File size: 1,895 Bytes
a8bfde5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f70239
a8bfde5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: gpl-3.0
task_categories:
- text-generation
language:
- ar
pretty_name: Arabic Books
size_categories:
- 1K<n<10K
tags:
  - arabic
  - ocr
  - books
  - text-extraction
  - language-modeling
  - vision-transformers
---

# Arabic Books

## Dataset Summary

The `arabic-books` dataset contains **8,500 rows of text**, each representing the full text of a single Arabic book. These texts were extracted using the [arabic-large-nougat](https://huggingface.co/MohamedRashad/arabic-large-nougat) model, showcasing the model’s capabilities in Arabic OCR and text extraction. The dataset spans a total of **1.1 billion tokens**, calculated using the GPT-4 tokenizer.

This dataset is a **testimony to the quality** of the Arabic Nougat models and their effectiveness in extracting structured text from complex Arabic documents.

## Research Context

The dataset is part of the **Arabic Nougat** research project and supports the findings of the research paper:  
**[Arabic-Nougat: Fine-Tuning Vision Transformers for Arabic OCR and Markdown Extraction](https://huggingface.co/papers/2411.17835)**.

## Purpose

This dataset is intended to:
- Demonstrate the performance of Arabic Nougat models.
- Serve as a resource for developing **Arabic language models** and advancing research in **Arabic NLP**.

## Licensing

This dataset is released under the **GPL-3.0 License**, enabling its open-source availability for further research and development.

## Citation

If you use this dataset, please cite the corresponding research paper:
```bibtex
@misc{rashad2024arabicnougatfinetuningvisiontransformers,
      title={Arabic-Nougat: Fine-Tuning Vision Transformers for Arabic OCR and Markdown Extraction}, 
      author={Mohamed Rashad},
      year={2024},
      eprint={2411.17835},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.17835}, 
}
```