import numpy as np
import pandas as pd
from plotly import graph_objects as go
import plotly.express as px
from viewer.utils import PlotOptions
def parse_merge_runs_to_plot(df, metric_name, merge_method):
if merge_method == "none":
return [
(group["steps"], group[metric_name], f'{runname}-s{seed}')
for (runname, seed), group in df.groupby(["runname", "seed"])
]
if metric_name not in df.columns:
return []
grouped = df.groupby(['runname', 'steps']).agg({metric_name: merge_method}).reset_index()
return [
(group["steps"], group[metric_name], runname)
for (runname,), group in grouped.groupby(["runname"])
]
def prepare_plot_data(df: pd.DataFrame, metric_name: str, seed_merge_method: str,
plot_options: PlotOptions) -> pd.DataFrame:
if df is None or "steps" not in df or metric_name not in df.columns:
return pd.DataFrame()
df = df.copy().sort_values(by=["steps"])
plot_data = parse_merge_runs_to_plot(df, metric_name, seed_merge_method)
# Create DataFrame with all possible steps as index
all_steps = sorted(set(step for xs, _, _ in plot_data for step in xs))
result_df = pd.DataFrame(index=all_steps)
# Populate the DataFrame respecting xs for each series
for xs, ys, runname in plot_data:
result_df[runname] = pd.Series(index=xs.values, data=ys.values)
# Interpolate or keep NaN based on the interpolate flag
if plot_options.interpolate:
# this is done per run, as each run is in a diff column
result_df = result_df.interpolate(method='linear')
# Apply smoothing if needed
if plot_options.smoothing > 0:
result_df = result_df.rolling(window=plot_options.smoothing, min_periods=1).mean()
if plot_options.pct:
result_df = result_df * 100
return result_df
def plot_metric(plot_df: pd.DataFrame, metric_name: str, seed_merge_method: str, pct: bool, statistics: dict,
nb_stds: int, language: str = None, barplot: bool = False) -> go.Figure:
if barplot:
return plot_metric_barplot(plot_df, metric_name, seed_merge_method, pct, statistics, nb_stds, language)
return plot_metric_scatter(plot_df, metric_name, seed_merge_method, pct, statistics, nb_stds, language)
def plot_metric_scatter(plot_df: pd.DataFrame, metric_name: str, seed_merge_method: str, pct: bool, statistics: dict,
nb_stds: int, language: str = None) -> go.Figure:
fig = go.Figure()
if not isinstance(plot_df, pd.DataFrame) or plot_df.empty:
return fig
show_error_bars = nb_stds > 0 and not np.isnan(statistics["mean_std"])
error_value = statistics["mean_std"] * nb_stds * (100 if pct else 1) if show_error_bars else 0.0
last_y_values = {runname: plot_df[runname].iloc[-1] for runname in plot_df.columns}
sorted_runnames = sorted(last_y_values, key=last_y_values.get, reverse=True)
for runname in sorted_runnames:
fig.add_trace(
go.Scatter(x=plot_df.index, y=plot_df[runname], mode='lines+markers', name=runname,
hovertemplate=f'%{{y:.2f}} ({runname})',
error_y=dict(
type='constant', # Use a constant error value
value=error_value, # Single error value
visible=show_error_bars # Show error bars
))
)
lang_string = f" ({language})" if language else ""
fig.update_layout(
title=f"Run comparisons{lang_string}: {metric_name}" +
(f" ({seed_merge_method} over seeds)" if seed_merge_method != "none" else "") + (f" [%]" if pct else ""),
xaxis_title="Training steps",
yaxis_title=metric_name,
hovermode="x unified"
)
return fig
def plot_metric_barplot(plot_df: pd.DataFrame, metric_name: str, seed_merge_method: str, pct: bool, statistics: dict,
nb_stds: int, language: str = None) -> go.Figure:
fig = go.Figure()
if not isinstance(plot_df, pd.DataFrame) or plot_df.empty:
return fig
show_error_bars = nb_stds > 0 and not np.isnan(statistics["mean_std"])
error_value = statistics["mean_std"] * nb_stds * (100 if pct else 1) if show_error_bars else 0.0
last_values = {runname: plot_df[runname].iloc[-1] for runname in plot_df.columns}
sorted_runnames = sorted(last_values, key=last_values.get, reverse=True)
# Create color map for consistent colors
colors = px.colors.qualitative.Set1
color_map = {run: colors[i % len(colors)] for i, run in enumerate(plot_df.columns)}
fig.add_trace(
go.Bar(
x=sorted_runnames,
y=[last_values[run] for run in sorted_runnames],
marker_color=[color_map[run] for run in sorted_runnames],
error_y=dict(
type='constant',
value=error_value,
visible=show_error_bars
),
hovertemplate='%{y:.2f}'
)
)
lang_string = f" ({language})" if language else ""
fig.update_layout(
title=f"Run comparisons{lang_string}: {metric_name}" +
(f" ({seed_merge_method} over seeds)" if seed_merge_method != "none" else "") + (
f" [%]" if pct else ""),
xaxis_title="Runs",
yaxis_title=metric_name,
hovermode="x"
)
return fig