LukasDb commited on
Commit
e416d01
·
verified ·
1 Parent(s): a43515d

Upload dropjects.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. dropjects.py +110 -0
dropjects.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import itertools as it
3
+ import numpy as np
4
+ import datasets as d
5
+
6
+
7
+ _DESCRIPTION = """\
8
+ The Dropjects dataset was created at the Chair of Cyber-Physical Systems in Production \
9
+ Engineering at the Technical University of Munich.
10
+ """
11
+
12
+ SUBSETS = [
13
+ "omni",
14
+ "cps",
15
+ "linemod",
16
+ "ycbv",
17
+ "homebreweddb",
18
+ "hope",
19
+ "tless",
20
+ ]
21
+
22
+ NUM_SHARDS = {
23
+ "cps": 1000,
24
+ "ycbv": 1000,
25
+ "linemod": 1000,
26
+ "tless": 1000,
27
+ "omni": 10_000,
28
+ }
29
+
30
+
31
+ BASE_PATH = "https://huggingface.co/datasets/LukasDb/dropjects/resolve/main/data/train/{subset}/{shard}.tar"
32
+
33
+
34
+ h = 1440
35
+ w = 2560
36
+
37
+
38
+ class Dropjects(d.GeneratorBasedBuilder):
39
+ BUILDER_CONFIGS = list(d.BuilderConfig(name=x) for x in SUBSETS)
40
+
41
+ def _info(self):
42
+
43
+ features = d.Features(
44
+ {
45
+ # TODO at least the resolution is different
46
+ "rgb": d.Array3D((h, w, 3), dtype="uint8"),
47
+ "rgb_R": d.Array3D((h, w, 3), dtype="uint8"),
48
+ "depth": d.Array2D((h, w), dtype="float32"),
49
+ "depth_R": d.Array2D((h, w), dtype="float32"),
50
+ "mask": d.Array2D((h, w), dtype="int32"),
51
+ "obj_ids": d.Sequence(d.Value("int32")),
52
+ "obj_classes": d.Sequence(d.Value("string")),
53
+ "obj_pos": d.Sequence(d.Sequence(d.Value("float32"))),
54
+ "obj_rot": d.Sequence(d.Sequence(d.Value("float32"))),
55
+ "obj_bbox_obj": d.Sequence(d.Sequence(d.Value("int32"))),
56
+ "obj_bbox_visib": d.Sequence(d.Sequence(d.Value("int32"))),
57
+ "cam_location": d.Sequence(d.Value("float32")),
58
+ "cam_rotation": d.Sequence(d.Value("float32")),
59
+ "cam_matrix": d.Array2D((3, 3), dtype="float32"),
60
+ "obj_px_count_all": d.Sequence(d.Value("int32")),
61
+ "obj_px_count_valid": d.Sequence(d.Value("int32")),
62
+ "obj_px_count_visib": d.Sequence(d.Value("int32")),
63
+ "obj_visib_fract": d.Sequence(d.Value("float32")),
64
+ }
65
+ )
66
+ return d.DatasetInfo(
67
+ description=_DESCRIPTION,
68
+ citation="", # TODO
69
+ homepage="", # TODO
70
+ license="cc",
71
+ features=features,
72
+ )
73
+
74
+ def _split_generators(self, dl_manager):
75
+ subset = self.config.name
76
+
77
+ archive_paths = [
78
+ BASE_PATH.format(subset=subset, shard=i) for i in range(NUM_SHARDS[subset])
79
+ ]
80
+
81
+ downloaded = dl_manager.download(archive_paths)
82
+
83
+ return [
84
+ d.SplitGenerator(
85
+ name=d.Split.TRAIN,
86
+ gen_kwargs={"tars": [dl_manager.iter_archive(d) for d in downloaded]},
87
+ ),
88
+ ]
89
+
90
+ def _generate_examples(self, tars):
91
+ sample = {}
92
+ id = None
93
+
94
+ for tar in tars:
95
+ for file_path, file_obj in tar:
96
+ new_id = file_path.split(".")[0]
97
+ if id is None:
98
+ id = new_id
99
+ else:
100
+ if id != new_id:
101
+ yield id, sample
102
+ sample = {}
103
+ id = new_id
104
+
105
+ key = file_path.split(".")[1]
106
+
107
+ bytes = io.BytesIO(file_obj.read())
108
+ value = np.load(bytes, allow_pickle=False)
109
+
110
+ sample[key] = value