--- annotations_creators: - expert-generated language_creators: - crowdsourced language: - en license: - mit multilinguality: - monolingual size_categories: - 10K metres tall. target: two ``` ### Data Fields Each value of the training set consists of: - `sentence`: The sentence with a number masked out with the `` token. - `target`: The ground truth target value. Since the test sets do not include the ground truth, the `target` field values are empty strings in the `test_core` and `test_all` splits. ### Data Splits The dataset includes the following pre-defined data splits: - A train set with >10K labeled examples (i.e. containing a ground truth value) - A core test set (`test_core`) with 1,132 examples (no ground truth provided) - An expanded test set (`test_all`) encompassing `test_core` with the addition of adversarial examples for a total of 3,146 examples. See section 2.2 of [the paper] for a discussion of how these examples are constructed. ## Dataset Creation ### Curation Rationale The purpose of this dataset is "to study whether PTLMs capture numerical commonsense knowledge, i.e., commonsense knowledge that provides an understanding of the numeric relation between entities." This work is motivated by the prior research exploring whether language models possess _commonsense knowledge_. ### Source Data #### Initial Data Collection and Normalization The dataset is an extension of the [Open Mind Common Sense](https://huggingface.co/datasets/open_mind_common_sense) corpus. A query was performed to discover sentences containing numbers between 0-12, after which the resulting sentences were manually evaluated for inaccuracies, typos, and the expression of commonsense knowledge. The numerical values were then masked. #### Who are the source language producers? The [Open Mind Common Sense](https://huggingface.co/datasets/open_mind_common_sense) corpus, from which this dataset is sourced, is a crowdsourced dataset maintained by the MIT Media Lab. ### Annotations #### Annotation process No annotations are present in this dataset beyond the `target` values automatically sourced from the masked sentences, as discussed above. #### Who are the annotators? The curation and inspection was done in two rounds by graduate students. ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset The motivation of measuring a model's ability to associate numerical values with real-world concepts appears relatively innocuous. However, as discussed in the following section, the source dataset may well have biases encoded from crowdworkers, particularly in terms of factoid coverage. A model's ability to perform well on this benchmark should therefore not be considered evidence that it is more unbiased or objective than a human performing similar tasks. [More Information Needed] ### Discussion of Biases This dataset is sourced from a crowdsourced commonsense knowledge base. While the information contained in the graph is generally considered to be of high quality, the coverage is considered to very low as a representation of all possible commonsense knowledge. The representation of certain factoids may also be skewed by the demographics of the crowdworkers. As one possible example, the term "homophobia" is connected with "Islam" in the ConceptNet knowledge base, but not with any other religion or group, possibly due to the biases of crowdworkers contributing to the project. ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators This dataset was collected by Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and Xiang Ren, Computer Science researchers at the at the University of Southern California. ### Licensing Information The data is hosted in a GitHub repositor with the [MIT License](https://github.com/INK-USC/NumerSense/blob/main/LICENSE). ### Citation Information ``` @inproceedings{lin2020numersense, title={Birds have four legs?! NumerSense: Probing Numerical Commonsense Knowledge of Pre-trained Language Models}, author={Bill Yuchen Lin and Seyeon Lee and Rahul Khanna and Xiang Ren}, booktitle={Proceedings of EMNLP}, year={2020}, note={to appear} } ``` ### Contributions Thanks to [@joeddav](https://github.com/joeddav) for adding this dataset.