from collections import defaultdict from dataclasses import dataclass from typing import Literal, Type import pandas as pd from typing import List import gradio as gr import numpy as np import pandas as pd from viewer.literals import REFERENCE_RUNS, TASK_CONSISTENCY_BUTTON_CLOSE_LABEL, TASK_CONSISTENCY_BUTTON_LABEL @dataclass class PlotOptions: smoothing: int interpolate: bool pct: bool merge_seeds: str @dataclass(frozen=True) class TaskInfo: # Source file from which the task was fetched filename: str name: str metrics: dict[str, float] hashes: dict[str, str] @dataclass(frozen=True) class RunInfo: name: str seed: int step: int tasks: list[TaskInfo] @property def full_name(self): return f"{self.name}-seed-{self.seed}" if not self.name.endswith("-") else self.name RunData = list[RunInfo] def get_run_name_seed(run_name): if "-seed-" not in run_name: return run_name, 42 run_name, seed = run_name.split("-seed-") return run_name, int(seed) def select_runs(df: pd.DataFrame, runs_to_include: list[str] | None = None, runs_to_exclude: list[str] | None = None): conditions = pd.Series(True, index=df.index) if runs_to_include: conditions_include = [(df['runname'] == get_run_name_seed(run)[0]) & (df['seed'] == get_run_name_seed(run)[1]) for run in runs_to_include] conditions = pd.concat(conditions_include, axis=1).any(axis=1) if runs_to_exclude: conditions_exclude = [(df['runname'] == get_run_name_seed(run)[0]) & (df['seed'] == get_run_name_seed(run)[1]) for run in runs_to_exclude] conditions = ~pd.concat(conditions_exclude, axis=1).any(axis=1) return df[conditions] BASELINE_GROUPING_MODE = Literal["Mean", "Median", "Min", "Max"] def get_groupped_score(df: pd.DataFrame, runs: list[str], groupping_mode: BASELINE_GROUPING_MODE): if len(runs) == 0: return pd.DataFrame(columns=df.columns) tasks_or_agg = [col for col in df.columns if is_task_column(col) or is_aggregate_column(col)] res = select_runs(df, runs_to_include=runs) if groupping_mode == "Mean": return res.groupby("steps")[tasks_or_agg].mean().reset_index() elif groupping_mode == "Median": return res.groupby("steps")[tasks_or_agg].median().reset_index() elif groupping_mode == "Min": return res.groupby("steps")[tasks_or_agg].min().reset_index() elif groupping_mode == "Max": return res.groupby("steps")[tasks_or_agg].max().reset_index() def check_task_hash_consistency(run_data: RunData, check_task_consistency_button): if not run_data or check_task_consistency_button == TASK_CONSISTENCY_BUTTON_CLOSE_LABEL: return gr.update(value={}, visible=False), gr.update(value=TASK_CONSISTENCY_BUTTON_LABEL) # Ignore the continuation tokens, as they vary with generative tasks hash_keys = ["hash_examples", "hash_full_prompts"] task_hashes = defaultdict(lambda: defaultdict(list)) for run in run_data: for task_info in run.tasks: hashes = task_info.hashes hash_values = tuple(hashes.get(k) for k in hash_keys) task_hashes[task_info.name][hash_values].append({ "name": run.name, "step": run.step, "filename": task_info.filename }) conflicts = {} for task, hash_groups in task_hashes.items(): if len(hash_groups) > 1: conflicts[task] = [ { "runs": runs, "hashes": dict(zip(hash_keys, hash_values)) } for hash_values, runs in hash_groups.items() ] return gr.Json(value={"conflicts": conflicts}, visible=True), gr.Button(value=TASK_CONSISTENCY_BUTTON_CLOSE_LABEL) def create_df_from_run_data(run_data: RunData): df = pd.DataFrame([ { "runname": run.name, "seed": run.seed, "steps": run.step, "agg_score_micro": 0, **{ f"{task_info.name}/{metric}": value for task_info in run.tasks for metric, value in task_info.metrics.items() } } for run in run_data ]) df = df.fillna(0) return df def is_task_column(column: str): return "/" in column def is_aggregate_column(column: str): return column.startswith("agg_score") def is_baseline_run(run: str): return any(run.startswith(prefix) for prefix in ["random", "dummy", "baseline"]) def is_reference_run(run: str): return any([ref_run + "-" in run for ref_run in REFERENCE_RUNS]) def z_score_normalize(df: pd.DataFrame, normalization_runs: List[str], columns: List[str], variability_window: int = 1) -> pd.DataFrame: # without 2 runs we can't estimate the std if len(normalization_runs) <= 1: return df normalization_df = select_runs(df, runs_to_include=normalization_runs) # Group by steps and calculate mean and std for all columns at once grouped = normalization_df.groupby('steps')[columns] means = grouped.mean() stds = grouped.std() # Ensure we don't divide by zero stds = stds.replace(0, 1) # fetch values at the highest step last_means = means.loc[means.index.max()] # fetch and average the last N steps defined by the window size last_window_stds = stds.sort_index(ascending=False).head(variability_window).mean() df[columns] = (df[columns].sub(last_means[columns], axis=1) .div(last_window_stds[columns], axis=1)) return df def rescale_scores(df: pd.DataFrame, normalization_runs: List[str], columns: List[str]) -> pd.DataFrame: baseline = get_groupped_score(df, normalization_runs, "Mean") # Prepare baseline values and df for vectorized operation baseline = baseline.set_index("steps").reindex(df["steps"].unique()).interpolate().reset_index() rescaled_cols = baseline.columns[~((baseline <= 0.0).all() | (baseline == 1.0).all())] rescaled_cols = rescaled_cols[(rescaled_cols != 'steps') & rescaled_cols.isin(columns)] df_with_baseline = df.merge(baseline[list(rescaled_cols) + ['steps']], on=["steps"], how="left", suffixes=("", "_baseline")).fillna(0) df[rescaled_cols] = df[rescaled_cols].sub(df_with_baseline[rescaled_cols + '_baseline'].values) df[rescaled_cols] = df[rescaled_cols].div(1 - df_with_baseline[rescaled_cols + '_baseline'].values) return df