#%% from utils.retriever_utils import load_passages, validate, save_results import pickle import os import csv #%% def load_data_with_pickle(file_path): with open(file_path, 'rb') as f: return pickle.load(f) def process_and_save_retrieval_results(top_docs, dataset_name, questions, question_answers, all_passages, num_threads, match_type, output_dir, output_no_text=False): recall_outfile = os.path.join(output_dir, 'recall_at_k.csv') result_outfile = os.path.join(output_dir, 'results.json') questions_doc_hits = validate( dataset_name, all_passages, question_answers, top_docs, num_threads, match_type, recall_outfile, use_wandb=False ) save_results( all_passages, questions, question_answers, top_docs, questions_doc_hits, result_outfile, output_no_text=output_no_text ) return questions_doc_hits #%% if __name__=='__main__': dataset_name = 'webq' num_threads = 10 output_no_text = False ctx_file = './corpus/wiki_webq_corpus.tsv' match_type = 'string' input_file_path = './data/webq-test.csv' with open(input_file_path,'r') as file: query_data = csv.reader(file, delimiter='\t') questions, question_answers = zip(*[(item[0], eval(item[1])) for item in query_data]) questions = questions question_answers = question_answers all_passages = load_passages(ctx_file) output_dir = './output/webq-test-result' top_docs_pkl_path = './output/result_str.pkl' top_docs = load_data_with_pickle(top_docs_pkl_path) os.makedirs(output_dir, exist_ok=True) questions_doc_hits = process_and_save_retrieval_results( top_docs, dataset_name, questions, question_answers, all_passages, num_threads, match_type, output_dir, output_no_text=output_no_text ) print('Validation End!')