dnaihao commited on
Commit
d00c6c5
·
1 Parent(s): 8ca3f9f

Added data processing file as well as the info

Browse files
Files changed (2) hide show
  1. dataset_info.json +1652 -0
  2. tid8.py +528 -0
dataset_info.json ADDED
@@ -0,0 +1,1652 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "commitmentbank-ann": {
3
+ "builder_name": "tid8",
4
+ "citation": "@inproceedings{de2019commitmentbank,\n title={The commitmentbank: Investigating projection in naturally occurring discourse},\n author={De Marneffe, Marie-Catherine and Simons, Mandy and Tonhauser, Judith},\n booktitle={proceedings of Sinn und Bedeutung},\n volume={23},\n number={2},\n pages={107--124},\n year={2019}\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
5
+ "config_name": "commitmentbank-ann",
6
+ "dataset_name": "tid8",
7
+ "dataset_size": 10507109,
8
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nCommitmentBank (De Marneffe et al.,\n2019) is an NLI dataset. It contains naturally oc-\ncurring discourses whose final sentence contains\na clause-embedding predicate under an entailment\ncanceling operator (question, modal, negation, an-\ntecedent of conditional).\nAnnotation Split:\nWe split the annotations for each annotator into train and test set.\n\nIn other words, the same set of annotators appear in both train, (val),\nand test sets.\n\nFor datasets that have splits originally, we follow the original split and remove\ndatapoints in test sets that are annotated by an annotator who is not in\nthe training set.\n\nFor datasets that do not have splits originally, we split the data into \ntrain and test set for convenience, you may further split the train set\ninto a train and val set.\n",
9
+ "download_checksums": {
10
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/commitmentbank-ann.zip": {
11
+ "num_bytes": 1941977,
12
+ "checksum": null
13
+ }
14
+ },
15
+ "download_size": 1941977,
16
+ "features": {
17
+ "HitID": {
18
+ "dtype": "string",
19
+ "_type": "Value"
20
+ },
21
+ "Verb": {
22
+ "dtype": "string",
23
+ "_type": "Value"
24
+ },
25
+ "Context": {
26
+ "dtype": "string",
27
+ "_type": "Value"
28
+ },
29
+ "Prompt": {
30
+ "dtype": "string",
31
+ "_type": "Value"
32
+ },
33
+ "Target": {
34
+ "dtype": "string",
35
+ "_type": "Value"
36
+ },
37
+ "ModalType": {
38
+ "dtype": "string",
39
+ "_type": "Value"
40
+ },
41
+ "Embedding": {
42
+ "dtype": "string",
43
+ "_type": "Value"
44
+ },
45
+ "MatTense": {
46
+ "dtype": "string",
47
+ "_type": "Value"
48
+ },
49
+ "weak_labels": {
50
+ "feature": {
51
+ "dtype": "string",
52
+ "_type": "Value"
53
+ },
54
+ "_type": "Sequence"
55
+ },
56
+ "question": {
57
+ "dtype": "string",
58
+ "_type": "Value"
59
+ },
60
+ "uid": {
61
+ "dtype": "string",
62
+ "_type": "Value"
63
+ },
64
+ "id": {
65
+ "dtype": "int32",
66
+ "_type": "Value"
67
+ },
68
+ "annotator_id": {
69
+ "dtype": "string",
70
+ "_type": "Value"
71
+ },
72
+ "answer": {
73
+ "dtype": "string",
74
+ "_type": "Value"
75
+ },
76
+ "answer_label": {
77
+ "names": [
78
+ "0",
79
+ "1",
80
+ "2",
81
+ "3",
82
+ "-3",
83
+ "-1",
84
+ "-2"
85
+ ],
86
+ "_type": "ClassLabel"
87
+ }
88
+ },
89
+ "homepage": "https://github.com/mcdm/CommitmentBank",
90
+ "license": "",
91
+ "size_in_bytes": 12449086,
92
+ "splits": {
93
+ "train": {
94
+ "name": "train",
95
+ "num_bytes": 7153364,
96
+ "num_examples": 7816,
97
+ "dataset_name": "tid8"
98
+ },
99
+ "test": {
100
+ "name": "test",
101
+ "num_bytes": 3353745,
102
+ "num_examples": 3729,
103
+ "dataset_name": "tid8"
104
+ }
105
+ },
106
+ "version": {
107
+ "version_str": "1.0.3",
108
+ "major": 1,
109
+ "minor": 0,
110
+ "patch": 3
111
+ }
112
+ },
113
+ "commitmentbank-atr": {
114
+ "builder_name": "tid8",
115
+ "citation": "@inproceedings{de2019commitmentbank,\n title={The commitmentbank: Investigating projection in naturally occurring discourse},\n author={De Marneffe, Marie-Catherine and Simons, Mandy and Tonhauser, Judith},\n booktitle={proceedings of Sinn und Bedeutung},\n volume={23},\n number={2},\n pages={107--124},\n year={2019}\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
116
+ "config_name": "commitmentbank-atr",
117
+ "dataset_name": "tid8",
118
+ "dataset_size": 10507109,
119
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nCommitmentBank (De Marneffe et al.,\n2019) is an NLI dataset. It contains naturally oc-\ncurring discourses whose final sentence contains\na clause-embedding predicate under an entailment\ncanceling operator (question, modal, negation, an-\ntecedent of conditional).\nAnnotator Split:\nWe split annotators into train and test set.\n\nIn other words, a different set of annotators would appear in train and test sets.\n\nWe split the data into train and test set for convenience, you may consider\nfurther splitting the train set into a train and val set for performance validation.\n",
120
+ "download_checksums": {
121
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/commitmentbank-atr.zip": {
122
+ "num_bytes": 1942215,
123
+ "checksum": null
124
+ }
125
+ },
126
+ "download_size": 1942215,
127
+ "features": {
128
+ "HitID": {
129
+ "dtype": "string",
130
+ "_type": "Value"
131
+ },
132
+ "Verb": {
133
+ "dtype": "string",
134
+ "_type": "Value"
135
+ },
136
+ "Context": {
137
+ "dtype": "string",
138
+ "_type": "Value"
139
+ },
140
+ "Prompt": {
141
+ "dtype": "string",
142
+ "_type": "Value"
143
+ },
144
+ "Target": {
145
+ "dtype": "string",
146
+ "_type": "Value"
147
+ },
148
+ "ModalType": {
149
+ "dtype": "string",
150
+ "_type": "Value"
151
+ },
152
+ "Embedding": {
153
+ "dtype": "string",
154
+ "_type": "Value"
155
+ },
156
+ "MatTense": {
157
+ "dtype": "string",
158
+ "_type": "Value"
159
+ },
160
+ "weak_labels": {
161
+ "feature": {
162
+ "dtype": "string",
163
+ "_type": "Value"
164
+ },
165
+ "_type": "Sequence"
166
+ },
167
+ "question": {
168
+ "dtype": "string",
169
+ "_type": "Value"
170
+ },
171
+ "uid": {
172
+ "dtype": "string",
173
+ "_type": "Value"
174
+ },
175
+ "id": {
176
+ "dtype": "int32",
177
+ "_type": "Value"
178
+ },
179
+ "annotator_id": {
180
+ "dtype": "string",
181
+ "_type": "Value"
182
+ },
183
+ "answer": {
184
+ "dtype": "string",
185
+ "_type": "Value"
186
+ },
187
+ "answer_label": {
188
+ "names": [
189
+ "0",
190
+ "1",
191
+ "2",
192
+ "3",
193
+ "-3",
194
+ "-1",
195
+ "-2"
196
+ ],
197
+ "_type": "ClassLabel"
198
+ }
199
+ },
200
+ "homepage": "https://github.com/mcdm/CommitmentBank",
201
+ "license": "",
202
+ "size_in_bytes": 12449324,
203
+ "splits": {
204
+ "train": {
205
+ "name": "train",
206
+ "num_bytes": 6636145,
207
+ "num_examples": 7274,
208
+ "dataset_name": "tid8"
209
+ },
210
+ "test": {
211
+ "name": "test",
212
+ "num_bytes": 3870964,
213
+ "num_examples": 4271,
214
+ "dataset_name": "tid8"
215
+ }
216
+ },
217
+ "version": {
218
+ "version_str": "1.0.3",
219
+ "major": 1,
220
+ "minor": 0,
221
+ "patch": 3
222
+ }
223
+ },
224
+ "friends_qia-ann": {
225
+ "builder_name": "tid8",
226
+ "citation": "@inproceedings{damgaard-etal-2021-ill,\n title = \"{``}{I}{'}ll be there for you{''}: The One with Understanding Indirect Answers\",\n author = \"Damgaard, Cathrine and\n Toborek, Paulina and\n Eriksen, Trine and\n Plank, Barbara\",\n booktitle = \"Proceedings of the 2nd Workshop on Computational Approaches to Discourse\",\n month = nov,\n year = \"2021\",\n address = \"Punta Cana, Dominican Republic and Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2021.codi-main.1\",\n doi = \"10.18653/v1/2021.codi-main.1\",\n pages = \"1--11\",\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
227
+ "config_name": "friends_qia-ann",
228
+ "dataset_name": "tid8",
229
+ "dataset_size": 6250338,
230
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nFriends QIA (Damgaard et al., 2021) is a\ncorpus of classifying indirect answers to polar questions.\nAnnotation Split:\nWe split the annotations for each annotator into train and test set.\n\nIn other words, the same set of annotators appear in both train, (val),\nand test sets.\n\nFor datasets that have splits originally, we follow the original split and remove\ndatapoints in test sets that are annotated by an annotator who is not in\nthe training set.\n\nFor datasets that do not have splits originally, we split the data into \ntrain and test set for convenience, you may further split the train set\ninto a train and val set.\n",
231
+ "download_checksums": {
232
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/friends_qia-ann.zip": {
233
+ "num_bytes": 818058,
234
+ "checksum": null
235
+ }
236
+ },
237
+ "download_size": 818058,
238
+ "features": {
239
+ "Season": {
240
+ "dtype": "string",
241
+ "_type": "Value"
242
+ },
243
+ "Episode": {
244
+ "dtype": "string",
245
+ "_type": "Value"
246
+ },
247
+ "Category": {
248
+ "dtype": "string",
249
+ "_type": "Value"
250
+ },
251
+ "Q_person": {
252
+ "dtype": "string",
253
+ "_type": "Value"
254
+ },
255
+ "A_person": {
256
+ "dtype": "string",
257
+ "_type": "Value"
258
+ },
259
+ "Q_original": {
260
+ "dtype": "string",
261
+ "_type": "Value"
262
+ },
263
+ "Q_modified": {
264
+ "dtype": "string",
265
+ "_type": "Value"
266
+ },
267
+ "A_modified": {
268
+ "dtype": "string",
269
+ "_type": "Value"
270
+ },
271
+ "Annotation_1": {
272
+ "dtype": "string",
273
+ "_type": "Value"
274
+ },
275
+ "Annotation_2": {
276
+ "dtype": "string",
277
+ "_type": "Value"
278
+ },
279
+ "Annotation_3": {
280
+ "dtype": "string",
281
+ "_type": "Value"
282
+ },
283
+ "Goldstandard": {
284
+ "dtype": "string",
285
+ "_type": "Value"
286
+ },
287
+ "question": {
288
+ "dtype": "string",
289
+ "_type": "Value"
290
+ },
291
+ "uid": {
292
+ "dtype": "string",
293
+ "_type": "Value"
294
+ },
295
+ "id": {
296
+ "dtype": "int32",
297
+ "_type": "Value"
298
+ },
299
+ "annotator_id": {
300
+ "dtype": "string",
301
+ "_type": "Value"
302
+ },
303
+ "answer": {
304
+ "dtype": "string",
305
+ "_type": "Value"
306
+ },
307
+ "answer_label": {
308
+ "names": [
309
+ "1",
310
+ "2",
311
+ "3",
312
+ "4",
313
+ "5"
314
+ ],
315
+ "_type": "ClassLabel"
316
+ }
317
+ },
318
+ "homepage": "https://github.com/friendsQIA/Friends_QIA",
319
+ "license": "",
320
+ "size_in_bytes": 7068396,
321
+ "splits": {
322
+ "validation": {
323
+ "name": "validation",
324
+ "num_bytes": 687135,
325
+ "num_examples": 1872,
326
+ "dataset_name": "tid8"
327
+ },
328
+ "train": {
329
+ "name": "train",
330
+ "num_bytes": 4870170,
331
+ "num_examples": 13113,
332
+ "dataset_name": "tid8"
333
+ },
334
+ "test": {
335
+ "name": "test",
336
+ "num_bytes": 693033,
337
+ "num_examples": 1872,
338
+ "dataset_name": "tid8"
339
+ }
340
+ },
341
+ "version": {
342
+ "version_str": "1.0.3",
343
+ "major": 1,
344
+ "minor": 0,
345
+ "patch": 3
346
+ }
347
+ },
348
+ "friends_qia-atr": {
349
+ "builder_name": "tid8",
350
+ "citation": "@inproceedings{damgaard-etal-2021-ill,\n title = \"{``}{I}{'}ll be there for you{''}: The One with Understanding Indirect Answers\",\n author = \"Damgaard, Cathrine and\n Toborek, Paulina and\n Eriksen, Trine and\n Plank, Barbara\",\n booktitle = \"Proceedings of the 2nd Workshop on Computational Approaches to Discourse\",\n month = nov,\n year = \"2021\",\n address = \"Punta Cana, Dominican Republic and Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2021.codi-main.1\",\n doi = \"10.18653/v1/2021.codi-main.1\",\n pages = \"1--11\",\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
351
+ "config_name": "friends_qia-atr",
352
+ "dataset_name": "tid8",
353
+ "dataset_size": 6250338,
354
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nFriends QIA (Damgaard et al., 2021) is a\ncorpus of classifying indirect answers to polar questions.\nAnnotator Split:\nWe split annotators into train and test set.\n\nIn other words, a different set of annotators would appear in train and test sets.\n\nWe split the data into train and test set for convenience, you may consider\nfurther splitting the train set into a train and val set for performance validation.\n",
355
+ "download_checksums": {
356
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/friends_qia-atr.zip": {
357
+ "num_bytes": 1826735,
358
+ "checksum": null
359
+ }
360
+ },
361
+ "download_size": 1826735,
362
+ "features": {
363
+ "Season": {
364
+ "dtype": "string",
365
+ "_type": "Value"
366
+ },
367
+ "Episode": {
368
+ "dtype": "string",
369
+ "_type": "Value"
370
+ },
371
+ "Category": {
372
+ "dtype": "string",
373
+ "_type": "Value"
374
+ },
375
+ "Q_person": {
376
+ "dtype": "string",
377
+ "_type": "Value"
378
+ },
379
+ "A_person": {
380
+ "dtype": "string",
381
+ "_type": "Value"
382
+ },
383
+ "Q_original": {
384
+ "dtype": "string",
385
+ "_type": "Value"
386
+ },
387
+ "Q_modified": {
388
+ "dtype": "string",
389
+ "_type": "Value"
390
+ },
391
+ "A_modified": {
392
+ "dtype": "string",
393
+ "_type": "Value"
394
+ },
395
+ "Annotation_1": {
396
+ "dtype": "string",
397
+ "_type": "Value"
398
+ },
399
+ "Annotation_2": {
400
+ "dtype": "string",
401
+ "_type": "Value"
402
+ },
403
+ "Annotation_3": {
404
+ "dtype": "string",
405
+ "_type": "Value"
406
+ },
407
+ "Goldstandard": {
408
+ "dtype": "string",
409
+ "_type": "Value"
410
+ },
411
+ "question": {
412
+ "dtype": "string",
413
+ "_type": "Value"
414
+ },
415
+ "uid": {
416
+ "dtype": "string",
417
+ "_type": "Value"
418
+ },
419
+ "id": {
420
+ "dtype": "int32",
421
+ "_type": "Value"
422
+ },
423
+ "annotator_id": {
424
+ "dtype": "string",
425
+ "_type": "Value"
426
+ },
427
+ "answer": {
428
+ "dtype": "string",
429
+ "_type": "Value"
430
+ },
431
+ "answer_label": {
432
+ "names": [
433
+ "1",
434
+ "2",
435
+ "3",
436
+ "4",
437
+ "5"
438
+ ],
439
+ "_type": "ClassLabel"
440
+ }
441
+ },
442
+ "homepage": "https://github.com/friendsQIA/Friends_QIA",
443
+ "license": "",
444
+ "size_in_bytes": 8077073,
445
+ "splits": {
446
+ "train": {
447
+ "name": "train",
448
+ "num_bytes": 4166892,
449
+ "num_examples": 11238,
450
+ "dataset_name": "tid8"
451
+ },
452
+ "test": {
453
+ "name": "test",
454
+ "num_bytes": 2083446,
455
+ "num_examples": 5619,
456
+ "dataset_name": "tid8"
457
+ }
458
+ },
459
+ "version": {
460
+ "version_str": "1.0.3",
461
+ "major": 1,
462
+ "minor": 0,
463
+ "patch": 3
464
+ }
465
+ },
466
+ "goemotions-ann": {
467
+ "builder_name": "tid8",
468
+ "citation": "@inproceedings{demszky-etal-2020-goemotions,\n title = \"{G}o{E}motions: A Dataset of Fine-Grained Emotions\",\n author = \"Demszky, Dorottya and\n Movshovitz-Attias, Dana and\n Ko, Jeongwoo and\n Cowen, Alan and\n Nemade, Gaurav and\n Ravi, Sujith\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2020.acl-main.372\",\n doi = \"10.18653/v1/2020.acl-main.372\",\n pages = \"4040--4054\"\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
469
+ "config_name": "goemotions-ann",
470
+ "dataset_name": "tid8",
471
+ "dataset_size": 66108105,
472
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nGo Emotions (Demszky et al., 2020) is a\nfine-grained emotion classification corpus of care-\nfully curated comments extracted from Reddit. We\ngroup emotions into four categories following sen-\ntiment level divides in the original paper.\nAnnotation Split:\nWe split the annotations for each annotator into train and test set.\n\nIn other words, the same set of annotators appear in both train, (val),\nand test sets.\n\nFor datasets that have splits originally, we follow the original split and remove\ndatapoints in test sets that are annotated by an annotator who is not in\nthe training set.\n\nFor datasets that do not have splits originally, we split the data into \ntrain and test set for convenience, you may further split the train set\ninto a train and val set.\n",
473
+ "download_checksums": {
474
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/goemotions-ann.zip": {
475
+ "num_bytes": 19388288,
476
+ "checksum": null
477
+ }
478
+ },
479
+ "download_size": 19388288,
480
+ "features": {
481
+ "author": {
482
+ "dtype": "string",
483
+ "_type": "Value"
484
+ },
485
+ "subreddit": {
486
+ "dtype": "string",
487
+ "_type": "Value"
488
+ },
489
+ "link_id": {
490
+ "dtype": "string",
491
+ "_type": "Value"
492
+ },
493
+ "parent_id": {
494
+ "dtype": "string",
495
+ "_type": "Value"
496
+ },
497
+ "created_utc": {
498
+ "dtype": "string",
499
+ "_type": "Value"
500
+ },
501
+ "rater_id": {
502
+ "dtype": "string",
503
+ "_type": "Value"
504
+ },
505
+ "example_very_unclear": {
506
+ "dtype": "string",
507
+ "_type": "Value"
508
+ },
509
+ "admiration": {
510
+ "dtype": "string",
511
+ "_type": "Value"
512
+ },
513
+ "amusement": {
514
+ "dtype": "string",
515
+ "_type": "Value"
516
+ },
517
+ "anger": {
518
+ "dtype": "string",
519
+ "_type": "Value"
520
+ },
521
+ "annoyance": {
522
+ "dtype": "string",
523
+ "_type": "Value"
524
+ },
525
+ "approval": {
526
+ "dtype": "string",
527
+ "_type": "Value"
528
+ },
529
+ "caring": {
530
+ "dtype": "string",
531
+ "_type": "Value"
532
+ },
533
+ "confusion": {
534
+ "dtype": "string",
535
+ "_type": "Value"
536
+ },
537
+ "curiosity": {
538
+ "dtype": "string",
539
+ "_type": "Value"
540
+ },
541
+ "desire": {
542
+ "dtype": "string",
543
+ "_type": "Value"
544
+ },
545
+ "disappointment": {
546
+ "dtype": "string",
547
+ "_type": "Value"
548
+ },
549
+ "disapproval": {
550
+ "dtype": "string",
551
+ "_type": "Value"
552
+ },
553
+ "disgust": {
554
+ "dtype": "string",
555
+ "_type": "Value"
556
+ },
557
+ "embarrassment": {
558
+ "dtype": "string",
559
+ "_type": "Value"
560
+ },
561
+ "excitement": {
562
+ "dtype": "string",
563
+ "_type": "Value"
564
+ },
565
+ "fear": {
566
+ "dtype": "string",
567
+ "_type": "Value"
568
+ },
569
+ "gratitude": {
570
+ "dtype": "string",
571
+ "_type": "Value"
572
+ },
573
+ "grief": {
574
+ "dtype": "string",
575
+ "_type": "Value"
576
+ },
577
+ "joy": {
578
+ "dtype": "string",
579
+ "_type": "Value"
580
+ },
581
+ "love": {
582
+ "dtype": "string",
583
+ "_type": "Value"
584
+ },
585
+ "nervousness": {
586
+ "dtype": "string",
587
+ "_type": "Value"
588
+ },
589
+ "optimism": {
590
+ "dtype": "string",
591
+ "_type": "Value"
592
+ },
593
+ "pride": {
594
+ "dtype": "string",
595
+ "_type": "Value"
596
+ },
597
+ "realization": {
598
+ "dtype": "string",
599
+ "_type": "Value"
600
+ },
601
+ "relief": {
602
+ "dtype": "string",
603
+ "_type": "Value"
604
+ },
605
+ "remorse": {
606
+ "dtype": "string",
607
+ "_type": "Value"
608
+ },
609
+ "sadness": {
610
+ "dtype": "string",
611
+ "_type": "Value"
612
+ },
613
+ "surprise": {
614
+ "dtype": "string",
615
+ "_type": "Value"
616
+ },
617
+ "neutral": {
618
+ "dtype": "string",
619
+ "_type": "Value"
620
+ },
621
+ "question": {
622
+ "dtype": "string",
623
+ "_type": "Value"
624
+ },
625
+ "uid": {
626
+ "dtype": "string",
627
+ "_type": "Value"
628
+ },
629
+ "id": {
630
+ "dtype": "int32",
631
+ "_type": "Value"
632
+ },
633
+ "annotator_id": {
634
+ "dtype": "string",
635
+ "_type": "Value"
636
+ },
637
+ "answer": {
638
+ "dtype": "string",
639
+ "_type": "Value"
640
+ },
641
+ "answer_label": {
642
+ "names": [
643
+ "positive",
644
+ "ambiguous",
645
+ "negative",
646
+ "neutral"
647
+ ],
648
+ "_type": "ClassLabel"
649
+ }
650
+ },
651
+ "homepage": "https://github.com/google-research/google-research/tree/master/goemotions",
652
+ "license": "",
653
+ "size_in_bytes": 85496393,
654
+ "splits": {
655
+ "train": {
656
+ "name": "train",
657
+ "num_bytes": 46277072,
658
+ "num_examples": 135504,
659
+ "dataset_name": "tid8"
660
+ },
661
+ "test": {
662
+ "name": "test",
663
+ "num_bytes": 19831033,
664
+ "num_examples": 58129,
665
+ "dataset_name": "tid8"
666
+ }
667
+ },
668
+ "version": {
669
+ "version_str": "1.0.3",
670
+ "major": 1,
671
+ "minor": 0,
672
+ "patch": 3
673
+ }
674
+ },
675
+ "goemotions-atr": {
676
+ "builder_name": "tid8",
677
+ "citation": "@inproceedings{demszky-etal-2020-goemotions,\n title = \"{G}o{E}motions: A Dataset of Fine-Grained Emotions\",\n author = \"Demszky, Dorottya and\n Movshovitz-Attias, Dana and\n Ko, Jeongwoo and\n Cowen, Alan and\n Nemade, Gaurav and\n Ravi, Sujith\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2020.acl-main.372\",\n doi = \"10.18653/v1/2020.acl-main.372\",\n pages = \"4040--4054\"\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
678
+ "config_name": "goemotions-atr",
679
+ "dataset_name": "tid8",
680
+ "dataset_size": 66108105,
681
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nGo Emotions (Demszky et al., 2020) is a\nfine-grained emotion classification corpus of care-\nfully curated comments extracted from Reddit. We\ngroup emotions into four categories following sen-\ntiment level divides in the original paper.\nAnnotator Split:\nWe split annotators into train and test set.\n\nIn other words, a different set of annotators would appear in train and test sets.\n\nWe split the data into train and test set for convenience, you may consider\nfurther splitting the train set into a train and val set for performance validation.\n",
682
+ "download_checksums": {
683
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/goemotions-atr.zip": {
684
+ "num_bytes": 19146912,
685
+ "checksum": null
686
+ }
687
+ },
688
+ "download_size": 19146912,
689
+ "features": {
690
+ "author": {
691
+ "dtype": "string",
692
+ "_type": "Value"
693
+ },
694
+ "subreddit": {
695
+ "dtype": "string",
696
+ "_type": "Value"
697
+ },
698
+ "link_id": {
699
+ "dtype": "string",
700
+ "_type": "Value"
701
+ },
702
+ "parent_id": {
703
+ "dtype": "string",
704
+ "_type": "Value"
705
+ },
706
+ "created_utc": {
707
+ "dtype": "string",
708
+ "_type": "Value"
709
+ },
710
+ "rater_id": {
711
+ "dtype": "string",
712
+ "_type": "Value"
713
+ },
714
+ "example_very_unclear": {
715
+ "dtype": "string",
716
+ "_type": "Value"
717
+ },
718
+ "admiration": {
719
+ "dtype": "string",
720
+ "_type": "Value"
721
+ },
722
+ "amusement": {
723
+ "dtype": "string",
724
+ "_type": "Value"
725
+ },
726
+ "anger": {
727
+ "dtype": "string",
728
+ "_type": "Value"
729
+ },
730
+ "annoyance": {
731
+ "dtype": "string",
732
+ "_type": "Value"
733
+ },
734
+ "approval": {
735
+ "dtype": "string",
736
+ "_type": "Value"
737
+ },
738
+ "caring": {
739
+ "dtype": "string",
740
+ "_type": "Value"
741
+ },
742
+ "confusion": {
743
+ "dtype": "string",
744
+ "_type": "Value"
745
+ },
746
+ "curiosity": {
747
+ "dtype": "string",
748
+ "_type": "Value"
749
+ },
750
+ "desire": {
751
+ "dtype": "string",
752
+ "_type": "Value"
753
+ },
754
+ "disappointment": {
755
+ "dtype": "string",
756
+ "_type": "Value"
757
+ },
758
+ "disapproval": {
759
+ "dtype": "string",
760
+ "_type": "Value"
761
+ },
762
+ "disgust": {
763
+ "dtype": "string",
764
+ "_type": "Value"
765
+ },
766
+ "embarrassment": {
767
+ "dtype": "string",
768
+ "_type": "Value"
769
+ },
770
+ "excitement": {
771
+ "dtype": "string",
772
+ "_type": "Value"
773
+ },
774
+ "fear": {
775
+ "dtype": "string",
776
+ "_type": "Value"
777
+ },
778
+ "gratitude": {
779
+ "dtype": "string",
780
+ "_type": "Value"
781
+ },
782
+ "grief": {
783
+ "dtype": "string",
784
+ "_type": "Value"
785
+ },
786
+ "joy": {
787
+ "dtype": "string",
788
+ "_type": "Value"
789
+ },
790
+ "love": {
791
+ "dtype": "string",
792
+ "_type": "Value"
793
+ },
794
+ "nervousness": {
795
+ "dtype": "string",
796
+ "_type": "Value"
797
+ },
798
+ "optimism": {
799
+ "dtype": "string",
800
+ "_type": "Value"
801
+ },
802
+ "pride": {
803
+ "dtype": "string",
804
+ "_type": "Value"
805
+ },
806
+ "realization": {
807
+ "dtype": "string",
808
+ "_type": "Value"
809
+ },
810
+ "relief": {
811
+ "dtype": "string",
812
+ "_type": "Value"
813
+ },
814
+ "remorse": {
815
+ "dtype": "string",
816
+ "_type": "Value"
817
+ },
818
+ "sadness": {
819
+ "dtype": "string",
820
+ "_type": "Value"
821
+ },
822
+ "surprise": {
823
+ "dtype": "string",
824
+ "_type": "Value"
825
+ },
826
+ "neutral": {
827
+ "dtype": "string",
828
+ "_type": "Value"
829
+ },
830
+ "question": {
831
+ "dtype": "string",
832
+ "_type": "Value"
833
+ },
834
+ "uid": {
835
+ "dtype": "string",
836
+ "_type": "Value"
837
+ },
838
+ "id": {
839
+ "dtype": "int32",
840
+ "_type": "Value"
841
+ },
842
+ "annotator_id": {
843
+ "dtype": "string",
844
+ "_type": "Value"
845
+ },
846
+ "answer": {
847
+ "dtype": "string",
848
+ "_type": "Value"
849
+ },
850
+ "answer_label": {
851
+ "names": [
852
+ "positive",
853
+ "ambiguous",
854
+ "negative",
855
+ "neutral"
856
+ ],
857
+ "_type": "ClassLabel"
858
+ }
859
+ },
860
+ "homepage": "https://github.com/google-research/google-research/tree/master/goemotions",
861
+ "license": "",
862
+ "size_in_bytes": 85255017,
863
+ "splits": {
864
+ "train": {
865
+ "name": "train",
866
+ "num_bytes": 44856233,
867
+ "num_examples": 131395,
868
+ "dataset_name": "tid8"
869
+ },
870
+ "test": {
871
+ "name": "test",
872
+ "num_bytes": 21251872,
873
+ "num_examples": 62238,
874
+ "dataset_name": "tid8"
875
+ }
876
+ },
877
+ "version": {
878
+ "version_str": "1.0.3",
879
+ "major": 1,
880
+ "minor": 0,
881
+ "patch": 3
882
+ }
883
+ },
884
+ "hs_brexit-ann": {
885
+ "builder_name": "tid8",
886
+ "citation": "@article{akhtar2021whose,\n title={Whose opinions matter? perspective-aware models to identify opinions of hate speech victims in abusive language detection},\n author={Akhtar, Sohail and Basile, Valerio and Patti, Viviana},\n journal={arXiv preprint arXiv:2106.15896},\n year={2021}\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
887
+ "config_name": "hs_brexit-ann",
888
+ "dataset_name": "tid8",
889
+ "dataset_size": 1261034,
890
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nHS-Brexit (Akhtar et al., 2021) is an abu-\nsive language detection corpus on Brexit belonging\nto two distinct groups: a target group of three Mus-\nlim immigrants in the UK, and a control group of\nthree other individuals.\nAnnotation Split:\nWe split the annotations for each annotator into train and test set.\n\nIn other words, the same set of annotators appear in both train, (val),\nand test sets.\n\nFor datasets that have splits originally, we follow the original split and remove\ndatapoints in test sets that are annotated by an annotator who is not in\nthe training set.\n\nFor datasets that do not have splits originally, we split the data into \ntrain and test set for convenience, you may further split the train set\ninto a train and val set.\n",
891
+ "download_checksums": {
892
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/hs_brexit-ann.zip": {
893
+ "num_bytes": 127608,
894
+ "checksum": null
895
+ }
896
+ },
897
+ "download_size": 127608,
898
+ "features": {
899
+ "other annotations": {
900
+ "dtype": "string",
901
+ "_type": "Value"
902
+ },
903
+ "question": {
904
+ "dtype": "string",
905
+ "_type": "Value"
906
+ },
907
+ "uid": {
908
+ "dtype": "string",
909
+ "_type": "Value"
910
+ },
911
+ "id": {
912
+ "dtype": "int32",
913
+ "_type": "Value"
914
+ },
915
+ "annotator_id": {
916
+ "dtype": "string",
917
+ "_type": "Value"
918
+ },
919
+ "answer": {
920
+ "dtype": "string",
921
+ "_type": "Value"
922
+ },
923
+ "answer_label": {
924
+ "names": [
925
+ "hate_speech",
926
+ "not_hate_speech"
927
+ ],
928
+ "_type": "ClassLabel"
929
+ }
930
+ },
931
+ "homepage": "https://le-wi-di.github.io/",
932
+ "license": "",
933
+ "size_in_bytes": 1388642,
934
+ "splits": {
935
+ "train": {
936
+ "name": "train",
937
+ "num_bytes": 1039008,
938
+ "num_examples": 4704,
939
+ "dataset_name": "tid8"
940
+ },
941
+ "test": {
942
+ "name": "test",
943
+ "num_bytes": 222026,
944
+ "num_examples": 1008,
945
+ "dataset_name": "tid8"
946
+ }
947
+ },
948
+ "version": {
949
+ "version_str": "1.0.3",
950
+ "major": 1,
951
+ "minor": 0,
952
+ "patch": 3
953
+ }
954
+ },
955
+ "hs_brexit-atr": {
956
+ "builder_name": "tid8",
957
+ "citation": "@article{akhtar2021whose,\n title={Whose opinions matter? perspective-aware models to identify opinions of hate speech victims in abusive language detection},\n author={Akhtar, Sohail and Basile, Valerio and Patti, Viviana},\n journal={arXiv preprint arXiv:2106.15896},\n year={2021}\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
958
+ "config_name": "hs_brexit-atr",
959
+ "dataset_name": "tid8",
960
+ "dataset_size": 1481870,
961
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nHS-Brexit (Akhtar et al., 2021) is an abu-\nsive language detection corpus on Brexit belonging\nto two distinct groups: a target group of three Mus-\nlim immigrants in the UK, and a control group of\nthree other individuals.\nAnnotator Split:\nWe split annotators into train and test set.\n\nIn other words, a different set of annotators would appear in train and test sets.\n\nWe split the data into train and test set for convenience, you may consider\nfurther splitting the train set into a train and val set for performance validation.\n",
962
+ "download_checksums": {
963
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/hs_brexit-atr.zip": {
964
+ "num_bytes": 408475,
965
+ "checksum": null
966
+ }
967
+ },
968
+ "download_size": 408475,
969
+ "features": {
970
+ "other annotations": {
971
+ "dtype": "string",
972
+ "_type": "Value"
973
+ },
974
+ "question": {
975
+ "dtype": "string",
976
+ "_type": "Value"
977
+ },
978
+ "uid": {
979
+ "dtype": "string",
980
+ "_type": "Value"
981
+ },
982
+ "id": {
983
+ "dtype": "int32",
984
+ "_type": "Value"
985
+ },
986
+ "annotator_id": {
987
+ "dtype": "string",
988
+ "_type": "Value"
989
+ },
990
+ "answer": {
991
+ "dtype": "string",
992
+ "_type": "Value"
993
+ },
994
+ "answer_label": {
995
+ "names": [
996
+ "hate_speech",
997
+ "not_hate_speech"
998
+ ],
999
+ "_type": "ClassLabel"
1000
+ }
1001
+ },
1002
+ "homepage": "https://le-wi-di.github.io/",
1003
+ "license": "",
1004
+ "size_in_bytes": 1890345,
1005
+ "splits": {
1006
+ "train": {
1007
+ "name": "train",
1008
+ "num_bytes": 986132,
1009
+ "num_examples": 4480,
1010
+ "dataset_name": "tid8"
1011
+ },
1012
+ "test": {
1013
+ "name": "test",
1014
+ "num_bytes": 495738,
1015
+ "num_examples": 2240,
1016
+ "dataset_name": "tid8"
1017
+ }
1018
+ },
1019
+ "version": {
1020
+ "version_str": "1.0.3",
1021
+ "major": 1,
1022
+ "minor": 0,
1023
+ "patch": 3
1024
+ }
1025
+ },
1026
+ "humor-ann": {
1027
+ "builder_name": "tid8",
1028
+ "citation": "@inproceedings{simpson-etal-2019-predicting,\n title = \"Predicting Humorousness and Metaphor Novelty with {G}aussian Process Preference Learning\",\n author = \"Simpson, Edwin and\n Do Dinh, Erik-L{\\^a}n and\n Miller, Tristan and\n Gurevych, Iryna\",\n booktitle = \"Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2019\",\n address = \"Florence, Italy\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/P19-1572\",\n doi = \"10.18653/v1/P19-1572\",\n pages = \"5716--5728\"\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
1029
+ "config_name": "humor-ann",
1030
+ "dataset_name": "tid8",
1031
+ "dataset_size": 40745460,
1032
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nHumor (Simpson et al., 2019) is a corpus\nof online texts for pairwise humorousness compari-\nson\nAnnotation Split:\nWe split the annotations for each annotator into train and test set.\n\nIn other words, the same set of annotators appear in both train, (val),\nand test sets.\n\nFor datasets that have splits originally, we follow the original split and remove\ndatapoints in test sets that are annotated by an annotator who is not in\nthe training set.\n\nFor datasets that do not have splits originally, we split the data into \ntrain and test set for convenience, you may further split the train set\ninto a train and val set.\n",
1033
+ "download_checksums": {
1034
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/humor-ann.zip": {
1035
+ "num_bytes": 10682583,
1036
+ "checksum": null
1037
+ }
1038
+ },
1039
+ "download_size": 10682583,
1040
+ "features": {
1041
+ "text_a": {
1042
+ "dtype": "string",
1043
+ "_type": "Value"
1044
+ },
1045
+ "text_b": {
1046
+ "dtype": "string",
1047
+ "_type": "Value"
1048
+ },
1049
+ "question": {
1050
+ "dtype": "string",
1051
+ "_type": "Value"
1052
+ },
1053
+ "uid": {
1054
+ "dtype": "string",
1055
+ "_type": "Value"
1056
+ },
1057
+ "id": {
1058
+ "dtype": "int32",
1059
+ "_type": "Value"
1060
+ },
1061
+ "annotator_id": {
1062
+ "dtype": "string",
1063
+ "_type": "Value"
1064
+ },
1065
+ "answer": {
1066
+ "dtype": "string",
1067
+ "_type": "Value"
1068
+ },
1069
+ "answer_label": {
1070
+ "names": [
1071
+ "B",
1072
+ "X",
1073
+ "A"
1074
+ ],
1075
+ "_type": "ClassLabel"
1076
+ }
1077
+ },
1078
+ "homepage": "https://github.com/ukplab/acl2019-GPPL-humour-metaphor",
1079
+ "license": "",
1080
+ "size_in_bytes": 51428043,
1081
+ "splits": {
1082
+ "train": {
1083
+ "name": "train",
1084
+ "num_bytes": 28524839,
1085
+ "num_examples": 98735,
1086
+ "dataset_name": "tid8"
1087
+ },
1088
+ "test": {
1089
+ "name": "test",
1090
+ "num_bytes": 12220621,
1091
+ "num_examples": 42315,
1092
+ "dataset_name": "tid8"
1093
+ }
1094
+ },
1095
+ "version": {
1096
+ "version_str": "1.0.3",
1097
+ "major": 1,
1098
+ "minor": 0,
1099
+ "patch": 3
1100
+ }
1101
+ },
1102
+ "humor-atr": {
1103
+ "builder_name": "tid8",
1104
+ "citation": "@inproceedings{simpson-etal-2019-predicting,\n title = \"Predicting Humorousness and Metaphor Novelty with {G}aussian Process Preference Learning\",\n author = \"Simpson, Edwin and\n Do Dinh, Erik-L{\\^a}n and\n Miller, Tristan and\n Gurevych, Iryna\",\n booktitle = \"Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2019\",\n address = \"Florence, Italy\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/P19-1572\",\n doi = \"10.18653/v1/P19-1572\",\n pages = \"5716--5728\"\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
1105
+ "config_name": "humor-atr",
1106
+ "dataset_name": "tid8",
1107
+ "dataset_size": 40745460,
1108
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nHumor (Simpson et al., 2019) is a corpus\nof online texts for pairwise humorousness compari-\nson\nAnnotator Split:\nWe split annotators into train and test set.\n\nIn other words, a different set of annotators would appear in train and test sets.\n\nWe split the data into train and test set for convenience, you may consider\nfurther splitting the train set into a train and val set for performance validation.\n",
1109
+ "download_checksums": {
1110
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/humor-atr.zip": {
1111
+ "num_bytes": 10461981,
1112
+ "checksum": null
1113
+ }
1114
+ },
1115
+ "download_size": 10461981,
1116
+ "features": {
1117
+ "text_a": {
1118
+ "dtype": "string",
1119
+ "_type": "Value"
1120
+ },
1121
+ "text_b": {
1122
+ "dtype": "string",
1123
+ "_type": "Value"
1124
+ },
1125
+ "question": {
1126
+ "dtype": "string",
1127
+ "_type": "Value"
1128
+ },
1129
+ "uid": {
1130
+ "dtype": "string",
1131
+ "_type": "Value"
1132
+ },
1133
+ "id": {
1134
+ "dtype": "int32",
1135
+ "_type": "Value"
1136
+ },
1137
+ "annotator_id": {
1138
+ "dtype": "string",
1139
+ "_type": "Value"
1140
+ },
1141
+ "answer": {
1142
+ "dtype": "string",
1143
+ "_type": "Value"
1144
+ },
1145
+ "answer_label": {
1146
+ "names": [
1147
+ "B",
1148
+ "X",
1149
+ "A"
1150
+ ],
1151
+ "_type": "ClassLabel"
1152
+ }
1153
+ },
1154
+ "homepage": "https://github.com/ukplab/acl2019-GPPL-humour-metaphor",
1155
+ "license": "",
1156
+ "size_in_bytes": 51207441,
1157
+ "splits": {
1158
+ "train": {
1159
+ "name": "train",
1160
+ "num_bytes": 28161248,
1161
+ "num_examples": 97410,
1162
+ "dataset_name": "tid8"
1163
+ },
1164
+ "test": {
1165
+ "name": "test",
1166
+ "num_bytes": 12584212,
1167
+ "num_examples": 43640,
1168
+ "dataset_name": "tid8"
1169
+ }
1170
+ },
1171
+ "version": {
1172
+ "version_str": "1.0.3",
1173
+ "major": 1,
1174
+ "minor": 0,
1175
+ "patch": 3
1176
+ }
1177
+ },
1178
+ "md-agreement-ann": {
1179
+ "builder_name": "tid8",
1180
+ "citation": "@inproceedings{leonardelli-etal-2021-agreeing,\n title = \"Agreeing to Disagree: Annotating Offensive Language Datasets with Annotators{'} Disagreement\",\n author = \"Leonardelli, Elisa and. Menini, Stefano and\n Palmero Aprosio, Alessio and\n Guerini, Marco and\n Tonelli, Sara\",\n booktitle = \"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing\",\n month = nov,\n year = \"2021\",\n address = \"Online and Punta Cana, Dominican Republic\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2021.emnlp-main.822\",\n pages = \"10528--10539\",\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
1181
+ "config_name": "md-agreement-ann",
1182
+ "dataset_name": "tid8",
1183
+ "dataset_size": 10293433,
1184
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nMultiDomain Agreement (Leonardelli\net al., 2021) is a hate speech classification dataset of\nEnglish tweets from three domains of Black Lives\nMatter, Election, and Covid-19, with a particular\nfocus on tweets that potentially leads to disagree-\nment.\nAnnotation Split:\nWe split the annotations for each annotator into train and test set.\n\nIn other words, the same set of annotators appear in both train, (val),\nand test sets.\n\nFor datasets that have splits originally, we follow the original split and remove\ndatapoints in test sets that are annotated by an annotator who is not in\nthe training set.\n\nFor datasets that do not have splits originally, we split the data into \ntrain and test set for convenience, you may further split the train set\ninto a train and val set.\n",
1185
+ "download_checksums": {
1186
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/md-agreement-ann.zip": {
1187
+ "num_bytes": 1414114,
1188
+ "checksum": null
1189
+ }
1190
+ },
1191
+ "download_size": 1414114,
1192
+ "features": {
1193
+ "task": {
1194
+ "dtype": "string",
1195
+ "_type": "Value"
1196
+ },
1197
+ "original_id": {
1198
+ "dtype": "string",
1199
+ "_type": "Value"
1200
+ },
1201
+ "domain": {
1202
+ "dtype": "string",
1203
+ "_type": "Value"
1204
+ },
1205
+ "question": {
1206
+ "dtype": "string",
1207
+ "_type": "Value"
1208
+ },
1209
+ "uid": {
1210
+ "dtype": "string",
1211
+ "_type": "Value"
1212
+ },
1213
+ "id": {
1214
+ "dtype": "int32",
1215
+ "_type": "Value"
1216
+ },
1217
+ "annotator_id": {
1218
+ "dtype": "string",
1219
+ "_type": "Value"
1220
+ },
1221
+ "answer": {
1222
+ "dtype": "string",
1223
+ "_type": "Value"
1224
+ },
1225
+ "answer_label": {
1226
+ "names": [
1227
+ "offensive_speech",
1228
+ "not_offensive_speech"
1229
+ ],
1230
+ "_type": "ClassLabel"
1231
+ }
1232
+ },
1233
+ "homepage": "https://le-wi-di.github.io/",
1234
+ "license": "",
1235
+ "size_in_bytes": 11707547,
1236
+ "splits": {
1237
+ "train": {
1238
+ "name": "train",
1239
+ "num_bytes": 7794988,
1240
+ "num_examples": 32960,
1241
+ "dataset_name": "tid8"
1242
+ },
1243
+ "test": {
1244
+ "name": "test",
1245
+ "num_bytes": 2498445,
1246
+ "num_examples": 10553,
1247
+ "dataset_name": "tid8"
1248
+ }
1249
+ },
1250
+ "version": {
1251
+ "version_str": "1.0.3",
1252
+ "major": 1,
1253
+ "minor": 0,
1254
+ "patch": 3
1255
+ }
1256
+ },
1257
+ "md-agreement-atr": {
1258
+ "builder_name": "tid8",
1259
+ "citation": "@inproceedings{leonardelli-etal-2021-agreeing,\n title = \"Agreeing to Disagree: Annotating Offensive Language Datasets with Annotators{'} Disagreement\",\n author = \"Leonardelli, Elisa and. Menini, Stefano and\n Palmero Aprosio, Alessio and\n Guerini, Marco and\n Tonelli, Sara\",\n booktitle = \"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing\",\n month = nov,\n year = \"2021\",\n address = \"Online and Punta Cana, Dominican Republic\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2021.emnlp-main.822\",\n pages = \"10528--10539\",\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
1260
+ "config_name": "md-agreement-atr",
1261
+ "dataset_name": "tid8",
1262
+ "dataset_size": 12734106,
1263
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nMultiDomain Agreement (Leonardelli\net al., 2021) is a hate speech classification dataset of\nEnglish tweets from three domains of Black Lives\nMatter, Election, and Covid-19, with a particular\nfocus on tweets that potentially leads to disagree-\nment.\nAnnotator Split:\nWe split annotators into train and test set.\n\nIn other words, a different set of annotators would appear in train and test sets.\n\nWe split the data into train and test set for convenience, you may consider\nfurther splitting the train set into a train and val set for performance validation.\n",
1264
+ "download_checksums": {
1265
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/md-agreement-atr.zip": {
1266
+ "num_bytes": 4121140,
1267
+ "checksum": null
1268
+ }
1269
+ },
1270
+ "download_size": 4121140,
1271
+ "features": {
1272
+ "task": {
1273
+ "dtype": "string",
1274
+ "_type": "Value"
1275
+ },
1276
+ "original_id": {
1277
+ "dtype": "string",
1278
+ "_type": "Value"
1279
+ },
1280
+ "domain": {
1281
+ "dtype": "string",
1282
+ "_type": "Value"
1283
+ },
1284
+ "question": {
1285
+ "dtype": "string",
1286
+ "_type": "Value"
1287
+ },
1288
+ "uid": {
1289
+ "dtype": "string",
1290
+ "_type": "Value"
1291
+ },
1292
+ "id": {
1293
+ "dtype": "int32",
1294
+ "_type": "Value"
1295
+ },
1296
+ "annotator_id": {
1297
+ "dtype": "string",
1298
+ "_type": "Value"
1299
+ },
1300
+ "answer": {
1301
+ "dtype": "string",
1302
+ "_type": "Value"
1303
+ },
1304
+ "answer_label": {
1305
+ "names": [
1306
+ "offensive_speech",
1307
+ "not_offensive_speech"
1308
+ ],
1309
+ "_type": "ClassLabel"
1310
+ }
1311
+ },
1312
+ "homepage": "https://le-wi-di.github.io/",
1313
+ "license": "",
1314
+ "size_in_bytes": 16855246,
1315
+ "splits": {
1316
+ "train": {
1317
+ "name": "train",
1318
+ "num_bytes": 8777085,
1319
+ "num_examples": 37077,
1320
+ "dataset_name": "tid8"
1321
+ },
1322
+ "test": {
1323
+ "name": "test",
1324
+ "num_bytes": 3957021,
1325
+ "num_examples": 16688,
1326
+ "dataset_name": "tid8"
1327
+ }
1328
+ },
1329
+ "version": {
1330
+ "version_str": "1.0.3",
1331
+ "major": 1,
1332
+ "minor": 0,
1333
+ "patch": 3
1334
+ }
1335
+ },
1336
+ "pejorative-ann": {
1337
+ "builder_name": "tid8",
1338
+ "citation": "@inproceedings{dinu-etal-2021-computational-exploration,\n title = \"A Computational Exploration of Pejorative Language in Social Media\",\n author = \"Dinu, Liviu P. and\n Iordache, Ioan-Bogdan and\n Uban, Ana Sabina and\n Zampieri, Marcos\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2021\",\n month = nov,\n year = \"2021\",\n address = \"Punta Cana, Dominican Republic\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2021.findings-emnlp.296\",\n doi = \"10.18653/v1/2021.findings-emnlp.296\",\n pages = \"3493--3498\"\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
1339
+ "config_name": "pejorative-ann",
1340
+ "dataset_name": "tid8",
1341
+ "dataset_size": 501628,
1342
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nPejorative (Dinu et al., 2021) classifies\nwhether Tweets contain words that are used pejora-\ntively. By definition, pejorative words are words or\nphrases that have negative connotations or that are\nintended to disparage or belittle.\nAnnotation Split:\nWe split the annotations for each annotator into train and test set.\n\nIn other words, the same set of annotators appear in both train, (val),\nand test sets.\n\nFor datasets that have splits originally, we follow the original split and remove\ndatapoints in test sets that are annotated by an annotator who is not in\nthe training set.\n\nFor datasets that do not have splits originally, we split the data into \ntrain and test set for convenience, you may further split the train set\ninto a train and val set.\n",
1343
+ "download_checksums": {
1344
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/pejorative-ann.zip": {
1345
+ "num_bytes": 142769,
1346
+ "checksum": null
1347
+ }
1348
+ },
1349
+ "download_size": 142769,
1350
+ "features": {
1351
+ "pejor_word": {
1352
+ "dtype": "string",
1353
+ "_type": "Value"
1354
+ },
1355
+ "word_definition": {
1356
+ "dtype": "string",
1357
+ "_type": "Value"
1358
+ },
1359
+ "annotator-1": {
1360
+ "dtype": "string",
1361
+ "_type": "Value"
1362
+ },
1363
+ "annotator-2": {
1364
+ "dtype": "string",
1365
+ "_type": "Value"
1366
+ },
1367
+ "annotator-3": {
1368
+ "dtype": "string",
1369
+ "_type": "Value"
1370
+ },
1371
+ "question": {
1372
+ "dtype": "string",
1373
+ "_type": "Value"
1374
+ },
1375
+ "uid": {
1376
+ "dtype": "string",
1377
+ "_type": "Value"
1378
+ },
1379
+ "id": {
1380
+ "dtype": "int32",
1381
+ "_type": "Value"
1382
+ },
1383
+ "annotator_id": {
1384
+ "dtype": "string",
1385
+ "_type": "Value"
1386
+ },
1387
+ "answer": {
1388
+ "dtype": "string",
1389
+ "_type": "Value"
1390
+ },
1391
+ "answer_label": {
1392
+ "names": [
1393
+ "pejorative",
1394
+ "non-pejorative",
1395
+ "undecided"
1396
+ ],
1397
+ "_type": "ClassLabel"
1398
+ }
1399
+ },
1400
+ "homepage": "https://nlp.unibuc.ro/resources.html",
1401
+ "license": "",
1402
+ "size_in_bytes": 644397,
1403
+ "splits": {
1404
+ "train": {
1405
+ "name": "train",
1406
+ "num_bytes": 350734,
1407
+ "num_examples": 1535,
1408
+ "dataset_name": "tid8"
1409
+ },
1410
+ "test": {
1411
+ "name": "test",
1412
+ "num_bytes": 150894,
1413
+ "num_examples": 659,
1414
+ "dataset_name": "tid8"
1415
+ }
1416
+ },
1417
+ "version": {
1418
+ "version_str": "1.0.3",
1419
+ "major": 1,
1420
+ "minor": 0,
1421
+ "patch": 3
1422
+ }
1423
+ },
1424
+ "pejorative-atr": {
1425
+ "builder_name": "tid8",
1426
+ "citation": "@inproceedings{dinu-etal-2021-computational-exploration,\n title = \"A Computational Exploration of Pejorative Language in Social Media\",\n author = \"Dinu, Liviu P. and\n Iordache, Ioan-Bogdan and\n Uban, Ana Sabina and\n Zampieri, Marcos\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2021\",\n month = nov,\n year = \"2021\",\n address = \"Punta Cana, Dominican Republic\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2021.findings-emnlp.296\",\n doi = \"10.18653/v1/2021.findings-emnlp.296\",\n pages = \"3493--3498\"\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
1427
+ "config_name": "pejorative-atr",
1428
+ "dataset_name": "tid8",
1429
+ "dataset_size": 501628,
1430
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nPejorative (Dinu et al., 2021) classifies\nwhether Tweets contain words that are used pejora-\ntively. By definition, pejorative words are words or\nphrases that have negative connotations or that are\nintended to disparage or belittle.\nAnnotator Split:\nWe split annotators into train and test set.\n\nIn other words, a different set of annotators would appear in train and test sets.\n\nWe split the data into train and test set for convenience, you may consider\nfurther splitting the train set into a train and val set for performance validation.\n",
1431
+ "download_checksums": {
1432
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/pejorative-atr.zip": {
1433
+ "num_bytes": 135023,
1434
+ "checksum": null
1435
+ }
1436
+ },
1437
+ "download_size": 135023,
1438
+ "features": {
1439
+ "pejor_word": {
1440
+ "dtype": "string",
1441
+ "_type": "Value"
1442
+ },
1443
+ "word_definition": {
1444
+ "dtype": "string",
1445
+ "_type": "Value"
1446
+ },
1447
+ "annotator-1": {
1448
+ "dtype": "string",
1449
+ "_type": "Value"
1450
+ },
1451
+ "annotator-2": {
1452
+ "dtype": "string",
1453
+ "_type": "Value"
1454
+ },
1455
+ "annotator-3": {
1456
+ "dtype": "string",
1457
+ "_type": "Value"
1458
+ },
1459
+ "question": {
1460
+ "dtype": "string",
1461
+ "_type": "Value"
1462
+ },
1463
+ "uid": {
1464
+ "dtype": "string",
1465
+ "_type": "Value"
1466
+ },
1467
+ "id": {
1468
+ "dtype": "int32",
1469
+ "_type": "Value"
1470
+ },
1471
+ "annotator_id": {
1472
+ "dtype": "string",
1473
+ "_type": "Value"
1474
+ },
1475
+ "answer": {
1476
+ "dtype": "string",
1477
+ "_type": "Value"
1478
+ },
1479
+ "answer_label": {
1480
+ "names": [
1481
+ "pejorative",
1482
+ "non-pejorative",
1483
+ "undecided"
1484
+ ],
1485
+ "_type": "ClassLabel"
1486
+ }
1487
+ },
1488
+ "homepage": "https://nlp.unibuc.ro/resources.html",
1489
+ "license": "",
1490
+ "size_in_bytes": 636651,
1491
+ "splits": {
1492
+ "train": {
1493
+ "name": "train",
1494
+ "num_bytes": 254138,
1495
+ "num_examples": 1112,
1496
+ "dataset_name": "tid8"
1497
+ },
1498
+ "test": {
1499
+ "name": "test",
1500
+ "num_bytes": 247490,
1501
+ "num_examples": 1082,
1502
+ "dataset_name": "tid8"
1503
+ }
1504
+ },
1505
+ "version": {
1506
+ "version_str": "1.0.3",
1507
+ "major": 1,
1508
+ "minor": 0,
1509
+ "patch": 3
1510
+ }
1511
+ },
1512
+ "sentiment-ann": {
1513
+ "builder_name": "tid8",
1514
+ "citation": "@inproceedings{diaz2018addressing,\n title={Addressing age-related bias in sentiment analysis},\n author={D{'\\i}az, Mark and Johnson, Isaac and Lazar, Amanda and Piper, Anne Marie and Gergle, Darren},\n booktitle={Proceedings of the 2018 chi conference on human factors in computing systems},\n pages={1--14},\n year={2018}\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
1515
+ "config_name": "sentiment-ann",
1516
+ "dataset_name": "tid8",
1517
+ "dataset_size": 9585346,
1518
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nSentiment Analysis (D\u00edaz et al., 2018) is a\nsentiment classification dataset originally used to\ndetect age-related sentiments.\nAnnotation Split:\nWe split the annotations for each annotator into train and test set.\n\nIn other words, the same set of annotators appear in both train, (val),\nand test sets.\n\nFor datasets that have splits originally, we follow the original split and remove\ndatapoints in test sets that are annotated by an annotator who is not in\nthe training set.\n\nFor datasets that do not have splits originally, we split the data into \ntrain and test set for convenience, you may further split the train set\ninto a train and val set.\n",
1519
+ "download_checksums": {
1520
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/sentiment-ann.zip": {
1521
+ "num_bytes": 3371941,
1522
+ "checksum": null
1523
+ }
1524
+ },
1525
+ "download_size": 3371941,
1526
+ "features": {
1527
+ "question": {
1528
+ "dtype": "string",
1529
+ "_type": "Value"
1530
+ },
1531
+ "uid": {
1532
+ "dtype": "string",
1533
+ "_type": "Value"
1534
+ },
1535
+ "id": {
1536
+ "dtype": "int32",
1537
+ "_type": "Value"
1538
+ },
1539
+ "annotator_id": {
1540
+ "dtype": "string",
1541
+ "_type": "Value"
1542
+ },
1543
+ "answer": {
1544
+ "dtype": "string",
1545
+ "_type": "Value"
1546
+ },
1547
+ "answer_label": {
1548
+ "names": [
1549
+ "Neutral",
1550
+ "Somewhat positive",
1551
+ "Very negative",
1552
+ "Somewhat negative",
1553
+ "Very positive"
1554
+ ],
1555
+ "_type": "ClassLabel"
1556
+ }
1557
+ },
1558
+ "homepage": "https://dataverse.harvard.edu/dataverse/algorithm-age-bias",
1559
+ "license": "",
1560
+ "size_in_bytes": 12957287,
1561
+ "splits": {
1562
+ "train": {
1563
+ "name": "train",
1564
+ "num_bytes": 9350333,
1565
+ "num_examples": 59235,
1566
+ "dataset_name": "tid8"
1567
+ },
1568
+ "test": {
1569
+ "name": "test",
1570
+ "num_bytes": 235013,
1571
+ "num_examples": 1419,
1572
+ "dataset_name": "tid8"
1573
+ }
1574
+ },
1575
+ "version": {
1576
+ "version_str": "1.0.3",
1577
+ "major": 1,
1578
+ "minor": 0,
1579
+ "patch": 3
1580
+ }
1581
+ },
1582
+ "sentiment-atr": {
1583
+ "builder_name": "tid8",
1584
+ "citation": "@inproceedings{diaz2018addressing,\n title={Addressing age-related bias in sentiment analysis},\n author={D{'\\i}az, Mark and Johnson, Isaac and Lazar, Amanda and Piper, Anne Marie and Gergle, Darren},\n booktitle={Proceedings of the 2018 chi conference on human factors in computing systems},\n pages={1--14},\n year={2018}\n}\n@inproceedings{deng2023tid8,\n title={You Are What You Annotate: Towards Better Models through Annotator Representations},\n author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},\n booktitle={Findings of EMNLP 2023},\n year={2023}\n}\nNote that each TID-8 dataset has its own citation. Please see the source to\nget the correct citation for each contained dataset.\n",
1585
+ "config_name": "sentiment-atr",
1586
+ "dataset_name": "tid8",
1587
+ "dataset_size": 9585346,
1588
+ "description": "TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.\n\nSentiment Analysis (D\u00edaz et al., 2018) is a\nsentiment classification dataset originally used to\ndetect age-related sentiments.\nAnnotator Split:\nWe split annotators into train and test set.\n\nIn other words, a different set of annotators would appear in train and test sets.\n\nWe split the data into train and test set for convenience, you may consider\nfurther splitting the train set into a train and val set for performance validation.\n",
1589
+ "download_checksums": {
1590
+ "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data/sentiment-atr.zip": {
1591
+ "num_bytes": 3352022,
1592
+ "checksum": null
1593
+ }
1594
+ },
1595
+ "download_size": 3352022,
1596
+ "features": {
1597
+ "question": {
1598
+ "dtype": "string",
1599
+ "_type": "Value"
1600
+ },
1601
+ "uid": {
1602
+ "dtype": "string",
1603
+ "_type": "Value"
1604
+ },
1605
+ "id": {
1606
+ "dtype": "int32",
1607
+ "_type": "Value"
1608
+ },
1609
+ "annotator_id": {
1610
+ "dtype": "string",
1611
+ "_type": "Value"
1612
+ },
1613
+ "answer": {
1614
+ "dtype": "string",
1615
+ "_type": "Value"
1616
+ },
1617
+ "answer_label": {
1618
+ "names": [
1619
+ "Neutral",
1620
+ "Somewhat positive",
1621
+ "Very negative",
1622
+ "Somewhat negative",
1623
+ "Very positive"
1624
+ ],
1625
+ "_type": "ClassLabel"
1626
+ }
1627
+ },
1628
+ "homepage": "https://dataverse.harvard.edu/dataverse/algorithm-age-bias",
1629
+ "license": "",
1630
+ "size_in_bytes": 12937368,
1631
+ "splits": {
1632
+ "train": {
1633
+ "name": "train",
1634
+ "num_bytes": 6712084,
1635
+ "num_examples": 42439,
1636
+ "dataset_name": "tid8"
1637
+ },
1638
+ "test": {
1639
+ "name": "test",
1640
+ "num_bytes": 2873262,
1641
+ "num_examples": 18215,
1642
+ "dataset_name": "tid8"
1643
+ }
1644
+ },
1645
+ "version": {
1646
+ "version_str": "1.0.3",
1647
+ "major": 1,
1648
+ "minor": 0,
1649
+ "patch": 3
1650
+ }
1651
+ },
1652
+ }
tid8.py ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """The TID-8 (The Inherent-Disagreement-8 datasets) benchmark"""
18
+
19
+
20
+ import json
21
+ import os
22
+
23
+ import datasets
24
+
25
+
26
+ _TID_8_CITATION = """\
27
+ @inproceedings{deng2023tid8,
28
+ title={You Are What You Annotate: Towards Better Models through Annotator Representations},
29
+ author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},
30
+ booktitle={Findings of EMNLP 2023},
31
+ year={2023}
32
+ }
33
+ Note that each TID-8 dataset has its own citation. Please see the source to
34
+ get the correct citation for each contained dataset.
35
+ """
36
+
37
+ _TID_8_DESCRIPTION = """\
38
+ TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.
39
+ """
40
+
41
+ _FIA_DESCRIPTION = """\
42
+ Friends QIA (Damgaard et al., 2021) is a
43
+ corpus of classifying indirect answers to polar questions."""
44
+
45
+ _PEJ_DESCRIPTION = """\
46
+ Pejorative (Dinu et al., 2021) classifies
47
+ whether Tweets contain words that are used pejora-
48
+ tively. By definition, pejorative words are words or
49
+ phrases that have negative connotations or that are
50
+ intended to disparage or belittle."""
51
+
52
+ _HSB_DESCRIPTION = """\
53
+ HS-Brexit (Akhtar et al., 2021) is an abu-
54
+ sive language detection corpus on Brexit belonging
55
+ to two distinct groups: a target group of three Mus-
56
+ lim immigrants in the UK, and a control group of
57
+ three other individuals."""
58
+
59
+ _MDA_DESCRIPTION = """\
60
+ MultiDomain Agreement (Leonardelli
61
+ et al., 2021) is a hate speech classification dataset of
62
+ English tweets from three domains of Black Lives
63
+ Matter, Election, and Covid-19, with a particular
64
+ focus on tweets that potentially leads to disagree-
65
+ ment."""
66
+
67
+ _GOE_DESCRIPTION = """\
68
+ Go Emotions (Demszky et al., 2020) is a
69
+ fine-grained emotion classification corpus of care-
70
+ fully curated comments extracted from Reddit. We
71
+ group emotions into four categories following sen-
72
+ timent level divides in the original paper."""
73
+
74
+ _HUM_DESCRIPTION = """\
75
+ Humor (Simpson et al., 2019) is a corpus
76
+ of online texts for pairwise humorousness compari-
77
+ son"""
78
+
79
+ _COM_DESCRIPTION = """\
80
+ CommitmentBank (De Marneffe et al.,
81
+ 2019) is an NLI dataset. It contains naturally oc-
82
+ curring discourses whose final sentence contains
83
+ a clause-embedding predicate under an entailment
84
+ canceling operator (question, modal, negation, an-
85
+ tecedent of conditional)."""
86
+
87
+ _SNT_DESCRIPTION = """\
88
+ Sentiment Analysis (Díaz et al., 2018) is a
89
+ sentiment classification dataset originally used to
90
+ detect age-related sentiments."""
91
+
92
+ _ANNOTATION_SPLIT_DESCRIPTION = """\
93
+ Annotation Split:
94
+ We split the annotations for each annotator into train and test set.
95
+
96
+ In other words, the same set of annotators appear in both train, (val),
97
+ and test sets.
98
+
99
+ For datasets that have splits originally, we follow the original split and remove
100
+ datapoints in test sets that are annotated by an annotator who is not in
101
+ the training set.
102
+
103
+ For datasets that do not have splits originally, we split the data into
104
+ train and test set for convenience, you may further split the train set
105
+ into a train and val set.
106
+ """
107
+
108
+ _ANNOTATOR_SPLIT_DESCRIPTION = """\
109
+ Annotator Split:
110
+ We split annotators into train and test set.
111
+
112
+ In other words, a different set of annotators would appear in train and test sets.
113
+
114
+ We split the data into train and test set for convenience, you may consider
115
+ further splitting the train set into a train and val set for performance validation.
116
+ """
117
+
118
+
119
+ _FIA_CITATION = """\
120
+ @inproceedings{damgaard-etal-2021-ill,
121
+ title = "{``}{I}{'}ll be there for you{''}: The One with Understanding Indirect Answers",
122
+ author = "Damgaard, Cathrine and
123
+ Toborek, Paulina and
124
+ Eriksen, Trine and
125
+ Plank, Barbara",
126
+ booktitle = "Proceedings of the 2nd Workshop on Computational Approaches to Discourse",
127
+ month = nov,
128
+ year = "2021",
129
+ address = "Punta Cana, Dominican Republic and Online",
130
+ publisher = "Association for Computational Linguistics",
131
+ url = "https://aclanthology.org/2021.codi-main.1",
132
+ doi = "10.18653/v1/2021.codi-main.1",
133
+ pages = "1--11",
134
+ }"""
135
+
136
+ _PEJ_CITATION = """\
137
+ @inproceedings{dinu-etal-2021-computational-exploration,
138
+ title = "A Computational Exploration of Pejorative Language in Social Media",
139
+ author = "Dinu, Liviu P. and
140
+ Iordache, Ioan-Bogdan and
141
+ Uban, Ana Sabina and
142
+ Zampieri, Marcos",
143
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
144
+ month = nov,
145
+ year = "2021",
146
+ address = "Punta Cana, Dominican Republic",
147
+ publisher = "Association for Computational Linguistics",
148
+ url = "https://aclanthology.org/2021.findings-emnlp.296",
149
+ doi = "10.18653/v1/2021.findings-emnlp.296",
150
+ pages = "3493--3498"
151
+ }"""
152
+
153
+ _HSB_CITATION = """\
154
+ @article{akhtar2021whose,
155
+ title={Whose opinions matter? perspective-aware models to identify opinions of hate speech victims in abusive language detection},
156
+ author={Akhtar, Sohail and Basile, Valerio and Patti, Viviana},
157
+ journal={arXiv preprint arXiv:2106.15896},
158
+ year={2021}
159
+ }"""
160
+
161
+ _MDA_CITATION = """\
162
+ @inproceedings{leonardelli-etal-2021-agreeing,
163
+ title = "Agreeing to Disagree: Annotating Offensive Language Datasets with Annotators{'} Disagreement",
164
+ author = "Leonardelli, Elisa and. Menini, Stefano and
165
+ Palmero Aprosio, Alessio and
166
+ Guerini, Marco and
167
+ Tonelli, Sara",
168
+ booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
169
+ month = nov,
170
+ year = "2021",
171
+ address = "Online and Punta Cana, Dominican Republic",
172
+ publisher = "Association for Computational Linguistics",
173
+ url = "https://aclanthology.org/2021.emnlp-main.822",
174
+ pages = "10528--10539",
175
+ }"""
176
+
177
+ _GOE_CITATION = """\
178
+ @inproceedings{demszky-etal-2020-goemotions,
179
+ title = "{G}o{E}motions: A Dataset of Fine-Grained Emotions",
180
+ author = "Demszky, Dorottya and
181
+ Movshovitz-Attias, Dana and
182
+ Ko, Jeongwoo and
183
+ Cowen, Alan and
184
+ Nemade, Gaurav and
185
+ Ravi, Sujith",
186
+ booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
187
+ month = jul,
188
+ year = "2020",
189
+ address = "Online",
190
+ publisher = "Association for Computational Linguistics",
191
+ url = "https://aclanthology.org/2020.acl-main.372",
192
+ doi = "10.18653/v1/2020.acl-main.372",
193
+ pages = "4040--4054"
194
+ }"""
195
+
196
+ _HUM_CITATION = """\
197
+ @inproceedings{simpson-etal-2019-predicting,
198
+ title = "Predicting Humorousness and Metaphor Novelty with {G}aussian Process Preference Learning",
199
+ author = "Simpson, Edwin and
200
+ Do Dinh, Erik-L{\^a}n and
201
+ Miller, Tristan and
202
+ Gurevych, Iryna",
203
+ booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
204
+ month = jul,
205
+ year = "2019",
206
+ address = "Florence, Italy",
207
+ publisher = "Association for Computational Linguistics",
208
+ url = "https://aclanthology.org/P19-1572",
209
+ doi = "10.18653/v1/P19-1572",
210
+ pages = "5716--5728"
211
+ }"""
212
+
213
+ _COM_CITATION = """\
214
+ @inproceedings{de2019commitmentbank,
215
+ title={The commitmentbank: Investigating projection in naturally occurring discourse},
216
+ author={De Marneffe, Marie-Catherine and Simons, Mandy and Tonhauser, Judith},
217
+ booktitle={proceedings of Sinn und Bedeutung},
218
+ volume={23},
219
+ number={2},
220
+ pages={107--124},
221
+ year={2019}
222
+ }"""
223
+
224
+ _SNT_CITATION = """\
225
+ @inproceedings{diaz2018addressing,
226
+ title={Addressing age-related bias in sentiment analysis},
227
+ author={D{\'\i}az, Mark and Johnson, Isaac and Lazar, Amanda and Piper, Anne Marie and Gergle, Darren},
228
+ booktitle={Proceedings of the 2018 chi conference on human factors in computing systems},
229
+ pages={1--14},
230
+ year={2018}
231
+ }"""
232
+
233
+
234
+
235
+ class TID8Config(datasets.BuilderConfig):
236
+ """BuilderConfig for TID-8."""
237
+
238
+ def __init__(self, features, data_url, citation, url, label_classes=("False", "True"),\
239
+ task=None, **kwargs):
240
+ """BuilderConfig for TID-8.
241
+ Args:
242
+ features: `list[string]`, list of the features that will appear in the
243
+ feature dict. Should not include "label".
244
+ data_url: `string`, url to download the zip file from.
245
+ citation: `string`, citation for the data set.
246
+ url: `string`, url for information about the data set.
247
+ label_classes: `list[string]`, the list of classes for the label if the
248
+ label is present as a string. Non-string labels will be cast to either
249
+ 'False' or 'True'.
250
+ **kwargs: keyword arguments forwarded to super.
251
+ """
252
+ # Version history:
253
+ # 0.0.2: Initial version.
254
+ super(TID8Config, self).__init__(version=datasets.Version("1.0.3"), **kwargs)
255
+ self.features = features
256
+ self.label_classes = label_classes
257
+ self.data_url = data_url
258
+ self.citation = citation
259
+ self.url = url
260
+ self.task = task
261
+
262
+ BASE_URL = "https://raw.githubusercontent.com/MichiganNLP/tid8-dataset/main/huggingface-data"
263
+
264
+ class TID8Glue(datasets.GeneratorBasedBuilder):
265
+ """The TID-8 benchmark."""
266
+
267
+ BUILDER_CONFIGS = [
268
+ TID8Config(
269
+ name="friends_qia-ann",
270
+ description=_FIA_DESCRIPTION,
271
+ features=["Season", "Episode", "Category", "Q_person", \
272
+ "A_person", "Q_original", "Q_modified", "A_modified", "Annotation_1", "Annotation_2", \
273
+ "Annotation_3", "Goldstandard"],
274
+ label_classes=["1", "2", "3", "4", "5"],
275
+ data_url=f"{BASE_URL}/friends_qia-ann.zip",
276
+ citation=_FIA_CITATION,
277
+ url="https://github.com/friendsQIA/Friends_QIA",
278
+ task="indirect_ans"
279
+ ),
280
+ TID8Config(
281
+ name="pejorative-ann",
282
+ description=_PEJ_DESCRIPTION,
283
+ features=["pejor_word", "word_definition", "annotator-1", "annotator-2", "annotator-3"],
284
+ label_classes=["pejorative", "non-pejorative", "undecided"],
285
+ data_url=f"{BASE_URL}/pejorative-ann.zip",
286
+ citation=_PEJ_CITATION,
287
+ url="https://nlp.unibuc.ro/resources.html",
288
+ task="pejorative"
289
+ ),
290
+ TID8Config(
291
+ name="hs_brexit-ann",
292
+ description=_HSB_DESCRIPTION,
293
+ features=["other annotations"], # List
294
+ label_classes=["hate_speech", "not_hate_speech"],
295
+ data_url=f"{BASE_URL}/hs_brexit-ann.zip",
296
+ citation=_HSB_CITATION,
297
+ url="https://le-wi-di.github.io/",
298
+ task="hs_brexit"
299
+ ),
300
+ TID8Config(
301
+ name="md-agreement-ann",
302
+ description=_MDA_DESCRIPTION,
303
+ features=["task", "original_id", "domain"],
304
+ label_classes=["offensive_speech", "not_offensive_speech"],
305
+ data_url=f"{BASE_URL}/md-agreement-ann.zip",
306
+ citation=_MDA_CITATION,
307
+ url="https://le-wi-di.github.io/",
308
+ task="offensive"
309
+ ),
310
+ TID8Config(
311
+ name="goemotions-ann",
312
+ description=_GOE_DESCRIPTION,
313
+ features=["author", "subreddit", "link_id", "parent_id", "created_utc", "rater_id", \
314
+ "example_very_unclear", "admiration", "amusement", "anger", "annoyance", "approval", \
315
+ "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", \
316
+ "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", \
317
+ "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", \
318
+ "sadness", "surprise", "neutral"],
319
+ label_classes=["positive", "ambiguous", "negative", "neutral"],
320
+ data_url=f"{BASE_URL}/goemotions-ann.zip",
321
+ citation=_GOE_CITATION,
322
+ url="https://github.com/google-research/google-research/tree/master/goemotions",
323
+ task="emotion"
324
+ ),
325
+ TID8Config(
326
+ name="humor-ann",
327
+ description=_HUM_DESCRIPTION,
328
+ features=["text_a", "text_b"],
329
+ label_classes=["B", "X", "A"],
330
+ data_url=f"{BASE_URL}/humor-ann.zip",
331
+ citation=_HUM_CITATION,
332
+ url="https://github.com/ukplab/acl2019-GPPL-humour-metaphor",
333
+ task="humor"
334
+ ),
335
+ TID8Config(
336
+ name="commitmentbank-ann",
337
+ description=_COM_DESCRIPTION,
338
+ ## weak_labels are a list
339
+ features=["HitID", "Verb", "Context", "Prompt", "Target", "ModalType", \
340
+ "Embedding", "MatTense", "weak_labels"],
341
+ label_classes=["0", "1", "2", "3", "-3", "-1", "-2"],
342
+ data_url=f"{BASE_URL}/commitmentbank-ann.zip",
343
+ citation=_COM_CITATION,
344
+ url="https://github.com/mcdm/CommitmentBank",
345
+ task="certainty"
346
+ ),
347
+ TID8Config(
348
+ name="sentiment-ann",
349
+ description=_SNT_DESCRIPTION,
350
+ features=[],
351
+ label_classes=["Neutral", "Somewhat positive", "Very negative", "Somewhat negative", "Very positive"],
352
+ data_url=f"{BASE_URL}/sentiment-ann.zip",
353
+ citation=_SNT_CITATION,
354
+ url="https://dataverse.harvard.edu/dataverse/algorithm-age-bias",
355
+ task="sentiment"
356
+ ),
357
+ TID8Config(
358
+ name="friends_qia-atr",
359
+ description=_FIA_DESCRIPTION,
360
+ features=["Season", "Episode", "Category", "Q_person", \
361
+ "A_person", "Q_original", "Q_modified", "A_modified", "Annotation_1", "Annotation_2", \
362
+ "Annotation_3", "Goldstandard"],
363
+ label_classes=["1", "2", "3", "4", "5"],
364
+ data_url=f"{BASE_URL}/friends_qia-atr.zip",
365
+ citation=_FIA_CITATION,
366
+ url="https://github.com/friendsQIA/Friends_QIA",
367
+ task="indirect_ans"
368
+ ),
369
+ TID8Config(
370
+ name="pejorative-atr",
371
+ description=_PEJ_DESCRIPTION,
372
+ features=["pejor_word", "word_definition", "annotator-1", "annotator-2", "annotator-3"],
373
+ label_classes=["pejorative", "non-pejorative", "undecided"],
374
+ data_url=f"{BASE_URL}/pejorative-atr.zip",
375
+ citation=_PEJ_CITATION,
376
+ url="https://nlp.unibuc.ro/resources.html",
377
+ task="pejorative"
378
+ ),
379
+ TID8Config(
380
+ name="hs_brexit-atr",
381
+ description=_HSB_DESCRIPTION,
382
+ features=["other annotations"], # List
383
+ label_classes=["hate_speech", "not_hate_speech"],
384
+ data_url=f"{BASE_URL}/hs_brexit-atr.zip",
385
+ citation=_HSB_CITATION,
386
+ url="https://le-wi-di.github.io/",
387
+ task="hs_brexit"
388
+ ),
389
+ TID8Config(
390
+ name="md-agreement-atr",
391
+ description=_MDA_DESCRIPTION,
392
+ features=["task", "original_id", "domain"],
393
+ label_classes=["offensive_speech", "not_offensive_speech"],
394
+ data_url=f"{BASE_URL}/md-agreement-atr.zip",
395
+ citation=_MDA_CITATION,
396
+ url="https://le-wi-di.github.io/",
397
+ task="offensive"
398
+ ),
399
+ TID8Config(
400
+ name="goemotions-atr",
401
+ description=_GOE_DESCRIPTION,
402
+ features=["author", "subreddit", "link_id", "parent_id", "created_utc", "rater_id", \
403
+ "example_very_unclear", "admiration", "amusement", "anger", "annoyance", "approval", \
404
+ "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", \
405
+ "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", \
406
+ "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", \
407
+ "sadness", "surprise", "neutral"],
408
+ label_classes=["positive", "ambiguous", "negative", "neutral"],
409
+ data_url=f"{BASE_URL}/goemotions-atr.zip",
410
+ citation=_GOE_CITATION,
411
+ url="https://github.com/google-research/google-research/tree/master/goemotions",
412
+ task="emotion"
413
+ ),
414
+ TID8Config(
415
+ name="humor-atr",
416
+ description=_HUM_DESCRIPTION,
417
+ features=["text_a", "text_b"],
418
+ label_classes=["B", "X", "A"],
419
+ data_url=f"{BASE_URL}/humor-atr.zip",
420
+ citation=_HUM_CITATION,
421
+ url="https://github.com/ukplab/acl2019-GPPL-humour-metaphor",
422
+ task="humor"
423
+ ),
424
+ TID8Config(
425
+ name="commitmentbank-atr",
426
+ description=_COM_DESCRIPTION,
427
+ # weak_labels are a list
428
+ features=["HitID", "Verb", "Context", "Prompt", "Target", "ModalType", \
429
+ "Embedding", "MatTense", "weak_labels"],
430
+ label_classes=["0", "1", "2", "3", "-3", "-1", "-2"],
431
+ data_url=f"{BASE_URL}/commitmentbank-atr.zip",
432
+ citation=_COM_CITATION,
433
+ url="https://github.com/mcdm/CommitmentBank",
434
+ task="certainty"
435
+ ),
436
+ TID8Config(
437
+ name="sentiment-atr",
438
+ description=_SNT_DESCRIPTION,
439
+ features=[],
440
+ label_classes=["Neutral", "Somewhat positive", "Very negative", "Somewhat negative", "Very positive"],
441
+ data_url=f"{BASE_URL}/sentiment-atr.zip",
442
+ citation=_SNT_CITATION,
443
+ url="https://dataverse.harvard.edu/dataverse/algorithm-age-bias",
444
+ task="sentiment"
445
+ ),
446
+ ]
447
+
448
+ def _info(self):
449
+ features = {}
450
+ for feature in self.config.features:
451
+ if "commitmentbank" in self.config.name and feature == "weak_labels":
452
+ features[feature] = datasets.features.Sequence(datasets.Value("string"))
453
+ elif "hate_speech_brexit" in self.config.name and feature == "other annotations":
454
+ features[feature] = datasets.features.Sequence(datasets.Value("string"))
455
+ else:
456
+ features[feature] = datasets.Value("string")
457
+
458
+ features["question"] = datasets.Value("string")
459
+ features["uid"] = datasets.Value("string")
460
+ features["id"] = datasets.Value("int32")
461
+ features["annotator_id"] = datasets.Value("string")
462
+ features["answer"] = datasets.Value("string")
463
+ features["answer_label"] = datasets.features.ClassLabel(names=self.config.label_classes)
464
+
465
+ additional_split_descr = None
466
+ if self.config.name.endswith("-ann"):
467
+ additional_split_descr = _ANNOTATION_SPLIT_DESCRIPTION
468
+ else:
469
+ assert self.config.name.endswith("-atr")
470
+ additional_split_descr = _ANNOTATOR_SPLIT_DESCRIPTION
471
+ return datasets.DatasetInfo(
472
+ description=_TID_8_DESCRIPTION + "\n" + self.config.description + "\n" + additional_split_descr,
473
+ features=datasets.Features(features),
474
+ homepage=self.config.url,
475
+ citation=self.config.citation + "\n" + _TID_8_CITATION,
476
+ )
477
+
478
+ def _split_generators(self, dl_manager):
479
+ dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
480
+
481
+ splits = []
482
+ if self.config.name in {"friends_qia-ann", "multi-domain-agreement-ann"}:
483
+ splits.append(
484
+ datasets.SplitGenerator(
485
+ name=datasets.Split.VALIDATION,
486
+ gen_kwargs={
487
+ "data_file": os.path.join(dl_dir, self.config.name, "dev.jsonl"),
488
+ "split": datasets.Split.VALIDATION,
489
+ },
490
+ ),
491
+ )
492
+ splits.extend([
493
+ datasets.SplitGenerator(
494
+ name=datasets.Split.TRAIN,
495
+ gen_kwargs={
496
+ "data_file": os.path.join(dl_dir, self.config.name, "train.jsonl"),
497
+ "split": datasets.Split.TRAIN,
498
+ },
499
+ ),
500
+ datasets.SplitGenerator(
501
+ name=datasets.Split.TEST,
502
+ gen_kwargs={
503
+ "data_file": os.path.join(dl_dir, self.config.name, "test.jsonl"),
504
+ "split": datasets.Split.TEST,
505
+ },
506
+ ),
507
+ ])
508
+ return splits
509
+
510
+
511
+ def _generate_examples(self, data_file, split):
512
+ with open(data_file, encoding="utf-8") as f:
513
+ for i, line in enumerate(f):
514
+ row = json.loads(line)
515
+ example = {
516
+ "id": row["id"],
517
+ "uid": row["uid"],
518
+ "answer": row[self.config.task],
519
+ "answer_label": row[self.config.task],
520
+ "annotator_id": row["respondent_id"],
521
+ "question": row["sentence"]
522
+ }
523
+ for feature in self.config.features:
524
+ try:
525
+ example[feature] = row[feature]
526
+ except Exception:
527
+ print(row)
528
+ yield i, example