"{\"inputs\":\"# Just read and run this cell.\\n\\naditya_height_m = 1.21\\nbotan_height_m = 1.85\\naverage_adult_human_height_m = 1.688\\n\\n# The biggest distance from the average human height, among the two heights:\\nbiggest_distance_m = max(abs(aditya_height_m - average_adult_human_height_m), abs(botan_height_m - average_adult_human_height_m))\\n\\n# Print out our results in a nice readable format:\\nprint(\\\"The biggest distance from the average height among these two people is\\\", biggest_distance_m, \\\"meters.\\\")\\nGiven the above code, generate some markdown instructions for it.\\n\",\"targets\":\"\\n5.1. More nesting\\nNow say that we want to compute the most unusual height among Aditya's and Botan's heights. We'll use the function max, which (again) takes two numbers as arguments and returns the larger of the two arguments. Combining that with the abs function, we can compute the biggest distance from the average among the two heights:\",\"language\":\"jupyter-notebook\",\"split\":\"train\",\"template\":\"genmarkdown\",\"dataset\":\"codeparrot\\/github-jupyter-text-code-pairs\",\"config\":null}\n" "{\"inputs\":\"\\\"DV360 Automation: codelab\\nAuthor: Matt Lynam\\n\\nObjective\\nEnable Display & Video 360 (DV360) advertisers to increase workflow efficiency by utilising the right automation solution according to their needs, resources and technical capability.\\nGoals\\n* Provide an overview of the current automation suite available in DV360\\n* Demonstrate the capabilities and limitations of DV360's UI and APIs\\n* Explore common advertiser use cases and pitfalls\\n* Acquire hands-on experience by applying key concepts using a fictional case study\\n0) Setup and authentication\\nGoogle Colab primer\\nGoogle Colaboratory, or \\\"Colab\\\" for short, allows you to write and execute Python in your browser, with:\\n- Zero configuration required\\n- Free access to GPUs\\n- Easy sharing & colaboration \\nA notebook is a list of cells, containing either explanatory text or executable code and its output. This is a text cell. \\nUseful Colab tips\\n* Double-click within the cell to edit\\n* Code cells can be executed by clicking the Play icon in the left gutter of the cell; or with Cmd\\/Ctrl + Enter to run the cell in place;\\n* Use Cmd\\/Ctrl + \\/ to comment out a line of code\\n0.1 Install Python client libraries\\nRun the following block to install the latest Google Python Client Library and import additional libraries used for this workshop.\\\"\\nPlease write code following the instructions in jupyter notebook style.\\n\",\"targets\":\"\\n!pip install google-api-python-client\\n!pip install google-cloud-vision\\n\\nimport csv\\nimport datetime\\nimport io\\nimport json\\nimport pprint\\n\\nfrom google.api_core import retry\\nfrom google.cloud import vision\\nfrom google.colab import files\\nfrom google_auth_oauthlib.flow import InstalledAppFlow\\nfrom googleapiclient import discovery\\nfrom googleapiclient import http\\nimport pandas as pd\\nimport requests\\n\\nprint('Successfully imported Python libraries!')\",\"language\":\"jupyter-notebook\",\"split\":\"train\",\"template\":\"code\",\"dataset\":\"codeparrot\\/github-jupyter-text-code-pairs\",\"config\":null}\n" "{\"inputs\":\"Adding spin echoes\\nDynamical decoupling applies a series of spin echoes to otherwise idle qubits to reduce decoherent effects. As mentioned above, spin echoes were used as an effective error mitigation technique in Information Scrambling in Computationally Complex Quantum Circuits, and the performance of any circuit with idle qubits can potentially be improved by adding spin echoes.\\nThe following codeblock shows how to insert spin echoes on the ancilla qubit.\\n\",\"targets\":\"# Gates for spin echoes. Note that these gates are self-inverse.\\npi_pulses = [\\n cirq.PhasedXPowGate(phase_exponent=p, exponent=1.0) for p in (-0.5, 0.0, 0.5, 1.0)\\n]\\n\\n# Generate spin echoes on ancilla.\\nnum_echoes = 3\\nrandom_state = np.random.RandomState(1)\\n\\nspin_echo = []\\nfor _ in range(num_echoes):\\n op = random_state.choice(pi_pulses).on(qubits[0])\\n spin_echo += [op, cirq.inverse(op)]\\n\\n# Insert spin echo operations to circuit.\\noptimized_circuit_with_spin_echoes = circuit.copy()\\noptimized_circuit_with_spin_echoes.insert(5, spin_echo)\\n\\n# Align single-qubit spin echo gates into other moments of single-qubit gates.\\noptimized_circuit_with_spin_echoes = cirq.stratified_circuit(\\n optimized_circuit_with_spin_echoes, \\n categories=[lambda op : len(op.qubits) == 1, lambda op : len(op.qubits) == 2]\\n)\\noptimized_circuit_with_spin_echoes\",\"language\":\"jupyter-notebook\",\"split\":\"train\",\"template\":\"markdowncode\",\"dataset\":\"codeparrot\\/github-jupyter-text-code-pairs\",\"config\":null}\n" "{\"inputs\":\"\\\"... now we're on the status page, get the page source and parse it with BeautifulSoup\\\"\\nPlease write code following the instructions in jupyter notebook style.\\n\",\"targets\":\"\\npageSrc = browser.page_source\\npageSoup = Soup(pageSrc, 'lxml')\",\"language\":\"jupyter-notebook\",\"split\":\"train\",\"template\":\"code\",\"dataset\":\"codeparrot\\/github-jupyter-text-code-pairs\",\"config\":null}\n" "{\"inputs\":\"15.4. Density\\nIs Required: TRUE    Type: ENUM    Cardinality: 1.1\\nDescription of the treatment of snow density\\n\",\"targets\":\"# PROPERTY ID - DO NOT EDIT ! \\nDOC.set_id('cmip6.land.snow.density') \\n\\n# PROPERTY VALUE: \\n# Set as follows: DOC.set_value(\\\"value\\\") \\n# Valid Choices: \\n# \\\"prognostic\\\" \\n# \\\"constant\\\" \\n# \\\"Other: [Please specify]\\\" \\nDOC.set_value(\\\"constant\\\")\",\"language\":\"jupyter-notebook\",\"split\":\"train\",\"template\":\"markdowncode\",\"dataset\":\"codeparrot\\/github-jupyter-text-code-pairs\",\"config\":null}\n" "{\"inputs\":\"Análogamente podemos establecer los filtros usados en print_stats:\\n\",\"targets\":\"p_rcf_stats.strip_dirs().sort_stats(\\\"cumulative\\\").print_callers(10)\\n\\np_rcf_stats.strip_dirs().sort_stats(\\\"cumulative\\\").print_callees(\\\"Rcf|lambda\\\")\",\"language\":\"jupyter-notebook\",\"split\":\"train\",\"template\":\"markdowncode\",\"dataset\":\"codeparrot\\/github-jupyter-text-code-pairs\",\"config\":null}\n" "{\"inputs\":\"\\\"
\\n\\n