#!/usr/bin/env python3 import sys from pathlib import Path sys.path.append(Path(__file__).parents[1].__str__()) from functools import partial from dronescapes_reader import MultiTaskDataset, DepthRepresentation, OpticalFlowRepresentation, SemanticRepresentation from pprint import pprint from torch.utils.data import DataLoader import random def main(): sema_repr = partial(SemanticRepresentation, classes=8, color_map=[[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255], [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]) reader = MultiTaskDataset(sys.argv[1], handle_missing_data="fill_none", task_types={"depth_dpt": DepthRepresentation("depth_dpt", min_depth=0, max_depth=0.999), "depth_sfm_manual202204": DepthRepresentation("depth_sfm_manual202204", min_depth=0, max_depth=300), "opticalflow_rife": OpticalFlowRepresentation, "semantic_segprop8": sema_repr, "semantic_mask2former_swin_mapillary_converted": sema_repr}) print(reader) print("== Shapes ==") pprint(reader.data_shape) print("== Random loaded item ==") rand_ix = random.randint(0, len(reader)) data, name, repr_names = reader[rand_ix] # get a random item pprint({k: v for k, v in data.items()}) print("== Random loaded batch ==") batch_data, name, repr_names = reader[rand_ix: min(len(reader), rand_ix + 5)] # get a random batch pprint({k: v for k, v in batch_data.items()}) # Nones are converted to 0s automagically print("== Random loaded batch using torch DataLoader ==") loader = DataLoader(reader, collate_fn=reader.collate_fn, batch_size=5, shuffle=True) batch_data, name, repr_names = next(iter(loader)) pprint({k: v for k, v in batch_data.items()}) # Nones are converted to 0s automagically if __name__ == "__main__": main()