Datasets:

Languages:
English
ArXiv:
License:
SeJinPark commited on
Commit
aa40962
·
2 Parent(s): 4e264e6 f28ac00

Merge branch 'main' of https://huggingface.co/datasets/IVLLab/MultiDialog into main

Browse files
Files changed (1) hide show
  1. README.md +24 -6
README.md CHANGED
@@ -25,10 +25,21 @@ size_categories:
25
  - **Point of Contact:** [[email protected]](mailto:[email protected])
26
 
27
  ## Dataset Description
28
- This dataset includes manually annotated metadata linking audio files to transcriptions, emotions, and other attributes.
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ### Example Usage
31
- There are 'train', 'test_freq', 'test_rare', 'valid_freq', and 'valid_rare' splits. Below is the example usage.
32
  ```python
33
  from datasets import load_dataset
34
 
@@ -43,34 +54,41 @@ transcription = MultiD["valid_freq"][0]["value"] # first transcription
43
  ```
44
 
45
  ### Supported Tasks
46
- - `multimodal dialogue generation`
47
  - `automatic-speech-recognition`: The dataset can be used to train a model for Automatic Speech Recognition (ASR).
48
  - `text-to-speech`: The dataset can also be used to train a model for Text-To-Speech (TTS).
49
 
50
  ### Languages
51
  Multidialog contains audio and transcription data in English.
52
 
 
 
 
 
 
53
  ## Dataset Structure
54
  ### Data Instances
55
  ```python
56
  {
 
57
  'conv_id': 't_ffa55df6-114d-4b36-87a1-7af6b8b63d9b',
58
  'utterance_id': 0,
59
  'from': 'gpt',
60
  'audio':
61
  {
62
- # in streaming mode 'path' will be 'xs_chunks_0000/YOU0000000315_S0000660.wav'
63
- 'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/9d48cf31/xs_chunks_0000/YOU0000000315_S0000660.wav',
64
  'array': array([0.0005188 , 0.00085449, 0.00012207, ..., 0.00125122, 0.00076294, 0.00036621], dtype=float32),
65
  'sampling_rate': 16000
66
  },
67
  'value': 'Are you a football fan?',
68
  'emotion': 'Neutral',
69
- 'original_full_path': 'audio/youtube/P0004/YOU0000000315.opus'
70
  }
71
  ```
72
 
73
  ### Data Fields
 
74
  * conv_id (string) - unique identifier for each conversation.
75
  * utterance_id (float) - uterrance index.
76
  * from (string) - who the message is from (human, gpt).
 
25
  - **Point of Contact:** [[email protected]](mailto:[email protected])
26
 
27
  ## Dataset Description
28
+ This dataset includes manually annotated metadata linking audio files to transcriptions, emotions, and other attributes. For access to video files of MultiDialog, download them [here](https://drive.google.com/drive/folders/1RPMwVHU34yX0R_HbxAWmxF2EHy961HA3?usp=sharing).
29
+
30
+ ### Dataset Statistics
31
+ | | train | valid_freq | valid_rare | test_freq | test_rare | Total |
32
+ |-----------------------|---------|---------|---------|---------|---------|----------|
33
+ | \# dialogues | 7,011 | 448 | 443 | 450 | 381 | 8,733 |
34
+ | \# utterance | 151,645 | 8,516 | 9,556 | 9,811 | 8,331 | 187,859 |
35
+ | avg \# utterance/dialogue | 21.63 | 19.01 | 21.57 | 21.80 | 21.87 | 21.51 |
36
+ | avg length/utterance (s) | 6.50 | 6.23 | 6.40 | 6.99 | 6.49 | 6.51 |
37
+ | avg length/dialogue (min) | 2.34 | 1.97 | 2.28 | 2.54 | 2.36 | 2.33 |
38
+ | total length (hr) | 273.93 | 14.74 | 17.00 | 19.04 | 15.01 | 339.71 |
39
+
40
 
41
  ### Example Usage
42
+ There are 'train', 'test_freq', 'test_rare', 'valid_freq', and 'valid_rare' splits. Below is an example usage.
43
  ```python
44
  from datasets import load_dataset
45
 
 
54
  ```
55
 
56
  ### Supported Tasks
57
+ - `multimodal dialogue generation` : The dataset can be used to train an end-to-end multimodal
58
  - `automatic-speech-recognition`: The dataset can be used to train a model for Automatic Speech Recognition (ASR).
59
  - `text-to-speech`: The dataset can also be used to train a model for Text-To-Speech (TTS).
60
 
61
  ### Languages
62
  Multidialog contains audio and transcription data in English.
63
 
64
+ ### Gold Emotion Dialogue Subset
65
+ We provide a gold emotion dialogue subset in the MultiDialog dataset, a more reliable resource for studying emotional dynamics in conversations.
66
+ We classify dialogues from actors that exhibit emotion accuracy above 40% as gold emotion dialogue. Please use dialogues from actors with the following ids: a, b, c, e, f, g, i, j, and k.
67
+
68
+
69
  ## Dataset Structure
70
  ### Data Instances
71
  ```python
72
  {
73
+ 'file_name': 't_ffa55df6-114d-4b36-87a1-7af6b8b63d9b/t_ffa55df6-114d-4b36-87a1-7af6b8b63d9b_0k.wav'
74
  'conv_id': 't_ffa55df6-114d-4b36-87a1-7af6b8b63d9b',
75
  'utterance_id': 0,
76
  'from': 'gpt',
77
  'audio':
78
  {
79
+ # in streaming mode 'path' will be 't_152ee99a-fec0-4d37-87a8-b1510a9dc7e5/t_152ee99a-fec0-4d37-87a8-b1510a9dc7e5_0i.wav'
80
+ 'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/cache_id/t_152ee99a-fec0-4d37-87a8-b1510a9dc7e5/t_152ee99a-fec0-4d37-87a8-b1510a9dc7e5_0i.wav,
81
  'array': array([0.0005188 , 0.00085449, 0.00012207, ..., 0.00125122, 0.00076294, 0.00036621], dtype=float32),
82
  'sampling_rate': 16000
83
  },
84
  'value': 'Are you a football fan?',
85
  'emotion': 'Neutral',
86
+ 'original_full_path': 'valid_freq/t_ffa55df6-114d-4b36-87a1-7af6b8b63d9b/t_ffa55df6-114d-4b36-87a1-7af6b8b63d9b_0k.wav'
87
  }
88
  ```
89
 
90
  ### Data Fields
91
+ * file_name (string) - relative file path to the audio sample in the specific split directory.
92
  * conv_id (string) - unique identifier for each conversation.
93
  * utterance_id (float) - uterrance index.
94
  * from (string) - who the message is from (human, gpt).