File size: 8,611 Bytes
607626b
 
 
 
 
c9f941a
607626b
c9f941a
607626b
 
 
 
 
 
 
 
 
 
 
 
3c58c32
609fd83
6f98859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fffda5
 
 
 
 
 
 
 
 
 
 
8017a38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607626b
 
 
 
 
 
 
3c58c32
607626b
 
 
3c58c32
 
607626b
 
 
 
 
 
 
 
 
 
 
 
 
4d1d641
607626b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1d641
 
 
8017a38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- fact-checking
- multi-class-classification
paperswithcode_id: pubhealth
pretty_name: PUBHEALTH
dataset_info:
  features:
  - name: claim_id
    dtype: string
  - name: claim
    dtype: string
  - name: date_published
    dtype: string
  - name: explanation
    dtype: string
  - name: fact_checkers
    dtype: string
  - name: main_text
    dtype: string
  - name: sources
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': 'false'
          '1': mixture
          '2': 'true'
          '3': unproven
  - name: subjects
    dtype: string
  splits:
  - name: train
    num_bytes: 53985377
    num_examples: 9832
  - name: test
    num_bytes: 6825221
    num_examples: 1235
  - name: validation
    num_bytes: 6653044
    num_examples: 1225
  download_size: 24892660
  dataset_size: 67463642
train-eval-index:
- config: default
  task: text-classification
  task_id: multi_class_classification
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    claim: text
    label: target
  metrics:
  - type: accuracy
    name: Accuracy
  - type: f1
    name: F1 macro
    args:
      average: macro
  - type: f1
    name: F1 micro
    args:
      average: micro
  - type: f1
    name: F1 weighted
    args:
      average: weighted
  - type: precision
    name: Precision macro
    args:
      average: macro
  - type: precision
    name: Precision micro
    args:
      average: micro
  - type: precision
    name: Precision weighted
    args:
      average: weighted
  - type: recall
    name: Recall macro
    args:
      average: macro
  - type: recall
    name: Recall micro
    args:
      average: micro
  - type: recall
    name: Recall weighted
    args:
      average: weighted
---

# Dataset Card for PUBHEALTH

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [PUBHEALTH homepage](https://github.com/neemakot/Health-Fact-Checking)
- **Repository:** [PUBHEALTH repository](https://github.com/neemakot/Health-Fact-Checking/blob/master/data/DATASHEET.md)
- **Paper:** [Explainable Automated Fact-Checking for Public Health Claims"](https://arxiv.org/abs/2010.09926)
- **Point of Contact:**[Neema Kotonya](mailto:[email protected])

### Dataset Summary

PUBHEALTH is a comprehensive dataset for explainable automated fact-checking of public health claims. Each instance in the PUBHEALTH dataset has an associated veracity label (true, false, unproven, mixture). Furthermore each instance in the dataset has an explanation text field. The explanation is a justification for which the claim has been assigned a particular veracity label.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

The text in the dataset is in English.

## Dataset Structure

### Data Instances

The following is an example instance of the PUBHEALTH dataset:
|  Field              |  Example                                                     |
| -----------------   | -------------------------------------------------------------|
| __claim__  	      | Expired boxes of cake and pancake mix are dangerously toxic. |
| __explanation__     | What's True:  Pancake and cake mixes that contain mold can cause life-threatening allergic reactions. What's False: Pancake and cake mixes that have passed their expiration dates are not inherently dangerous to ordinarily healthy people, and the yeast in packaged baking products does not "over time develops spores." |
| __label__           |  mixture                                                     |
| __author(s)__       | David Mikkelson                                              |
| __date published__  | April 19, 2006                                               |
| __tags__            | food, allergies, baking, cake                                |
| __main_text__        |   In April 2006, the experience of a 14-year-old who had eaten pancakes made from a mix that had gone moldy was described in the popular newspaper column Dear Abby. The account has since been circulated widely on the Internet as scores of concerned homemakers ponder the safety of the pancake and other baking mixes lurking in their larders [...]       |
| __evidence sources__    | [1] Bennett, Allan and Kim Collins.  “An Unusual Case of Anaphylaxis: Mold in Pancake Mix.” American Journal of Forensic Medicine & Pathology.   September 2001   (pp. 292-295). [2] Phillips, Jeanne. “Dear Abby.” 14 April 2006   [syndicated column]. |

### Data Fields

Mentioned above in data instances.

### Data Splits

|           | # Instances |
|-----------|-------------|
| train.tsv | 9832        |
| dev.tsv   | 1221        |
| test.tsv  | 1235        |
| total     | 12288       |


## Dataset Creation

### Curation Rationale

The dataset was created to explore fact-checking of difficult to verify claims i.e., those which require expertise from outside of the journalistics domain, in this case biomedical and public health expertise.

It was also created in response to the lack of fact-checking datasets which provide gold standard natural language explanations for verdicts/labels.

### Source Data

#### Initial Data Collection and Normalization

The dataset was retrieved from the following fact-checking, news reviews and news websites:

| URL                               | Type               |
|-----------------------------------|--------------------|
| http://snopes.com/                | fact-checking      |
| http://politifact.com/            | fact-checking      |
| http://truthorfiction.com/        | fact-checking      |
| https://www.factcheck.org/        | fact-checking      |
| https://fullfact.org/             | fact-checking      |
| https://apnews.com/               | news               |
| https://uk.reuters.com/           | news               |
| https://www.healthnewsreview.org/ | health news review |

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

Not to our knowledge, but if it is brought to our attention that we are mistaken we will make the appropriate corrections to the dataset.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

The dataset was created by Neema Kotonya, and Francesca Toni, for their research paper "Explainable Automated Fact-Checking for Public Health Claims" presented at EMNLP 2020.

### Licensing Information

MIT License

### Citation Information
```
@inproceedings{kotonya-toni-2020-explainable,
    title = "Explainable Automated Fact-Checking for Public Health Claims",
    author = "Kotonya, Neema  and
      Toni, Francesca",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.623",
    pages = "7740--7754",
}
```
### Contributions

Thanks to [@bhavitvyamalik](https://github.com/bhavitvyamalik) for adding this dataset.