File size: 5,885 Bytes
17f5694 aed372c 32fa5d0 aed372c 32fa5d0 aed372c 32fa5d0 20384c4 3f98dbd 20384c4 3f98dbd 9f90158 3f98dbd 20384c4 32fa5d0 5764332 32fa5d0 5764332 32fa5d0 5764332 32fa5d0 4a51c88 5764332 32fa5d0 4a51c88 5764332 32fa5d0 20384c4 3f98dbd 32fa5d0 4a51c88 17f5694 aed372c e02b8f0 aed372c e02b8f0 aed372c e02b8f0 aed372c e02b8f0 aed372c e02b8f0 38c1005 e02b8f0 38c1005 e02b8f0 aed372c bae95b4 aed372c bae95b4 aed372c bae95b4 aed372c bae95b4 aed372c e02b8f0 29753d6 bae95b4 29753d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
language:
- en
license: mit
size_categories:
- 1K<n<10K
task_categories:
- text-generation
tags:
- math world problems
- math
- arithmetics
dataset_info:
- config_name: default
features:
- name: id
dtype: string
- name: question
dtype: string
- name: chain
dtype: string
- name: result
dtype: string
- name: result_float
dtype: float64
- name: equation
dtype: string
- name: expression
dtype: string
splits:
- name: train
num_bytes: 298347
num_examples: 1089
- name: validation
num_bytes: 285321
num_examples: 1040
- name: test
num_bytes: 142648
num_examples: 520
download_size: 0
dataset_size: 726316
- config_name: original-splits
features:
- name: id
dtype: string
- name: question
dtype: string
- name: chain
dtype: string
- name: result
dtype: string
- name: result_float
dtype: float64
- name: equation
dtype: string
- name: expression
dtype: string
splits:
- name: train
num_bytes: 1000546
num_examples: 3636
- name: test
num_bytes: 142648
num_examples: 520
- name: validation
num_bytes: 285321
num_examples: 1040
download_size: 128730
dataset_size: 1428515
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: original-splits
data_files:
- split: train
path: original-splits/train-*
- split: test
path: original-splits/test-*
- split: validation
path: original-splits/validation-*
---
# Dataset Card for Calc-MAWPS
## Summary
The dataset is a collection of simple math word problems focused on arithmetics. It is derived from <https://huggingface.co/datasets/omarxadel/MaWPS-ar>.
The main addition in this dataset variant is the `chain` column. It was created by converting the solution to a simple html-like language that can be easily
parsed (e.g. by BeautifulSoup). The data contains 3 types of tags:
- gadget: A tag whose content is intended to be evaluated by calling an external tool (sympy-based calculator in this case)
- output: An output of the external tool
- result: The final answer to the mathematical problem (a number)
## Supported Tasks
This variant of the dataset is intended for training Chain-of-Thought reasoning models able to use external tools to enhance the factuality of their responses.
This dataset presents in-context scenarios where models can outsource the computations in the reasoning chain to a calculator.
## Data splits
We provide 2 variants of the dataset. In the first one, the data splits correspond to the original one and can be loaded using:
```python
datasets.load_dataset("MU-NLPC/calc-mawps", "original-splits")
```
The second one is filtered to prevent data leaks (overly similar examples in train and test/val splits) in between and across datasets in [Calc-X collection](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).
Specifically, we filtered out around 2,500 near-duplicates from the train set that were similar to some instances in the MAWPS val and test splits and ASDiv-A test split. You can load this variant via:
```python
datasets.load_dataset("MU-NLPC/calc-mawps")
```
## Attributes:
- **id**: id of the example
- **question**: problem description in English
- **question_arabic**: problem description in Arabic
- **chain**: series of simple operations (derived from **expression**) that lead to the solution
- **result**: the solution for x as a number or fraction (string)
- **result_float**: same as `result` but converted to a float
- **equation**: an equation that needs to be solved for `x` to obtain the result. Usually in the form of "x = ..." but not always.
- **expression**: arithmetic expression derived from `equation` that solves it for `x`
Attributes **id**, **question**, **chain**, and **result** are present in all datasets in [Calc-X collection](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).
## Related work
This dataset was created as a part of a larger effort in training models capable of using a calculator during inference, which we call Calcformers.
- [**Calc-X collection**](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483) - datasets for training Calcformers
- [**Calcformers collection**](https://huggingface.co/collections/MU-NLPC/calcformers-65367392badc497807b3caf5) - calculator-using models we trained and published on HF
- [**Calc-X and Calcformers paper**](https://arxiv.org/abs/2305.15017)
- [**Calc-X and Calcformers repo**](https://github.com/prompteus/calc-x)
Here are links to the original dataset:
- [**original MAWPS dataset**](http://lang.ee.washington.edu/MAWPS)
- [**MAWPS dataset variant in Arabic**](https://huggingface.co/datasets/omarxadel/MaWPS-ar)
- [**original MAWPS paper**](https://aclanthology.org/N16-1136/)
- [**original MAWPS repo**](https://github.com/sroy9/mawps)
## Licence
MIT, consistent with the original source dataset linked above.
## Cite
If you use this version of the dataset in research, please cite the original [MAWPS paper](https://aclanthology.org/N16-1136/), and [Calc-X paper](https://arxiv.org/abs/2305.15017) as follows:
```bibtex
@inproceedings{kadlcik-etal-2023-soft,
title = "Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought through Interaction with Symbolic Systems",
author = "Marek Kadlčík and Michal Štefánik and Ondřej Sotolář and Vlastimil Martinek",
booktitle = "Proceedings of the The 2023 Conference on Empirical Methods in Natural Language Processing: Main track",
month = dec,
year = "2023",
address = "Singapore, Singapore",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2305.15017",
}
```
|