264 x_1 < x_2 \u2264 W; 0 \u2264 y_1 < y_2 \u2264 H) \u2014 the coordinates of the corners of the first table.\\n\\nThe third line contains two integers w and h (1 \u2264 w \u2264 W; 1 \u2264 h \u2264 H) \u2014 the width and the height of the second table.\\n\\nOutput\\n\\nFor each test case, print the minimum distance you should move the first table, or -1 if there is no way to free enough space for the second table.\\n\\nYour answer will be considered correct if its absolute or relative error doesn't exceed 10^{-6}.\\n\\nExample\\n\\nInput\\n\\n\\n5\\n8 5\\n2 1 7 4\\n4 2\\n5 4\\n2 2 5 4\\n3 3\\n1 8\\n0 3 1 6\\n1 5\\n8 1\\n3 0 6 1\\n5 1\\n8 10\\n4 5 7 8\\n8 5\\n\\n\\nOutput\\n\\n\\n1.000000000\\n-1\\n2.000000000\\n2.000000000\\n0.000000000\\n\\nNote\\n\\nThe configuration of the first test case is shown in the picture. But the movement of the first table is not optimal. One of the optimal movement, for example, is to move the table by (0, -1), so the lower left corner...\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nint32_t main() {\\n ios::sync_with_stdio(0);\\n cin.tie(0);\\n long long t = 1;\\n cin >> t;\\n while (t--) {\\n long long w, h;\\n cin >> w >> h;\\n long long x1, y1, x2, y2;\\n cin >> x1 >> y1 >> x2 >> y2;\\n long long w1 = x2 - x1;\\n long long h1 = y2 - y1;\\n long long w2, h2;\\n cin >> w2 >> h2;\\n if (w1 + w2 > w && h1 + h2 > h) {\\n cout << -1;\\n cout << \\\"\\\\n\\\";\\n continue;\\n }\\n long long ans = 0;\\n if (w1 + w2 <= w && h1 + h2 <= h) {\\n ans = min(min(w2 - x1, w2 - (w - x2)), min(h2 - y1, h2 - (h - y2)));\\n } else {\\n if (w1 + w2 <= w) {\\n ans = min(w2 - x1, w2 - (w - x2));\\n } else if (h1 + h2 <= h) {\\n ans = min(h2 - y1, h2 - (h - y2));\\n }\\n }\\n cout << fixed << setprecision(9) << (double)max(0ll, ans);\\n cout << \\\"\\\\n\\\";\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"On a circle lie 2n distinct points, with the following property: however you choose 3 chords that connect 3 disjoint pairs of points, no point strictly inside the circle belongs to all 3 chords. The points are numbered 1, 2, ..., 2n in clockwise order.\\n\\nInitially, k chords connect k pairs of points, in such a way that all the 2k endpoints of these chords are distinct.\\n\\nYou want to draw n - k additional chords that connect the remaining 2(n - k) points (each point must be an endpoint of exactly one chord).\\n\\nIn the end, let x be the total number of intersections among all n chords. Compute the maximum value that x can attain if you choose the n - k chords optimally.\\n\\nNote that the exact position of the 2n points is not relevant, as long as the property stated in the first paragraph holds.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 100) \u2014 the number of test cases. Then t test cases follow.\\n\\nThe first line of each test case contains two integers n and k (1 \u2264 n \u2264 100, 0 \u2264 k \u2264 n) \u2014 half the number of points and the number of chords initially drawn.\\n\\nThen k lines follow. The i-th of them contains two integers x_i and y_i (1 \u2264 x_i, y_i \u2264 2n, x_i \u2260 y_i) \u2014 the endpoints of the i-th chord. It is guaranteed that the 2k numbers x_1, y_1, x_2, y_2, ..., x_k, y_k are all distinct.\\n\\nOutput\\n\\nFor each test case, output the maximum number of intersections that can be obtained by drawing n - k additional chords.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n4 2\\n8 2\\n1 5\\n1 1\\n2 1\\n2 0\\n10 6\\n14 6\\n2 20\\n9 10\\n13 18\\n15 12\\n11 7\\n\\n\\nOutput\\n\\n\\n4\\n0\\n1\\n14\\n\\nNote\\n\\nIn the first test case, there are three ways to draw the 2 additional chords, shown below (black chords are the ones initially drawn, while red chords are the new ones):\\n\\n\\n\\nWe see that the third way gives the maximum number of intersections, namely 4.\\n\\nIn the second test case, there are no more chords to draw. Of course, with only one chord present there are no intersections.\\n\\nIn the third test case, we can make at most one intersection by drawing chords 1-3 and 2-4, as...\\nUsing java can you solve the prior task?\",\"targets\":\"import java.io.BufferedReader;\\nimport java.io.IOException;\\nimport java.io.InputStreamReader;\\nimport java.util.ArrayList;\\nimport java.util.Arrays;\\nimport java.util.List;\\nimport java.util.Random;\\nimport java.util.StringTokenizer;\\n\\npublic final class C {\\n\\n public static void main(String[] args) {\\n final FastScanner fs = new FastScanner();\\n final int t = fs.nextInt();\\n for (int test = 0; test < t; test++) {\\n final int n = fs.nextInt();\\n final int k = fs.nextInt();\\n final List chords = new ArrayList<>();\\n final boolean[] used = new boolean[2 * n];\\n for (int i = 0; i < k; i++) {\\n int l = fs.nextInt() - 1;\\n int r = fs.nextInt() - 1;\\n if (l > r) {\\n final int temp = l;\\n l = r;\\n r = temp;\\n }\\n chords.add(new int[] { l, r });\\n used[l] = used[r] = true;\\n }\\n final List unused = new ArrayList<>();\\n for (int i = 0; i < used.length; i++) {\\n if (!used[i]) {\\n unused.add(i);\\n }\\n }\\n for (int i = 0; i < n - k; i++) {\\n chords.add(new int[] { unused.get(i), unused.get(i + n - k) });\\n }\\n int res = 0;\\n for (int i = 0; i < chords.size(); i++) {\\n for (int j = i + 1; j < chords.size(); j++) {\\n res += f(chords.get(i), chords.get(j));\\n }\\n }\\n System.out.println(res);\\n }\\n }\\n\\n private static int f(int[] c, int[] d) {\\n if (c[0] > d[0]) {\\n \\/\\/noinspection TailRecursion\\n return f(d, c);\\n }\\n return d[0] < c[1] && c[1] < d[1] ? 1 : 0;\\n }\\n\\n static final class Utils {\\n private static class Shuffler {\\n private static void shuffle(int[] x) {\\n final Random r = new Random();\\n\\n for (int i =...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Phoenix has collected n pieces of gold, and he wants to weigh them together so he can feel rich. The i-th piece of gold has weight w_i. All weights are distinct. He will put his n pieces of gold on a weight scale, one piece at a time. \\n\\nThe scale has an unusual defect: if the total weight on it is exactly x, it will explode. Can he put all n gold pieces onto the scale in some order, without the scale exploding during the process? If so, help him find some possible order. \\n\\nFormally, rearrange the array w so that for each i (1 \u2264 i \u2264 n), \u2211_{j = 1}^{i}w_j \u2260 x.\\n\\nInput\\n\\nThe input consists of multiple test cases. The first line contains an integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases.\\n\\nThe first line of each test case contains two integers n and x (1 \u2264 n \u2264 100; 1 \u2264 x \u2264 10^4) \u2014 the number of gold pieces that Phoenix has and the weight to avoid, respectively. \\n\\nThe second line of each test case contains n space-separated integers (1 \u2264 w_i \u2264 100) \u2014 the weights of the gold pieces. It is guaranteed that the weights are pairwise distinct.\\n\\nOutput\\n\\nFor each test case, if Phoenix cannot place all n pieces without the scale exploding, print NO. Otherwise, print YES followed by the rearranged array w. If there are multiple solutions, print any.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n3 2\\n3 2 1\\n5 3\\n1 2 3 4 8\\n1 5\\n5\\n\\n\\nOutput\\n\\n\\nYES\\n3 2 1\\nYES\\n8 1 2 3 4\\nNO\\n\\nNote\\n\\nIn the first test case, Phoenix puts the gold piece with weight 3 on the scale first, then the piece with weight 2, and finally the piece with weight 1. The total weight on the scale is 3, then 5, then 6. The scale does not explode because the total weight on the scale is never 2.\\n\\nIn the second test case, the total weight on the scale is 8, 9, 11, 14, then 18. It is never 3.\\n\\nIn the third test case, Phoenix must put the gold piece with weight 5 on the scale, and the scale will always explode.\\\":\",\"targets\":\"#include\\nusing namespace std;\\n#define lli long long int\\n#define ulli unsigned long long int\\n#define pi 3.1415926535897932384626\\n#define p_b push_back\\n\\/\\/ numeric_limits::max();\\nlli gcd(lli a, lli b) { if (b == 0) return a; return gcd(b, a % b); }\\nlli lcm(lli a, lli b) {return (a * b) \\/ gcd(a, b);}\\ntemplate \\nT max3(T x, T y, T z) {return (max(max(x, y), z));}\\ntemplate \\nT min3(T x, T y, T z) {return (min(min(x, y), z));}\\n\\nvoid required()\\n{\\n#ifndef ONLINE_JUDGE\\n\\tfreopen(\\\"input.txt\\\", \\\"r\\\", stdin);\\n\\tfreopen(\\\"output.txt\\\", \\\"w\\\", stdout);\\n\\tfreopen(\\\"error.txt\\\", \\\"w\\\", stderr);\\n#endif\\n}\\n\\nvoid solve()\\n{\\n\\tlli n, x, s;\\n\\tcin >> n >> x;\\n\\tqueue q;\\n\\tvector ans;\\n\\tfor (int i = 0; i < n; i++)\\n\\t{\\n\\t\\tcin >> s;\\n\\t\\tq.push(s);\\n\\t}\\n\\tint ct = 0;\\n\\ts = 0;\\n\\twhile (!q.empty() && ct <= q.size())\\n\\t{\\n\\t\\t\\/*if (q.front() == x)\\n\\t\\t{\\n\\t\\t\\tq.push(q.front());\\n\\t\\t\\tq.pop();\\n\\t\\t\\tct++;\\n\\t\\t\\tcontinue;\\n\\t\\t}\\n\\t\\telse*\\/ if ((q.front() + s) == x)\\n\\t\\t{\\n\\t\\t\\tq.push(q.front());\\n\\t\\t\\tq.pop();\\n\\t\\t\\tct++;\\n\\t\\t\\tcontinue;\\n\\t\\t}\\n\\t\\telse\\n\\t\\t{\\n\\t\\t\\tans.push_back(q.front());\\n\\t\\t\\ts += q.front();\\n\\t\\t\\tq.pop();\\n\\t\\t\\tct = 0;\\n\\t\\t}\\n\\t}\\n\\tif (q.empty())\\n\\t{\\n\\t\\tcout << \\\"YES\\\\n\\\";\\n\\t\\tfor (auto e : ans)\\n\\t\\t\\tcout << e << \\\" \\\";\\n\\t\\tcout << endl;\\n\\t}\\n\\telse\\n\\t\\tcout << \\\"NO\\\" << endl;\\n}\\n\\nint main()\\n{\\n\\trequired();\\n\\tint t = 1;\\n\\tcin >> t;\\t\\t\\/\\/comment it for single test case\\n\\twhile (t--)\\n\\t{\\n\\t\\tsolve();\\n\\t}\\n\\treturn 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Authors guessed an array a consisting of n integers; each integer is not less than 2 and not greater than 2 \u22c5 10^5. You don't know the array a, but you know the array b which is formed from it with the following sequence of operations:\\n\\n 1. Firstly, let the array b be equal to the array a; \\n 2. Secondly, for each i from 1 to n: \\n * if a_i is a prime number, then one integer p_{a_i} is appended to array b, where p is an infinite sequence of prime numbers (2, 3, 5, ...); \\n * otherwise (if a_i is not a prime number), the greatest divisor of a_i which is not equal to a_i is appended to b; \\n 3. Then the obtained array of length 2n is shuffled and given to you in the input. \\n\\n\\n\\nHere p_{a_i} means the a_i-th prime number. The first prime p_1 = 2, the second one is p_2 = 3, and so on.\\n\\nYour task is to recover any suitable array a that forms the given array b. It is guaranteed that the answer exists (so the array b is obtained from some suitable array a). If there are multiple answers, you can print any.\\n\\nInput\\n\\nThe first line of the input contains one integer n (1 \u2264 n \u2264 2 \u22c5 10^5) \u2014 the number of elements in a.\\n\\nThe second line of the input contains 2n integers b_1, b_2, ..., b_{2n} (2 \u2264 b_i \u2264 2750131), where b_i is the i-th element of b. 2750131 is the 199999-th prime number.\\n\\nOutput\\n\\nIn the only line of the output print n integers a_1, a_2, ..., a_n (2 \u2264 a_i \u2264 2 \u22c5 10^5) in any order \u2014 the array a from which the array b can be obtained using the sequence of moves given in the problem statement. If there are multiple answers, you can print any.\\n\\nExamples\\n\\nInput\\n\\n\\n3\\n3 5 2 3 2 4\\n\\n\\nOutput\\n\\n\\n3 4 2 \\n\\nInput\\n\\n\\n1\\n2750131 199999\\n\\n\\nOutput\\n\\n\\n199999 \\n\\nInput\\n\\n\\n1\\n3 6\\n\\n\\nOutput\\n\\n\\n6\",\"targets\":\"#include \\nusing namespace std;\\nconst int N = 2750135;\\nconst int mod = 1e9 + 7;\\nint pos[N], pr[N], cnt, a[N], b[N];\\nbool d[N];\\nvector A;\\nint main() {\\n ios_base::sync_with_stdio(0);\\n cin.tie(0);\\n for (int i = 2; i <= 2750131; ++i) {\\n if (!pr[i]) {\\n pos[i] = ++cnt;\\n if (i * 1ll * i <= 2750131) {\\n for (int j = i * i; j <= 2750131; ++j) {\\n if (!pr[j]) pr[j] = i;\\n j += i - 1;\\n }\\n }\\n }\\n }\\n int n;\\n cin >> n;\\n for (int i = 1; i <= 2 * n; ++i) cin >> a[i];\\n sort(a + 1, a + 1 + 2 * n);\\n for (int i = 2 * n; i >= 1; --i) {\\n if (b[a[i]]) {\\n d[i] = 1;\\n --b[a[i]];\\n continue;\\n }\\n if (pr[a[i]]) {\\n d[i] = 1;\\n A.push_back(a[i]);\\n ++b[a[i] \\/ pr[a[i]]];\\n }\\n }\\n for (int i = 2 * n; i >= 1; --i) {\\n if (d[i]) continue;\\n if (b[a[i]]) {\\n --b[a[i]];\\n continue;\\n }\\n A.push_back(pos[a[i]]);\\n ++b[pos[a[i]]];\\n }\\n for (auto to : A) cout << to << ' ';\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"train\",\"template\":\"descsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Drazil is a monkey. He lives in a circular park. There are n trees around the park. The distance between the i-th tree and (i + 1)-st trees is di, the distance between the n-th tree and the first tree is dn. The height of the i-th tree is hi.\\n\\nDrazil starts each day with the morning run. The morning run consists of the following steps:\\n\\n * Drazil chooses two different trees \\n * He starts with climbing up the first tree \\n * Then he climbs down the first tree, runs around the park (in one of two possible directions) to the second tree, and climbs on it \\n * Then he finally climbs down the second tree. \\n\\n\\n\\nBut there are always children playing around some consecutive trees. Drazil can't stand children, so he can't choose the trees close to children. He even can't stay close to those trees.\\n\\nIf the two trees Drazil chooses are x-th and y-th, we can estimate the energy the morning run takes to him as 2(hx + hy) + dist(x, y). Since there are children on exactly one of two arcs connecting x and y, the distance dist(x, y) between trees x and y is uniquely defined.\\n\\nNow, you know that on the i-th day children play between ai-th tree and bi-th tree. More formally, if ai \u2264 bi, children play around the trees with indices from range [ai, bi], otherwise they play around the trees with indices from .\\n\\nPlease help Drazil to determine which two trees he should choose in order to consume the most energy (since he wants to become fit and cool-looking monkey) and report the resulting amount of energy for each day.\\n\\nInput\\n\\nThe first line contains two integer n and m (3 \u2264 n \u2264 105, 1 \u2264 m \u2264 105), denoting number of trees and number of days, respectively. \\n\\nThe second line contains n integers d1, d2, ..., dn (1 \u2264 di \u2264 109), the distances between consecutive trees.\\n\\nThe third line contains n integers h1, h2, ..., hn (1 \u2264 hi \u2264 109), the heights of trees.\\n\\nEach of following m lines contains two integers ai and bi (1 \u2264 ai, bi \u2264 n) describing each new day. There are always at least two different trees Drazil can choose that are...\\nThe above is tricky. Write me a correct solution in JAVA.\",\"targets\":\"import java.io.OutputStream;\\nimport java.io.IOException;\\nimport java.io.InputStream;\\nimport java.io.PrintWriter;\\nimport java.util.StringTokenizer;\\nimport java.io.BufferedReader;\\nimport java.io.FileReader;\\nimport java.io.InputStreamReader;\\nimport java.io.InputStream;\\n\\n\\/**\\n * Built using CHelper plug-in\\n * Actual solution is at the top\\n *\\n * @author OmarYasser\\n *\\/\\npublic class Main {\\n public static void main(String[] args) {\\n InputStream inputStream = System.in;\\n OutputStream outputStream = System.out;\\n Scanner in = new Scanner(inputStream);\\n PrintWriter out = new PrintWriter(outputStream);\\n TaskE solver = new TaskE();\\n solver.solve(1, in, out);\\n out.close();\\n }\\n\\n static class TaskE {\\n static int N;\\n static int M;\\n static long[] D;\\n static long[] H;\\n\\n static long energy(int a, int b) {\\n return 2 * (H[a] + H[b]) + (b == 0 ? 0 : D[b - 1]) - (a == 0 ? 0 : D[a - 1]);\\n }\\n\\n public void solve(int testNumber, Scanner sc, PrintWriter out) {\\n N = sc.nextInt();\\n M = sc.nextInt();\\n D = new long[N * 2];\\n H = new long[N * 2];\\n for (int i = 0; i < N; i++)\\n D[i] = sc.nextInt();\\n for (int i = N; i < N * 2; i++)\\n D[i] = D[i % N];\\n for (int i = 1; i < 2 * N; i++)\\n D[i] += D[i - 1];\\n for (int i = 0; i < N; i++)\\n H[i] = sc.nextInt();\\n for (int i = N; i < N * 2; i++)\\n H[i] = H[i % N];\\n\\n TaskE.SegmentTree st = new TaskE.SegmentTree(N << 1);\\n while (M-- > 0) {\\n int a = sc.nextInt() - 1, b = sc.nextInt() - 1;\\n TaskE.Pair res = st.query(a > b ? b + N + 1 : b + 1, a + N - 1);\\n out.println(energy(res.l, res.r));\\n }\\n }\\n\\n static class Pair {\\n int l;\\n int r;\\n\\n Pair(int ll, int rr) {\\n l = ll;\\n r = rr;\\n ...\",\"language\":\"python\",\"split\":\"train\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"This problem is an extension of the problem \\\"Wonderful Coloring - 1\\\". It has quite many differences, so you should read this statement completely.\\n\\nRecently, Paul and Mary have found a new favorite sequence of integers a_1, a_2, ..., a_n. They want to paint it using pieces of chalk of k colors. The coloring of a sequence is called wonderful if the following conditions are met:\\n\\n 1. each element of the sequence is either painted in one of k colors or isn't painted; \\n 2. each two elements which are painted in the same color are different (i. e. there's no two equal values painted in the same color); \\n 3. let's calculate for each of k colors the number of elements painted in the color \u2014 all calculated numbers must be equal; \\n 4. the total number of painted elements of the sequence is the maximum among all colorings of the sequence which meet the first three conditions. \\n\\n\\n\\nE. g. consider a sequence a=[3, 1, 1, 1, 1, 10, 3, 10, 10, 2] and k=3. One of the wonderful colorings of the sequence is shown in the figure.\\n\\n The example of a wonderful coloring of the sequence a=[3, 1, 1, 1, 1, 10, 3, 10, 10, 2] and k=3. Note that one of the elements isn't painted.\\n\\nHelp Paul and Mary to find a wonderful coloring of a given sequence a.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 10000) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of two lines. The first one contains two integers n and k (1 \u2264 n \u2264 2\u22c510^5, 1 \u2264 k \u2264 n) \u2014 the length of a given sequence and the number of colors, respectively. The second one contains n integers a_1, a_2, ..., a_n (1 \u2264 a_i \u2264 n).\\n\\nIt is guaranteed that the sum of n over all test cases doesn't exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nOutput t lines, each of them must contain a description of a wonderful coloring for the corresponding test case.\\n\\nEach wonderful coloring must be printed as a sequence of n integers c_1, c_2, ..., c_n (0 \u2264 c_i \u2264 k) separated by spaces where\\n\\n * c_i=0, if i-th element isn't painted; \\n * c_i>0, if i-th element is painted in the...\\nfrom\",\"targets\":\"itertools import product\\nfrom math import ceil, gcd, sqrt\\nimport string\\nfrom decimal import Decimal\\n\\n\\ndef binary_table(string_with_all_characters, length_to_make):\\n return [''.join(x) for x in product(string_with_all_characters, repeat=length_to_make)]\\n\\n\\ndef all_possible_substrings(string):\\n return [int(string[i: j]) for i in range(len(string)) for j in range(i + 1, len(string) + 1)]\\n\\n\\ndef number_of_substrings(length):\\n return int(length * (length + 1) \\/ 2)\\n\\n\\nfor enumeration in range(int(input())):\\n temp = {}\\n num_of_elements, num_of_colors = map(int, input().split())\\n array = list(map(int, input().split()))\\n current_color = 1\\n indexes = {}\\n\\n for i in range(len(array)):\\n value = array[i]\\n if temp.get(value) is None:\\n temp[value] = 1\\n else:\\n temp[value] += 1\\n\\n if indexes.get(value) is None:\\n indexes[value] = [i]\\n else:\\n indexes[value].append(i)\\n\\n if temp[value] > num_of_colors:\\n array[i] = 0\\n indexes[value].remove(i)\\n temp[value] -= 1\\n length_value = len([x for x in array if x > 0])\\n num = 0\\n #print(indexes)\\n while length_value % num_of_colors:\\n if array[num] != 0:\\n indexes[array[num]].remove(num)\\n array[num] = 0\\n length_value -= 1\\n num += 1\\n #print(temp)\\n #print(array)\\n build = array[::]\\n #print(indexes)\\n for i in temp:\\n possible_index = indexes[i]\\n #print(i, possible_index)\\n for j in possible_index:\\n #print(j, current_color)\\n build[j] = current_color\\n current_color += 1\\n if current_color > num_of_colors:\\n current_color = 1\\n #print(array)\\n print(*build)\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"contsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"PYTHON3 solution for \\\"\\n\\nWilliam has a favorite bracket sequence. Since his favorite sequence is quite big he provided it to you as a sequence of positive integers c_1, c_2, ..., c_n where c_i is the number of consecutive brackets \\\"(\\\" if i is an odd number or the number of consecutive brackets \\\")\\\" if i is an even number.\\n\\nFor example for a bracket sequence \\\"((())()))\\\" a corresponding sequence of numbers is [3, 2, 1, 3].\\n\\nYou need to find the total number of continuous subsequences (subsegments) [l, r] (l \u2264 r) of the original bracket sequence, which are regular bracket sequences.\\n\\nA bracket sequence is called regular if it is possible to obtain correct arithmetic expression by inserting characters \\\"+\\\" and \\\"1\\\" into this sequence. For example, sequences \\\"(())()\\\", \\\"()\\\" and \\\"(()(()))\\\" are regular, while \\\")(\\\", \\\"(()\\\" and \\\"(()))(\\\" are not.\\n\\nInput\\n\\nThe first line contains a single integer n (1 \u2264 n \u2264 1000), the size of the compressed sequence.\\n\\nThe second line contains a sequence of integers c_1, c_2, ..., c_n (1 \u2264 c_i \u2264 10^9), the compressed sequence.\\n\\nOutput\\n\\nOutput a single integer \u2014 the total number of subsegments of the original bracket sequence, which are regular bracket sequences.\\n\\nIt can be proved that the answer fits in the signed 64-bit integer data type.\\n\\nExamples\\n\\nInput\\n\\n\\n5\\n4 1 2 3 1\\n\\n\\nOutput\\n\\n\\n5\\n\\n\\nInput\\n\\n\\n6\\n1 3 2 1 2 4\\n\\n\\nOutput\\n\\n\\n6\\n\\n\\nInput\\n\\n\\n6\\n1 1 1 1 2 2\\n\\n\\nOutput\\n\\n\\n7\\n\\nNote\\n\\nIn the first example a sequence (((()(()))( is described. This bracket sequence contains 5 subsegments which form regular bracket sequences:\\n\\n 1. Subsequence from the 3rd to 10th character: (()(()))\\n 2. Subsequence from the 4th to 5th character: ()\\n 3. Subsequence from the 4th to 9th character: ()(())\\n 4. Subsequence from the 6th to 9th character: (())\\n 5. Subsequence from the 7th to 8th character: ()\\n\\n\\n\\nIn the second example a sequence ()))(()(()))) is described.\\n\\nIn the third example a sequence ()()(()) is described.\\\":\",\"targets\":\"# ------------------- fast io --------------------\\nimport os\\nimport sys\\nfrom io import BytesIO, IOBase\\n\\nBUFSIZE = 8192\\n\\n\\nclass FastIO(IOBase):\\n newlines = 0\\n \\n def __init__(self, file):\\n self._fd = file.fileno()\\n self.buffer = BytesIO()\\n self.writable = \\\"x\\\" in file.mode or \\\"r\\\" not in file.mode\\n self.write = self.buffer.write if self.writable else None\\n \\n def read(self):\\n while True:\\n b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))\\n if not b:\\n break\\n ptr = self.buffer.tell()\\n self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)\\n self.newlines = 0\\n return self.buffer.read()\\n \\n def readline(self):\\n while self.newlines == 0:\\n b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))\\n self.newlines = b.count(b\\\"\\\\n\\\") + (not b)\\n ptr = self.buffer.tell()\\n self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)\\n self.newlines -= 1\\n return self.buffer.readline()\\n \\n def flush(self):\\n if self.writable:\\n os.write(self._fd, self.buffer.getvalue())\\n self.buffer.truncate(0), self.buffer.seek(0)\\n\\n\\nclass IOWrapper(IOBase):\\n def __init__(self, file):\\n self.buffer = FastIO(file)\\n self.flush = self.buffer.flush\\n self.writable = self.buffer.writable\\n self.write = lambda s: self.buffer.write(s.encode(\\\"ascii\\\"))\\n self.read = lambda: self.buffer.read().decode(\\\"ascii\\\")\\n self.readline = lambda: self.buffer.readline().decode(\\\"ascii\\\")\\n\\n\\nsys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)\\ninput = lambda: sys.stdin.readline().rstrip(\\\"\\\\r\\\\n\\\")\\n\\n# ------------------- fast io --------------------\\nfrom math import ceil\\n\\n\\ndef prod(a, mod=10 ** 9 + 7):\\n ans = 1\\n for each in a:\\n ans = (ans * each) % mod\\n return ans\\n\\n\\ndef gcd(x, y):\\n while y:\\n x, y = y, x % y\\n return x\\n\\n\\ndef lcm(a, b):...\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Alice and Borys are playing tennis.\\n\\nA tennis match consists of games. In each game, one of the players is serving and the other one is receiving.\\n\\nPlayers serve in turns: after a game where Alice is serving follows a game where Borys is serving, and vice versa.\\n\\nEach game ends with a victory of one of the players. If a game is won by the serving player, it's said that this player holds serve. If a game is won by the receiving player, it's said that this player breaks serve.\\n\\nIt is known that Alice won a games and Borys won b games during the match. It is unknown who served first and who won which games.\\n\\nFind all values of k such that exactly k breaks could happen during the match between Alice and Borys in total.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10^3). Description of the test cases follows.\\n\\nEach of the next t lines describes one test case and contains two integers a and b (0 \u2264 a, b \u2264 10^5; a + b > 0) \u2014 the number of games won by Alice and Borys, respectively.\\n\\nIt is guaranteed that the sum of a + b over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case print two lines.\\n\\nIn the first line, print a single integer m (1 \u2264 m \u2264 a + b + 1) \u2014 the number of values of k such that exactly k breaks could happen during the match.\\n\\nIn the second line, print m distinct integers k_1, k_2, \u2026, k_m (0 \u2264 k_1 < k_2 < \u2026 < k_m \u2264 a + b) \u2014 the sought values of k in increasing order.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n2 1\\n1 1\\n0 5\\n\\n\\nOutput\\n\\n\\n4\\n0 1 2 3\\n2\\n0 2\\n2\\n2 3\\n\\nNote\\n\\nIn the first test case, any number of breaks between 0 and 3 could happen during the match: \\n\\n * Alice holds serve, Borys holds serve, Alice holds serve: 0 breaks; \\n * Borys holds serve, Alice holds serve, Alice breaks serve: 1 break; \\n * Borys breaks serve, Alice breaks serve, Alice holds serve: 2 breaks; \\n * Alice breaks serve, Borys breaks serve, Alice breaks serve: 3 breaks. \\n\\n\\n\\nIn the second test case, the players could either both hold serves (0 breaks) or both break serves (2...\\nThe above is tricky. Write me a correct solution in JAVA.\",\"targets\":\"import java.util.*;\\n\\npublic class A {\\n\\t\\n\\tpublic static void main(String[] args) {\\n\\t\\tScanner scan=new Scanner(System.in);\\n\\t\\tint T=scan.nextInt();\\n\\t\\t\\n\\t\\t\\n\\t\\twhile (T-->0) {\\n\\t\\t\\tint a=scan.nextInt(),b=scan.nextInt();\\n\\t\\t\\tHashSet set=helper(a, a+b);\\n\\t\\t\\tset.addAll(helper(b, a+b));\\n\\t\\t\\tSystem.out.println(set.size());\\n\\t\\t\\tArrayList ls=new ArrayList(set);\\n\\t\\t\\tCollections.sort(ls);\\n\\t\\t\\tfor(int i:ls) {\\n\\t\\t\\t\\tSystem.out.print(i+\\\" \\\");\\n\\t\\t\\t}System.out.println();\\n\\t\\t\\t\\n\\t\\t}\\n\\t\\tscan.close();\\n\\t}\\n\\tprivate static HashSet helper(int win,int total) {\\n\\t\\tHashSet arr=new HashSet();\\n\\t\\tint ehalf=total\\/2;\\n\\t\\tint ohalf=(int)Math.ceil(total\\/2.0);\\n\\t\\tint lose=total-win;\\n\\t\\t\\n\\/\\/\\t\\tSystem.out.println(\\\"win=\\\"+win+\\\" lo=\\\"+lose);\\/\\/\\/\\/\\n\\/\\/\\t\\tSystem.out.println(\\\"eh=\\\"+ehalf+\\\" oh=\\\"+ohalf);\\/\\/\\/\\/\\/\\n\\t\\t\\n\\t\\t\\n\\t\\tfor(int i=Math.max(0, win-ohalf);i<=Math.min(win, ehalf);i++) {\\n\\/\\/\\t\\t\\tSystem.out.println(\\\"----i~\\\"+i+\\\" l~\\\"+(lose-(ehalf-i)));\\/\\/\\/\\/\\/\\n\\t\\t\\tarr.add(i+(lose-(ehalf-i)));\\n\\t\\t}\\n\\t\\treturn arr;\\n\\t\\t\\n\\t}\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point x(x > 0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.\\n\\nInput\\n\\nThe first line of the input contains an integer x (1 \u2264 x \u2264 1 000 000) \u2014 The coordinate of the friend's house.\\n\\nOutput\\n\\nPrint the minimum number of steps that elephant needs to make to get from point 0 to point x.\\n\\nExamples\\n\\nInput\\n\\n5\\n\\n\\nOutput\\n\\n1\\n\\n\\nInput\\n\\n12\\n\\n\\nOutput\\n\\n3\\n\\nNote\\n\\nIn the first sample the elephant needs to make one step of length 5 to reach the point x.\\n\\nIn the second sample the elephant can get to point x if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach x in less than three moves.\\nUsing python3 can you solve the prior task?\",\"targets\":\"n = int(input())\\n\\na = 0\\n\\na = int(n\\/5)\\n\\nif(n%5!=0):\\n a+=1\\n\\nprint (a)\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Given n, find any array a_1, a_2, \u2026, a_n of integers such that all of the following conditions hold: \\n\\n * 1 \u2264 a_i \u2264 10^9 for every i from 1 to n.\\n\\n * a_1 < a_2 < \u2026 1):\\n\\t\\t\\t\\tt = 0\\n\\t\\telse:\\n\\t\\t\\tprint(-1)\\n\\t\\t\\tt = 0\\n\\t\\tif t != 0:\\n\\t\\t\\tfor i in range(50):\\n\\t\\t\\t\\tif (b[i] > 0):\\n\\t\\t\\t\\t\\ta.append(i)\\n\\ta = list(set(a))\\n\\tans = 0\\n\\tfor i in a:\\n\\t\\tans += pow(n, i, N)\\n\\tprint(ans % N)\",\"language\":\"python\",\"split\":\"test\",\"template\":\"abovesol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in PYTHON3?\\nThis is a simplified version of the problem B2. Perhaps you should read the problem B2 before you start solving B1.\\n\\nPaul and Mary have a favorite string s which consists of lowercase letters of the Latin alphabet. They want to paint it using pieces of chalk of two colors: red and green. Let's call a coloring of a string wonderful if the following conditions are met:\\n\\n 1. each letter of the string is either painted in exactly one color (red or green) or isn't painted; \\n 2. each two letters which are painted in the same color are different; \\n 3. the number of letters painted in red is equal to the number of letters painted in green; \\n 4. the number of painted letters of this coloring is maximum among all colorings of the string which meet the first three conditions. \\n\\n\\n\\nE. g. consider a string s equal to \\\"kzaaa\\\". One of the wonderful colorings of the string is shown in the figure.\\n\\n The example of a wonderful coloring of the string \\\"kzaaa\\\".\\n\\nPaul and Mary want to learn by themselves how to find a wonderful coloring of the string. But they are very young, so they need a hint. Help them find k \u2014 the number of red (or green, these numbers are equal) letters in a wonderful coloring.\\n\\nInput\\n\\nThe first line contains one integer t (1 \u2264 t \u2264 1000) \u2014 the number of test cases. Then t test cases follow.\\n\\nEach test case consists of one non-empty string s which consists of lowercase letters of the Latin alphabet. The number of characters in the string doesn't exceed 50.\\n\\nOutput\\n\\nFor each test case, output a separate line containing one non-negative integer k \u2014 the number of letters which will be painted in red in a wonderful coloring.\\n\\nExample\\n\\nInput\\n\\n\\n5\\nkzaaa\\ncodeforces\\narchive\\ny\\nxxxxxx\\n\\n\\nOutput\\n\\n\\n2\\n5\\n3\\n0\\n1\\n\\nNote\\n\\nThe first test case contains the string from the statement. One of the wonderful colorings is shown in the figure. There's no wonderful coloring containing 3 or more red letters because the total number of painted symbols will exceed the string's length.\\n\\nThe string from the second test case can be...\",\"targets\":\"def sol():\\n s = input()\\n\\n n = len(s)\\n cnt = [0] * 26\\n\\n for i in range(n):\\n cnt[ord(s[i]) - 97] += 1\\n\\n c1 = 0\\n c2 = 0\\n\\n for i in range(26):\\n c1 += (cnt[i] == 1)\\n c2 += (cnt[i] > 1)\\n\\n print(c2 + c1 \\/\\/ 2)\\n\\nt = int(input())\\n\\nfor i in range(t):\\n sol()\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"CPP solution for \\\"Berland State University has received a new update for the operating system. Initially it is installed only on the 1-st computer.\\n\\nUpdate files should be copied to all n computers. The computers are not connected to the internet, so the only way to transfer update files from one computer to another is to copy them using a patch cable (a cable connecting two computers directly). Only one patch cable can be connected to a computer at a time. Thus, from any computer where the update files are installed, they can be copied to some other computer in exactly one hour.\\n\\nYour task is to find the minimum number of hours required to copy the update files to all n computers if there are only k patch cables in Berland State University.\\n\\nInput\\n\\nThe first line contains a single integer t (1 \u2264 t \u2264 10^5) \u2014 the number of test cases.\\n\\nEach test case consists of a single line that contains two integers n and k (1 \u2264 k \u2264 n \u2264 10^{18}) \u2014 the number of computers and the number of patch cables.\\n\\nOutput\\n\\nFor each test case print one integer \u2014 the minimum number of hours required to copy the update files to all n computers.\\n\\nExample\\n\\nInput\\n\\n\\n4\\n8 3\\n6 6\\n7 1\\n1 1\\n\\n\\nOutput\\n\\n\\n4\\n3\\n6\\n0\\n\\nNote\\n\\nLet's consider the test cases of the example:\\n\\n * n=8, k=3: \\n 1. during the first hour, we copy the update files from the computer 1 to the computer 2; \\n 2. during the second hour, we copy the update files from the computer 1 to the computer 3, and from the computer 2 to the computer 4; \\n 3. during the third hour, we copy the update files from the computer 1 to the computer 5, from the computer 2 to the computer 6, and from the computer 3 to the computer 7; \\n 4. during the fourth hour, we copy the update files from the computer 2 to the computer 8. \\n * n=6, k=6: \\n 1. during the first hour, we copy the update files from the computer 1 to the computer 2; \\n 2. during the second hour, we copy the update files from the computer 1 to the computer 3, and from the computer 2 to the computer 4; \\n 3. during the third hour, we copy the update...\\\":\",\"targets\":\"#include \\n#pragma GCC optimize(\\\"Ofast\\\")\\n#pragma GCC target(\\\"avx,avx2,fma\\\")\\nusing namespace std;\\ntemplate \\nistream &operator>>(istream &in, vector &arr) {\\n long long n = arr.size();\\n for (long long(i) = (0); (i) < (n); ++(i)) {\\n in >> arr[i];\\n }\\n return in;\\n}\\ntemplate \\nostream &operator<<(ostream &in, vector &arr) {\\n for (auto &x : arr) in << x << \\\" \\\";\\n return in;\\n}\\ntemplate \\nostream &operator<<(ostream &in, pair &p) {\\n in << p.first << \\\" \\\" << p.second << \\\" \\\";\\n return in;\\n}\\ntemplate \\nistream &operator>>(istream &in, pair &p) {\\n in >> p.first >> p.second;\\n return in;\\n}\\nlong long i, j, k, l, x, y, z, m, n, a, b, c, r, d, t = 1, ans;\\nstring second;\\ntemplate \\nA max(A a, B b) {\\n return (a > b) ? a : b;\\n}\\ntemplate \\nA min(A a, B b) {\\n return (a < b) ? a : b;\\n}\\nint modpow(long long a, long long b, int m = 1000000007) {\\n long long res = 1;\\n a %= m;\\n if (a == 0) return a;\\n while (b > 0) {\\n if (b & 1) res = (res * a) % m;\\n a *= a;\\n a %= m;\\n b >>= 1;\\n }\\n return res;\\n}\\nvoid solve(int tc) {\\n cin >> n >> k;\\n ans = 0;\\n long long curr = 1;\\n while (curr < n && curr <= k) {\\n ans++;\\n curr <<= 1;\\n }\\n n -= curr;\\n if (n <= 0) return void(cout << (ans) << \\\"\\\\n\\\");\\n ans += (n + k - 1) \\/ k;\\n cout << (ans) << \\\"\\\\n\\\";\\n}\\nint main() {\\n ios_base::sync_with_stdio(false);\\n cin.tie(NULL);\\n cout.tie(NULL);\\n ;\\n int k = 1;\\n cin >> t;\\n while (t--) solve(k++);\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"test\",\"template\":\"solfor\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Can you solve the below in CPP?\\nGregor is learning about RSA cryptography, and although he doesn't understand how RSA works, he is now fascinated with prime numbers and factoring them.\\n\\nGregor's favorite prime number is P. Gregor wants to find two bases of P. Formally, Gregor is looking for two integers a and b which satisfy both of the following properties.\\n\\n * P mod a = P mod b, where x mod y denotes the remainder when x is divided by y, and \\n * 2 \u2264 a < b \u2264 P. \\n\\n\\n\\nHelp Gregor find two bases of his favorite prime number!\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 1000).\\n\\nEach subsequent line contains the integer P (5 \u2264 P \u2264 {10}^9), with P guaranteed to be prime.\\n\\nOutput\\n\\nYour output should consist of t lines. Each line should consist of two integers a and b (2 \u2264 a < b \u2264 P). If there are multiple possible solutions, print any.\\n\\nExample\\n\\nInput\\n\\n\\n2\\n17\\n5\\n\\n\\nOutput\\n\\n\\n3 5\\n2 4\\n\\nNote\\n\\nThe first query is P=17. a=3 and b=5 are valid bases in this case, because 17 mod 3 = 17 mod 5 = 2. There are other pairs which work as well.\\n\\nIn the second query, with P=5, the only solution is a=2 and b=4.\",\"targets\":\"#include \\nusing namespace std;\\nint main() {\\n int m;\\n cin >> m;\\n while (m--) {\\n int n;\\n cin >> n;\\n cout << 2 << ' ' << n - 1 << endl;\\n }\\n return 0;\\n}\",\"language\":\"python\",\"split\":\"valid\",\"template\":\"langsol\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Amr has got a large array of size n. Amr doesn't like large arrays so he intends to make it smaller.\\n\\nAmr doesn't care about anything in the array except the beauty of it. The beauty of the array is defined to be the maximum number of times that some number occurs in this array. He wants to choose the smallest subsegment of this array such that the beauty of it will be the same as the original array.\\n\\nHelp Amr by choosing the smallest subsegment possible.\\n\\nInput\\n\\nThe first line contains one number n (1 \u2264 n \u2264 105), the size of the array.\\n\\nThe second line contains n integers ai (1 \u2264 ai \u2264 106), representing elements of the array.\\n\\nOutput\\n\\nOutput two integers l, r (1 \u2264 l \u2264 r \u2264 n), the beginning and the end of the subsegment chosen respectively.\\n\\nIf there are several possible answers you may output any of them. \\n\\nExamples\\n\\nInput\\n\\n5\\n1 1 2 2 1\\n\\n\\nOutput\\n\\n1 5\\n\\nInput\\n\\n5\\n1 2 2 3 1\\n\\n\\nOutput\\n\\n2 3\\n\\nInput\\n\\n6\\n1 2 2 1 1 2\\n\\n\\nOutput\\n\\n1 5\\n\\nNote\\n\\nA subsegment B of an array A from l to r is an array of size r - l + 1 where Bi = Al + i - 1 for all 1 \u2264 i \u2264 r - l + 1\\nUsing python3 can you solve the prior task?\",\"targets\":\"def solve():\\n d1 = {}\\n d2 = {}\\n input()\\n l = list(map(int,input().split()))\\n for idx, i in enumerate(l):\\n #print(idx, i)\\n if i not in d1:\\n d1[i] = [1,idx,idx]\\n else:\\n d1[i][0]+=1\\n d1[i][2]=idx\\n\\n for k,v in d1.items():\\n if v[0] in d2:\\n d2[v[0]].append(k)\\n else:\\n d2[v[0]] = [k]\\n\\n sd2 = sorted(d2.items(), reverse=True)\\n # print(d1)\\n # print(d2)\\n # print(sd2)\\n\\n\\n v = sd2[0][1]\\n\\n if len(v) == 1:\\n print(d1[v[0]][1] + 1, d1[v[0]][2] + 1)\\n else:\\n shortestDistance = 10**5\\n leftIndex = -1\\n rightIndex = -1\\n for elem in v:\\n if d1[elem][2] - d1[elem][1] < shortestDistance:\\n shortestDistance = d1[elem][2] - d1[elem][1]\\n leftIndex = d1[elem][1]\\n rightIndex = d1[elem][2]\\n print(leftIndex + 1, rightIndex + 1)\\n\\n\\n\\n\\nsolve()\",\"language\":\"python\",\"split\":\"train\",\"template\":\"priortask\",\"dataset\":\"teven\\/code_contests\",\"config\":null}\n" "{\"inputs\":\"Alice and Borys are playing tennis.\\n\\nA tennis match consists of games. In each game, one of the players is serving and the other one is receiving.\\n\\nPlayers serve in turns: after a game where Alice is serving follows a game where Borys is serving, and vice versa.\\n\\nEach game ends with a victory of one of the players. If a game is won by the serving player, it's said that this player holds serve. If a game is won by the receiving player, it's said that this player breaks serve.\\n\\nIt is known that Alice won a games and Borys won b games during the match. It is unknown who served first and who won which games.\\n\\nFind all values of k such that exactly k breaks could happen during the match between Alice and Borys in total.\\n\\nInput\\n\\nEach test contains multiple test cases. The first line contains the number of test cases t (1 \u2264 t \u2264 10^3). Description of the test cases follows.\\n\\nEach of the next t lines describes one test case and contains two integers a and b (0 \u2264 a, b \u2264 10^5; a + b > 0) \u2014 the number of games won by Alice and Borys, respectively.\\n\\nIt is guaranteed that the sum of a + b over all test cases does not exceed 2 \u22c5 10^5.\\n\\nOutput\\n\\nFor each test case print two lines.\\n\\nIn the first line, print a single integer m (1 \u2264 m \u2264 a + b + 1) \u2014 the number of values of k such that exactly k breaks could happen during the match.\\n\\nIn the second line, print m distinct integers k_1, k_2, \u2026, k_m (0 \u2264 k_1 < k_2 < \u2026 < k_m \u2264 a + b) \u2014 the sought values of k in increasing order.\\n\\nExample\\n\\nInput\\n\\n\\n3\\n2 1\\n1 1\\n0 5\\n\\n\\nOutput\\n\\n\\n4\\n0 1 2 3\\n2\\n0 2\\n2\\n2 3\\n\\nNote\\n\\nIn the first test case, any number of breaks between 0 and 3 could happen during the match: \\n\\n * Alice holds serve, Borys holds serve, Alice holds serve: 0 breaks; \\n * Borys holds serve, Alice holds serve, Alice breaks serve: 1 break; \\n * Borys breaks serve, Alice breaks serve, Alice holds serve: 2 breaks; \\n * Alice breaks serve, Borys breaks serve, Alice breaks serve: 3 breaks. \\n\\n\\n\\nIn the second test case, the players could either both hold serves (0 breaks) or both break serves (2...\\nUsing cpp can you solve the prior task?\",\"targets\":\"#include \\nusing namespace std;\\nconst int OO = 1e9;\\nconst double EPS = 1e-9;\\ntemplate \\nvoid _db(const char* dbStr, T e) {\\n cout << dbStr << \\\" = \\\" << e << endl;\\n}\\ntemplate \\nvoid _db(const char* dbStr, T e, L... r) {\\n while (*dbStr != ',') cout << *dbStr++;\\n cout << \\\" = \\\" << e << ',';\\n _db(dbStr + 1, r...);\\n}\\ntemplate \\nostream& operator<<(ostream& o, const map& v) {\\n o << \\\"[\\\";\\n int i = 0;\\n for (const pair& pr : v)\\n o << (!i++ ? \\\"\\\" : \\\", \\\") << \\\"{\\\" << pr.first << \\\" : \\\" << pr.second << \\\"}\\\";\\n return o << \\\"]\\\";\\n}\\ntemplate